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In-silico Evaluation of Phytochemicals from Calotropis gigantea (L.) 
Dryand. for Multi-Target Inhibition of Cobra Venom Proteins
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Introduction
Snakebite is an intense global health hazard, especially 
in tropical areas, causing ~ 125,000 deaths every year, 
with ~50,000 deaths going on in India.[1] Because of the 
excessive mortality rate, the World Health Organization 
(WHO) covered snakebites under the category of neglected 
tropical disease.[2]

Snake venom is an incredibly tricky biochemical aggregate 
commonly composed of enzymes and non-enzymatic 
proteins. It constitutes about 90% of proteins.[1] It also 
carries small quantities of carbohydrates, lipids, and 
metal ions. The enzyme components show various 
activities, such as metalloproteinase, serine proteinase, 
phospholipase A2 (PLA2), acetylcholinesterase (AChE), 
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Snake envenomation leads to about 125,000 deaths yearly worldwide, with India accounting for almost 
50,000 of these fatalities. Even as antivenoms remain the primary treatment, they have limitations, 
prompting the exploration of phytochemicals from Calotropis gigantea as potential multi-target therapies 
against cobra venom toxins. About 14 venom proteins, namely phospholipase A2 (PLA2), cobrotoxin, 
L-amino acid oxidase, acetylcholinesterase, cobramin A, cobramin B, cytotoxin 3, long neurotoxins 1 to 
5, serine protease and proteolase were the selected targets. The 3D structures of those venom proteins 
were downloaded from the protein data bank and SWISS-MODEL. A complete of 164 phytochemicals 
from C. gigantea were docked using AutoDock Vina and PyRx 8.0 to assess their binding capability. 
Compounds with binding energies ≤ -6 kcal/mol have been selected as hits based on their multi-target 
activity. Subsequently, absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties 
and molecular interactions of these molecules were analyzed, with choice standards specializing in 
binding affinity and pharmacokinetics. Molecular dynamics simulations over 100 ns, completed the usage 
of GROMACS 2018.1, identified β-amyrin and lupeol as effective inhibitors of PLA2, acetylcholinesterase, 
and cobrotoxin. Lupeol exhibited greater constancy throughout simulations, at the same time as β-amyrin 
more suitable enzyme structure stabilization. Both compounds demonstrated good pharmacokinetics, 
though issues such as low solubility and potential cardiac dangers warrant further research.
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A B S T R A C TA R T I C L E  I N F O

L-amino acid oxidase (LAAO), and hyaluronidase. Non-
enzyme products include natriuretic peptides, 3-finger 
toxins, C-type lectins, protease inhibitors, and bradykinin-
enhancing peptides. The current treatment for snakebites 
is anti-venom therapy, however, its barriers consist of 
the dangers of hypersensitive reactions, high costs, and 
trouble in identifying the snake species.[3] Because venom 
has many constituents that cause illness and death, a “one 
drug, one target” approach will not work. Phytochemicals 
that may block a couple of targets simultaneously offer 
promise.[1]

Research highlights the capacity of plant-derived 
molecules as drugs, noting their structural significance, 
safety, diverse activity, stability, and novelty. Many 
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snakebite victims still are seeking for herbal healers. 
Evaluating the effectiveness and safety of these practices 
could cause the development of new remedies for snake 
envenomation.
Calotropis gigantea (L.) Dryand., (family Apocynaceae), 
is a common wasteland plant native to India, thriving at 
altitudes up to 900 m. Different parts of this plant such 
as roots, bark, leaves, flowers, and latex, are widely used 
in conventional drug treatments consisting of Ayurveda, 
Unani, and Siddha. The latex, released when tissues are 
injured can be used to treat illnesses like fever, rheumatism, 
indigestion, respiratory tract infections, skin diseases and 
belly ulcers. Despite its high medicinal value, its potential 
as an antivenom remains unexplored.
The Indian cobra (Naja naja), a venomous snake causing 
a high rate of mortality, provides venom that spreads 
speedily due to the motion of hyaluronidase, leading to a 
high fatality rate. This research investigates the capability of 
phytochemicals from C. gigantea to neutralize cobra venom 
via inhibiting its toxic proteins using in-silico methods.

Materials And Methods

Target Preparation – Venom Toxic Proteins
Fourteen cobra venom proteins have been selected 
for analysis as described in previous publications.[1] 
Three-dimensional (3D) structures of phospholipase 
A2 (PDB ID: 1A3D) and cobrotoxin (PDB ID: 1COD) were 
received from the PDB. 3D models had been prepared the 
use of predictive models for L-amino acid oxidase and 
acetylcholinesterase.[3] The remaining proteins, include 
cobramin A (SwissProt ID: P01447), cobramin B (SwissProt 
ID: P01440), cytotoxin 3 (SwissProt ID: P24780), long 
neurotoxins 1 to 5 (SwissProt IDs: P25668, P25669, 
P25671, P25672, P25673), and proteolase (SwissProt ID: 
Q9PVK7) are all from the SWISSMODEL repository.[1] The 
tools Q-site Finder and Pocket Finder have been used for 
detecting active sites of all proteins. 

Ligand Preparation
A comprehensive evaluation of literature and publicly 
available chemical databases revealed around 164 
phytochemicals from C. gigantea. 3D models of those 
compounds were downloaded from PubChem in canonical 
SMILES format after which modeled in CORINA software. 
Preparation of docking targets and ligands followed the 
procedure developed by Nisha et al. [3]

Molecular Docking 
The docking tool AutoDock Vina integrated with PyRx 
8.0 (https://pyrx.sourceforge.io) was used to assess 
interactions between the target proteins and the 164 
ligands.[4] The docking technique followed the method 
outlined by Shefin et al.[5] Docking complexes (target 
and ligand) with binding free energy ≤ -6 kcal/mol were 
considered as hits. Compounds that inhibited more than 

three targets have been further screened to determine 
ADMET properties and protein-ligand interactions to 
identify the most promising candidates.

Post-Docking Analysis
Discovery Studio Visualizer analyzes protein ligands 
with a focus on optimizing hydrogen bond interactions. 
Physicochemical and ADMET properties were evaluated 
using the pkCSM tool and results were interpreted with 
the principles of Douglas et al.[6] The top-ranked five hits 
were subjected to pharmacokinetic evaluation using the 
SwissADME online tool.[7] The analysis included molecular 
descriptors such as molecular weight, number of hydrogen 
bond donors and acceptors, logP value, compliance with 
Lipinski’s rule of five, and toxicity predictions. The molsoft 
prediction tool was used to evaluate the drug-likeness 
properties of the promising hits. 

Molecular Dynamic Simulation 
GROMACS 2018.1 software was used for molecular 
dynamics (MD) simulations. Selected protein-ligand 
complexes have been simulated using CHARMM force 
fields in a dodecahedral box with periodic boundary 
conditions. The system changed into dissolved with 
spc/216 standard water and Na+ and Cl– ions were 
introduced to neutralize the protein. Energy reduction was 
performed up to 50,000 steps using the maximum descent 
rate and stopped when the maximum energy dropped 
under 10.0 kJ/mol. The first stage was performed at a 
constant particle number, volume, and temperature (NVT) 
of 300 K for 100 ps using the leapfrog integration algorithm 
and the V-rescaling thermostat. In the second stage, a 
constant particle number, pressure, and temperature 
(NPT) check was achieved using the Berendsen barostat, 
keeping the pressure at 1 bar for 100 ps. After equilibrium 
was reached, a couple of MD simulations were performed 
for 100 ns, and the trajectory data were recorded every 
2 fs. MD trajectory evaluation consists of the calculation 
of the root mean square deviation (RMSD), root mean 
square fluctuation (RMSF), a radius of gyration (Rg), and 
H-bond interactions between the protein-ligand complex 
and the solvent.

Results And Discussion 
Snake venoms are divided into four groups in line with 
their therapeutic outcomes: neurotoxicity, hemotoxicity, 
cytotoxicity and myotoxicity. Among their proteins, 
phospholipase A2 (PLA2) plays a vital function and shows 
various effects. PLA2 is a key enzyme within the venom 
that causes extreme cell harm and inflammation with the 
aid of hydrolyzing phospholipids in cell membranes. This 
impact ends in the cytotoxic, neurotoxic, and myotoxic 
consequences of the venom, which cause the intense signs 
and symptoms visible in snakebite sufferers.[8,9]

Cobrotoxin, a neurotoxic peptide found in cobra venom, 
disrupts neuromuscular transmission with the aid of 
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binding to acetylcholine receptors, causing paralysis 
and respiratory failure.[10,11] Another component of the 
venom, L-amino acid oxidase (LAAO), produces keto 
acids, ammonia and hydrogen peroxide by catalyzing the 
oxidative deamination of L-amino acids with the help of 
flavin adenine dinucleotide (FAD) as a cofactor. Hydrogen 
peroxide produced in the course of this time can cause 
oxidative stress and cell damage.[12–14] Interestingly, 
LAAO has been investigated for its application in cancer 
treatment.[15,16]

Acetylcholinesterase (AChE) plays an important role in 
neurotransmission via breaking down acetylcholine into 
acetate and choline, Its inhibition can lead to excessive 
disruption of neurotransmission leading to muscle 
twitching and convulsions, which are the consequences 
of neurotoxins.[17-20] The usage of AChE inhibitors 
within the remedy of myasthenia gravis and Alzheimer’s 
disease highlights their importance in the study of 
neurotransmission and cholinergic control.[21,22]

Cobramin A, a neurotoxic protein in cobra venom, disrupts 
neuromuscular transmission and may lead to paralysis.[23] 
Another neurotoxic agent is cobramin B, which impacts 
neuromuscular function and increases the overall toxicity 
of the venom.[24] Cytotoxin 3 is a cytotoxic protein that 
disrupts cellular membranes and motive cell lysis and has 
potential applications in cellular biology and most cancer 
research.[25]

Cobra venom long neurotoxins 1–5 possess an awesome 
three-fingered fold shape that permits it to engage with 
nicotinic acetylcholine receptors on the neuromuscular 
junction, in the long run, inflicting paralysis. Mutations 
in its loop may additionally have receptor binding and 
neurotoxic consequences and might provide insight into 
receptor interactions and healing capability.[23-25]

Cobra venom serine protease, part of the three-finger 
toxin family, is a potent cytotoxin that breaks the shape of 
cellular membranes, causing cell lysis and tissue damage, 
specifically within the coronary heart muscle.[26] Its 
compact structure increases membrane permeability, 
leading to negative outcomes along with hemolysis and 
cardiotoxicity.[8] Extensive research has been performed 
to elucidate its mechanism of action and to analyze its 
potential therapeutic uses.[27]

Cobra venom proteolases, or metalloproteinases, are zinc-
containing enzymes that degrade proteins by hydrolyzing 
peptide bonds. They break proteins in the extracellular 
matrix, impair blood clotting, purpose infection, and 
exacerbate pain and tissue harm.[28,29]

In-silico research, is pivotal in drug discovery, enabling 
efficient screening, correct prediction of drug interactions, 
and decrease the need for laboratory testing. Notable 
examples consist of the development of sitagliptin for 
the remedy of type 2 diabetes and nivolumab for the 
remedy of cancer, both of which have been optimized 
using computational strategies.[30-33] In this context, 
we performed an in-silico analysis of a total of 164 

phytochemicals from C. gigantea against the above-noted 
14 targets in cobra venom using the widely used open-
source molecular docking tool, AutoDock Vina.[34,35] 
The docked outcomes were used to visualize the ligand 
binding poses, analyze the expected binding relationships, 
examine the interactions with the target protein, and 
compare the results as shown by Trott and Olson.[1,4,36] 
However, the free energy of binding is critical for the 
preliminary selection of lead compounds as it presents 
many indicators about the stability and strength of the 
ligand-target interactions, which in turn influences the 
performance and efficacy of the lead compounds.[4,31,37]

Strong binding affinity is usually associated with ΔG_bind 
values of ≤ -7.0 kcal/mol, while values between -5 and 
-7 kcal/mol imply slight binding and values above -5 kcal/
mol suggest susceptible interaction strength. A threshold 
value of -6 kcal/mol is regularly used to identify potential
hits.[38,39] In this have a look at, molecules with a ΔG_bind 
of ≤ -6 kcal/mol have been taken into consideration as hits 
or promising candidates.
The docking analysis (Table 1) indicated that 40 out of 164 
phytochemicals didn’t gain binding energies of ≤ -6 kcal/
mol with any target. From the last 124 phytochemicals, 
the hits for each target were distributed as follows: 
acetylcholinesterase (80), L-amino acid oxidase (70), 
cobratoxin (62), serine protease (30), proteolase (7), long 
neurotoxins (1–5 hits per target), phospholipase A2 (5), 
cytotoxin (3), cobramin B (3), and cobramin A (2). Of the 
80 phytochemicals interacting with acetylcholinesterase, 
47 had ΔG_bind value ≤ -7.0 kcal/mol, while the best 
binding energy of proceroside was found to be -9.6 kcal/
mol. Further, 22 out of 70 compounds targeting L-amino 
acid oxidase had ΔG_bind of ≤ -7.0 kcal/mol and rutin had 
the least binding energy of -11.5 kcal/mol. In the case of 
cobratoxin, 27 phytochemicals were found to have binding 
energy of ≤ -7.0 kcal/mol, and β-amyrin showed the least 
binding energy (-8.9 kcal/mol).
Serine protease showed ΔG_bind of ≤ -7.0 kcal/mol in three 
out of 30 identified hits, among which sapogenins had the 
lowest binding energy of -7.4 kcal/mol. For proteolase, 
β-amyrin and lupeol showed the lowest ΔG_bind value of 
-9.5 kcal/mol, while five out of seven candidates had a ΔG_
bind value of ≤ -7.0 kcal/mol. All compounds targeting long 
neurotoxin 1-5 showed a ΔG_bind of ≤ -7.0 kcal/mol, while 
β-amyrin showed a minimum binding energy ranging 
from -7.4 to -7.6 kcal/mol. Similarly, long neurotoxin 2 
of four compounds reached a ΔG_bind of ≤ -7.0 kcal/mol. 
Phospholipase A2 had three compounds with ΔG_bind 
value of ≤ -7.0 kcal/mol, while rutin had the lowest binding 
energy, -7.6 kcal/mol, followed by β-amyrin, -7.4 kcal/
mol. The lowest ΔG_bind value was recorded as -6.1 kcal/
mol for cytotoxin 3, lupeol and β-amyrin. For cobramin B, 
β-amyrin showed the least binding energy (-6.7 kcal/mol), 
while for cobramin A, both β-amyrin and lupeol showed a 
binding energy -6.1 kcal/mol.
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Fig. 1:  Docking interactions of the ligand β-Amyrin with: A. 
Acetylcholinesterase, B. Cobramin A, C. Cobramin B, D. Cobrotoxin, E. 
Cytotoxin 3, F. L-Amino Acid Oxidase, G. Long Neurotoxin 1, H. Long 
Neurotoxin 2, I. Long Neurotoxin 3, J. Long Neurotoxin 4, K. Long 
Neurotoxin 5, L. Protease, M. Phospholipase A2, and N. Serine Protease.

Fig. 2: Docking interactions of the ligand Lupeol with: A. Acetylcholinesterase, 
B. Cobramin A, C. Cobramin B, D. Cobrotoxin, E. Cytotoxin 3, F. L-Amino Acid 
Oxidase, G. Long Neurotoxin 1, H. Long Neurotoxin 2, I. Long Neurotoxin 3, 
J. Long Neurotoxin 4, K. Long Neurotoxin 5, L. Protease, M. Phospholipase 

A2, and N. Serine Protease

Lupeol and β-amyrin showed inhibitory activity against 
all 14 targets, while rutin inhibited 13 targets except 
cobramin A. Except for cobramin A, cobramin B, and 
cytotoxin 3, all other 11 targets were inhibited by 
stigmasterol. Similarly, campesterol inhibited 10 targets, 
excluding cobramin A and B, cytotoxin 3, and serine 
protease. The compound 2,4-bis(1-phenylethyl)phenol 
exhibited inhibitory activity against five targets: cobramin, 
proteolase, serine protease, L-amino acid oxidase, and 
acetylcholinesterase. A total of 37 compounds inhibited 
three targets; 25 compounds inhibited cobratoxin, serine 
protease, and acetylcholinesterase, and 11 compounds 
inhibited cobratoxin, L-AAO, and acetylcholinesterase. 
The left-over compound, 5,12-naphthacenedione 8-ethyl-
7,8,9,10-tetrahydro-1,6,10,11-tetrahydroxy-8R-cis, 
had inhibited the targets cobratoxin, proteolase, and 
acetylcholinesterase.
Among the 21 phytochemicals that exhibited inhibition 
against two targets, ten were effective against cobratoxin 
and acetylcholinesterase, while five inhibited LAAO and 
acetylcholinesterase. The remaining six compounds—
gingerol, linoleic acid, methyl linoleate, cyclohexane, 
11-(oxydi-2,1-ethoxy-1-methyl)-bis [4-methyl], methyl 
8,11,14-heptadecatrienoate, and isoavocadienofuran—
showed inhibitory activity against cobratoxin and L-AAO.
Based on the binding score and multiple target binding 
affinity analyses, five molecules—campesterol, lupeol, 
stigmasterol, rutin, and β-amyrin—were identified for 
lead optimization. Among these compounds, lupeol and 
β-amyrin exhibited inhibitory activity across all 14 
selected cobra venom targets. Rutin demonstrated binding 
energies lower than -6 kcal/mol with all targets except 
cobramin A; for cobramin A, the binding energy was -5.9 
kcal/mol. Despite this, rutin can still be considered a lead 
with inhibitory potential against all targets. Campesterol 
showed binding scores of -5.3 kcal/mol with cobramin A, 
-5.4 kcal/mol with cobramin B, and -5.9 kcal/mol with 
cytotoxin 3 and serine protease, with binding scores 
below -6 kcal/mol for the remaining targets. Similarly, 
stigmasterol exhibited binding scores of -5.6 kcal/mol 
with cobramin A, -5.7 kcal/mol with cobramin B, and 
-5.6 kcal/mol with cytotoxin 3, while binding scores for all 
other targets were lower than -6 kcal/mol. Consequently, 
stigmasterol can also be considered for lead optimization.
Table 2 illustrates the hydrogen bond (H-bond) and 
hydrophobic interactions between 14 selected cobra 
venom targets and two phytochemicals with medium 
to high binding energies across these targets. Among 
these targets, lupeol formed H-bonds with PLA2 and 
SP, while β-amyrin showed H-bond interactions with 
AchE and cobramin B. Both ligands displayed only 
hydrophobic interactions with the remaining targets. 
H-bonds contribute to binding specificity and stability, 
especially at shorter distances, which indicate stronger 
interactions.[40] Hydrophobic (non-polar) interactions, 
although less specific, also contribute to binding energy 

and stability. Effective ligand binding typically involves 
both hydrogen bonding and hydrophobic stabilization.[41] 
Based on this interaction profile, β-amyrin emerges as a 
promising lead ligand due to its robust and specific binding 
characteristics across multiple targets. Its short, stable 
H-bonds with key residues in AchE and cobramin B enhance 
affinity, while its consistent hydrophobic interactions 
further stabilize binding in non-polar environments. This 
blend of H-bonding and hydrophobic interactions indicates 
that β-amyrin is a potential lead compound, showing 
superior affinity and stability compared to ligands that 
lack these features. The docked complexes of 14 selected 
cobra venom proteins with leads such as β-amyrin and 
lupeol are presented in Figs 1A-N and 2A-N, respectively.
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Table 2: The hydrogen bond and hydrophobic interaction between the ligands, lupeol and β-amyin with the selected 14 cobra venom 
proteins 

Proteins Ligands Hydrogen bonds Distance (Α̊) Hydrophobic interaction

AchE

Lu
pe

ol

Nil Nil LEU28,MET53,LEU28,MET26,PHE6,TYR52,TRP58,TYR
85,PHE87

CA Nil Nil ILE39,LYS44,MET24,LYS35,PRO43,TYR22,TYR51

CB Nil Nil LYS5,VAL7,LYS12,PHE10

COT Nil Nil ARG33,TYR35,

CYT3 Nil Nil ILE39,LYS44,MET24,LYS35,PRO43,TYR23,TYR51

L-AAO Nil Nil LEU128,ARG115,ARG118,ARG122

LN 1 Nil Nil PRO66,VAL37,PHE65

LN 2 Nil Nil VAL37,PRO66,PHE65

LN 3 Nil Nil VAL37,PRO66,PHE66

LN 4 Nil Nil VAL37,PRO66,PHE65

LN 5 Nil Nil VAL37,PRO66,PHE65

PL Nil Nil ALA506,TRP167,TYR299,TYR573

PLA2 ASP48:OD1---H:Lig 2.21
PHE64, TYR63

 ASN52:HD22---O:Lig 2.4

SP VAL36:OD2---H:Lig 3.53 LEU17,VAL35,TYR80

AchE

β-
am

yi
n

TYR22:OH---H:Lig 2.18 PHE6,ALA4,TYR52,TRP58,PHE87

CA Nil Nil ILE39,PRO43,VAL41,TYR22,TYR51

CB ARG36:O---H:Lig 2.01 LEU6,LYS5,VAL7,LYS12,PHE10

COT Nil Nil ARG30,TYR35

CYT 3 Nil Nil ILE39,VAL41,PRO43,TYR22,TYR51

L-AAO Nil Nil VAL256,HIS95,TYR102

LN 1 Nil Nil PRO66,ARG68,LYS35

LN 2 Nil Nil PRO66,ARG68,LYS35

LN 3 Nil Nil PRO66,ARG68,LYS35

LN 4 Nil Nil PRO66,ARG68,LYS35

LN 5 Nil Nil PHE65,VAL37,PRO66,ILE9,ARG68

PL Nil Nil GLU171,LEU377,ARG374,ILE173,LEU179

PLA 2 Nil Nil TYR63,PHE64,LEU2,ALA22,TRP18

SP Nil Nil LEU14,ALA26,TYR16,PHE23

ADMET analysis is a prerequisite in drug discovery 
for forecasting the pharmacokinetic and toxicological 
profiles of drug candidates, which helps minimize late-
stage failures and enhances the overall efficiency of drug 
development. The pkCSM is an open-access tool for ADMET 
analysis which can predict the pharmacokinetic and 
toxicological properties of ligands with high accuracy and 
efficiency.[6] Hence, the ADMET analysis was done using 
this tool and the results are shown in Table 3.
ADMET properties of the strongly binding leads β-amyrin 
and lupeol with all the selected targets indicate that both 

compounds have poor water solubility, with β-amyrin 
being slightly less soluble. They share similar Caco2 
permeability and intestinal absorption rates, with lupeol 
being marginally higher. These are not substrates but 
inhibitors of p-glycoprotein, potentially impacting drug 
transport and absorption. While β-amyrin has a lower 
volume of distribution (VDss), both compounds are highly 
plasma protein-bound and demonstrate moderate BBB 
permeability, with lupeol slightly higher.
In terms of metabolism, both compounds are substrates 
for CYP3A4 but do not inhibit other major CYP enzymes, 
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which indicate the chance of drug-drug interactions is very 
less. Lupeol has a higher total clearance than β-amyrin, 
indicating better excretion efficiency. Neither compound 
is a substrate for renal OCT2 transporters, suggesting 
limited renal clearance pathways.
β-amyrin and lupeol are non-mutagenic (AMES test) and 
non-hepatotoxic, showing similar oral toxicity levels 
in rats. However, their inhibition of hERG II channels 
could raise concerns about cardiac safety. Overall, 
despite poor solubility and potential P-glycoprotein 
interactions, β-amyrin and lupeol demonstrate promising 
pharmacokinetic profiles with manageable toxicity. 

Table 3: ADMET analysis of lupeol and β-amyrin using pKCSM

Properties β-Amyrin Lupeol

Water solubility -6.531 -5.861

Caco2 permeability 1.226 1.226

Intestinal absorption (human) 93.733 95.782

Skin Permeability -2.811 -2.744

P-glycoprotein substrate No No

P-glycoprotein I inhibitor Yes Yes

P-glycoprotein II inhibitor Yes Yes

VDss (human) 0.268 0

Fraction unbound (human) 0 0

BBB permeability 0.667 0.726

CNS permeability -1.773 -1.714

CYP2D6 substrate No No

CYP3A4 substrate Yes Yes

CYP1A2 inhibitor No No

CYP2C19 inhibitor No No

CYP2C9 inhibitor No No

CYP2D6 inhibitor No No

CYP3A4 inhibitor No No

Total clearance -0.044 0.153

Renal OCT2 substrate No No

AMES toxicity No No

Max. tolerated dose (human) -0.56 -0.502

hERG I inhibitor No No

hERG II inhibitor Yes Yes

Oral rat acute toxicity (LD50) 2.478 2.563

Oral rat chronic toxicity (LOAEL) 0.873 0.89

Hepatotoxicity No No

Skin sensitisation No No

T. pyriformis toxicity 0.383 0.316

Minnow toxicity -1.345 -1.696

The drug likeness score of both compounds β-amyrin 
and lupeol show a value of -0.22 which indicates both the 
compound exhibit drug-like properties.
The MD simulation data reveals that the lupeol-PLA2 
complex (Fig. 3A) demonstrates greater stability compared 
to the β-amyrin-PLA2 complex (Fig. 3B). The lupeol-PLA2 
complex quickly stabilizes with RMSD values around 1.5 
to 2.0 Å, indicating a consistent conformation and strong 
binding, which aligns with findings on stable ligand-
protein interactions.[42] In contrast, the β-amyrin-PLA2 
complex shows higher and more variable RMSD values, 
reaching up to 3.0 Å, suggesting less stable interactions 
and possible conformational shifts within PLA2.[43] 
These observations imply that lupeol may serve as a 
more effective stabilizing agent for cobra venom PLA2, 
supporting its potential as a more reliable inhibitor.[44]	
The RMSF data (Fig 4A & B) suggest that β-amyrin may 
be a more favorable ligand than lupeol, as it shows lower 
RMSF values in flexible regions, especially around residues 
15, 65, and 80. These lower values indicate that β-amyrin 
could favorably stabilize the PLA2 structure, reducing 
flexibility and enhancing the structural integrity of key 
regions, which is crucial for effective enzyme inhibition.[45] 
Stability in these regions typically correlates with 
improved ligand binding and functional modulation.[46]

The radius of gyration (𝑅𝑔) analysis of cobra venom PLA2 
complexes with lupeol and β-amyrin (Fig. 5A & B) reveals 
differences in stability over a 100 ns molecular dynamics 
simulation. The lupeol-PLA2 complex maintains a stable 
𝑅𝑔 around 1.4 nm with minimal fluctuations, indicating a 
compact and stable structure that suggests strong binding 
interactions, likely due to lupeol’s stabilizing effect on 
PLA2. In contrast, the β-amyrin -PLA2 complex, while 
also close to 1.4 nm, shows slightly higher fluctuations, 
suggesting a comparatively less stable interaction. 
This difference implies that lupeol may better stabilize 
PLA2, making it potentially more effective as a ligand in 
inhibiting PLA2 activity.
The hydrogen bond interaction data for PLA2-lupeol (Fig 
4A) and PLA2-β-amyrin (Fig 4B) shows a stable bond 
count, with both fluctuating between 250 to 300 bonds. 
Lupeol’s interaction remains consistent with minor 
variations, whereas β-amyrin demonstrates a gradual 
increase in bond count, particularly in the latter half of 
the simulation. This trend suggests that β-amyrin may 
establish a progressively stronger interaction with PLA2, 
likely due to improved binding or adaptability over time, 
which has been associated with higher binding affinity 
in protein-ligand interactions.[47,48] Therefore, while 
both ligands engage comparably, β-amyrin might achieve 
a slightly more favorable binding profile due to this 
increasing hydrogen bond trend.
The simulation results of both lupeol and β-amyrin with 
PLA2 revealed that β-amyrin stabilizes flexible regions 
better (RMSF advantage), lupeol is globally more stable 
with PLA2, considering its superior RMSD, compact Rg, 
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inhibition and its ability to target multiple pathways 
in disease processes enhance its therapeutic potential 
compared to β-amyrin.[51] Thus, lupeol is preferred for 
its more extensive therapeutic applications. However, the 
binding score of lupeol and β-amyrin with the selected 
14 targets revealed that β-amyrin has a comparatively 
less binding score than lupeol. In this circumstance, both 
compounds are suggested for further in-vitro and in-vivo 
testing. 

Conclusion
Docking analysis followed by lead optimization identified 
β-amyrin and lupeol as the most promising lead compounds 
for targeting all cobra venom toxic proteins. It was also 
noted that out of 14 cobra venom proteins screened, C. 
gigantea derived phytochemicals can inhibit all target 
proteins. In traditional medicine, this plant is not used 
alone but it is used as an ingredient of the compound herbal 
formulation and the in-silico screening results substantiate 
the traditional use of it as a part of a compound drug. 
However, in-vitro and in-vivo experiments are essential 
for confirmation.  
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