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Introduction
Plants are a vital source of medicine and have a significant 
role in elevating global health outcomes.[1] Plants have 
been utilised for the treatment of various illnesses by 
the indigenous people. In the recent decade, there has 
been an expanding enthusiasm for the investigation of 
medicinal plants and their uses.[2-4] The health-promoting 
properties of the medicinal plants are usually derived from 
the interaction of several phytochemicals present in the 
phytocomplex.[5]

The Polygonaceae family is a taxonomically isolated 
group with the presence of a stipulated sheath and 
ochrea.[6] This family is rich in catechins, alkaloids, 
tannins, saponins, phenols, and anthraquinones.[7] With 
200 species distributed across Europe, Asia, Africa and 
North America, Rumex is the second largest genus of 
Polygonaceae. The Rumex L. species, also referred to as 
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The use of medicinal plants in traditional healthcare practices presents an exciting opportunity for novel 
antimicrobial agents. This research study investigated the antibacterial properties of Rumex nepalensis, a 
common ethnomedicinal plant, against Staphylococcus aureus, which is a clinically significant pathogen that 
causes a wide variety of human infections. The crude leaf extracts of R. nepalensis were tested using the 
agar well diffusion test. and the results showed significant inhibitory activity against S. aureus. Following 
phytochemical screening, compounds were identified using liquid chromatography-high resolution mass 
spectrometry (LC-HRMS). Seven of the twelve bioactive compounds that were found - chrysophanol, 
hastatusides A, L-phenylalanine, schisandrin C, Cis-p-coumaric acid, pinoresinol, and βeta-caryophyllene 
- met the requirements for drug-likeness and were chosen for further analysis. The interaction of these 
drugs with S. aureus virulence-associated protein targets, including gamma haemolysin, exfoliative toxin, 
lysostaphin-type metalloendopeptidase, and toxic shock syndrome toxin-1, was evaluated using in-silico 
molecular docking experiments. Chyrsophanol showed strong binding affinities with all four targets, 
notably with exfoliative toxin, lysostaphin, and toxic shock syndrome toxin. These results suggest that 
chrysophanol is a potential bioactive component that supports R. nepalensis antibacterial action.
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A B S T R A C TA R T I C L E  I N F O

‘Dock’, are well-known for their use in traditional healing 
practices because of their remedial and organic viability.[8] 
Antioxidant property is found in Rumex sp., including R. 
acetosa L., R. acetosella L., R. crispus L ., R. hydrolapathum 
Huds, and R. obtusifolius L.[9] The root and leaf extracts 
of R. dentatus are used for curing constipation,[10] root 
and leaf of R. hastatus have been used in the treatment 
of jaundice,[11] and the roots of R. nepalensis are used 
for the treatment of pain, inflammation, bleeding, tinea, 
tumours, and constipation in Chinese folk medicine.[12] 
In the Khasi indigenous community of Meghalaya, it is 
used as a vegetable.[13] Additionally, the rootstock of R. 
nepalensis is used as an antibacterial agent[14] and in the 
form of a decoction. However, information on the use of its 
leaf extract remains limited.[15] Specifically, information 
on the antibacterial activity present in the leaf of the plant 
has not been well documented.
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Staphylococcus aureus represents an infectious bacterium 
pathogenic to humans and is liable for the larger part of the 
community-acquired and hospital-acquired staphylococcal 
infections. It is known to cause skin diseases, soft tissue 
abscesses, sepsis, endocarditis, pneumonia, and toxic 
shock syndrome.[16] Owing to the emergence of antibiotic 
resistance in S. aureus, treatment of the same has become 
a challenge.[17] Infections caused by antibiotic-resistant 
strains of S. aureus  have reached epidemic proportions 
globally,[18] therefore, there is an urgent need for the 
discovery of new drugs against it.
Drug targets such as the exfoliative toxins (ETs) of S. aureus 
are responsible for the skin lesions. These ETs, which are 
epidermolytic toxins, are serine proteases hydrolysed 
by S. aureus that further hydrolyse desmosome proteins 
in the skin[19]. Lysostaphin-type metalloendopeptidase 
(LytM) exhibits peptidase activity and has effects on 
cell division by influencing cleavage and remodelling of 
peptidoglycan.[20] Another drug target, gamma haemolysin 
a two-component toxin for the disruption and lysis of 
erythrocytes and leukocytes.[21] Toxic shock syndrome 
toxin (TSST), an exotoxin, is another potential drug target 
in S. aureus [22]. 
The pharmacological significance of the present study 
focused on the identification of  Rumex nepalensis  leaf 
extract as a promising source of natural antibacterial 
agents against S. aureus. Research findings on this plant 
have exhibited pharmacological properties in root 
extracts, whereas the present study is among the first to 
establish the efficacy of leaf-derived bioactive compounds. 
Phytochemical screening followed by LC-HRMS and in-silico 
docking revealed several compounds with drug-like 
properties, notably chrysophanol, which demonstrated 
strong binding affinities to multiple virulence factors 
of S. aureus, including exfoliative toxin, lysostaphin-type 
metalloendopeptidase, gamma haemolysin, and toxic shock 
syndrome toxin-1. These findings suggest a multi-target 
antibacterial mechanism that may reduce the likelihood of 
resistance development. The in-silico results, supported by 
well diffusion assays, highlight the therapeutic potential of 
chrysophanol and related compounds as lead candidates 
for novel antimicrobial drug development. Thus, this study 
advances the pharmacognostic profile of R. nepalensis  as a 
novel candidate for the development of avenues for plant-
derived antimicrobial agents  effective against antibiotic-
resistant strains of S. aureus

Materials and Methods

Plant sample preparation
The plant sample was obtained from the campus of St. 
Edmund’s College, Meghalaya, India, and was identified by 
its morphological characteristics, including basal leaves, 
broad leaf blade, ovate-cauline leaves, short petiolate, 
ovate-lanceolate and ocrea fugacious. The leaf extract 

was prepared as per the protocol provided by Odey et 
al.[23] The leaves were washed, shade dried, and ground 
into powder. Solvent extract was prepared by dissolving 
the powder in methanol and incubating for 72 hours at 
room temperature. The crude extract was filtered through 
Whatman filter paper No. 2 and briefly evaporated at 60°C.

Antibacterial action
The methanolic concent rate was st udied for it s 
antibacterial action against S. aureus (MTCC 9886) 
obtained from IMTECH, Chandigarh, Punjab. Following 
the agar well diffusion method,[24] leaf extract treatment 
was administered at two different concentrations: 50 and 
80 mg/mL and incubated at 37°C for 24 hours.

Phytochemical screening
The presence of anthraquinones, phytosterols, alkaloids, 
tannins, cardiac glycosides, triterpenoids, saponins, 
terpenoids, f lavonoids and phenols[25–31] was tested 
following the standard protocols for each phytochemical.

Liquid Chromatography-High Resolution Mass 
Spectrometry (LC-HRMS)
LC-HRMS (Xevo G2-XS QT, Waters, USA) analysis was 
performed at CSIR-NEIST, Jorhat, India. The data generated 
in the form of peaks from the LC-HRMS experiment was 
further analysed using the software Mestrenova[32], and 
after manual calculation of the identified peaks, the mass 
of the corresponding compounds was determined.

IN-SILICO Evaluation

Retrieval of the ligands and screening
The structure and other data about ligands (LC-HRMS 
detected compounds) were downloaded from the 
PubChem Database (NCBI) and then evaluated for drug 
likeness following Lipinski’s rule of five[33].

Retrieval of the drug target, the human homology search 
against human proteome
Four drug targets, including exfoliat ive toxin[34], 
lysostaphin-type metalloendo-peptidase[35], gamma-
haemolysin[36], and toxic shock syndrome toxin-1[37] in 
S. aureus, were revealed through a literature search. The 
structures of the drug targets were retrieved from the 
protein data bank (PDB).[38] Furthermore, these drug 
targets were evaluated for similarity throughout the 
human proteome using BLASTp.[39]

Exfoliative toxin (PDB ID-1EXF) was discovered to be in 
monomeric form, having chain A, which was used for the 
interaction studies. Lysostaphin-type metallopeptidase 
(PDB ID-2B44) existed in dimeric form and was deduced 
to monomeric form before studying the interaction. 
Gamma haemolysin (PDB ID-3B07) has two unique protein 
components in octameric forms. Both components were 
studied, and the gene located in component B was deduced 
into monomeric forms retaining only chain E, which was 
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used for interaction studies. Toxic shock syndrome toxin-1 
(PDB ID-4OHJ) has a dimeric form and was deduced to a 
single chain-A.

Drug target validation
Validation of the drug target proteins was carried out via 
Ramachandran plot using RAMPAGE (http://mordred.
bioc.cam.ac.uk/~rapper/rampage.php).

Molecular Docking
To study the interaction between the ligand and the 
drug target, as well as to identify the energetically 
most favourable binding state, molecular docking was 
carried out employing Autodock 4.2 v1.5.6.[40] A docking 
experiment was performed using the Lamarckian 
Genetic Algorithm. Fifty independent docking runs 
were performed for each of the compounds. The docking 
parameters and protocols were validated by re-docking 
the co-crystal ligand and considering a root mean square 
deviation (RMSD) value between the native and docked 
poses. Prior to docking, the ligand file format obtained 
from PubChem (.sdf) was converted to .mol2 using the 
application Openbabel[41] followed by final visualisation 
in Chimaera[42].

Results
The leaf extract was obtained from the dried, powdered 
leaf, which showed maximum solubility in organic solvents 
and partial solubility in water. The antibacterial effect of 
the extract on the growth of S. aureus was demonstrated 
by the well diffusion assay, which showed a significant 
zone of inhibition. The zone of inhibition was measured 
to be 16 and 12 mm for 80 and 50 mg/mL concentrations, 
respectively (Fig. 1).
Phytochemical screening revealed the presence of 
anthraquinones, terpenoids, alkaloids, saponins, reducing 
sugars, tannins, cardiac glycosides, triterpenes, flavonoids 
and steroids. LC-HRMS analysis resulted in several mass 
peaks (Fig. 2), which were resolved in Mestrenova, 
which detected smaller peaks that were unidentifiable in 
LC-HRMS (Fig. 3). Data generated from LC-HRMS led to the 
identification of 12 compounds that were found present 
in the leaf extract (Table 1). These 12 compounds were 
then subjected to in-silico evaluation for drug likeness 
using Lipinski’s Rule of Five. Of the 12, 7 compounds 
passed the evaluation and were predicted as potential 
bioactive compounds bearing antibacterial properties 
(Table 2). These 7 compounds were then used as ligands 
for molecular docking.
Literature search revealed the presence of several drug 
target proteins in S. aureus; however, only 4 widely reported 
proteins were considered (Table 3). Validation of the 
selected proteins using the Ramachandran Plot revealed 
Exfoliative toxin A (1EXF) to be 96.7% within the favourable 
regions. Lysostaphin-type metalloendopeptidase (2B44), 

gamma-haemolysin (3B07) and toxic shock syndrome 
toxin-1 (4OHJ) to be 96.6, 97.0 and 98.9% within the 
favorable regions, respectively. The compounds evaluated 
by Lipinski’s test were docked against the drug targets.
The results obtained from BLASTp revealed that there is 
negligible similarity between the target protein sequence 
of S. aureus and the human proteome. Except for exfoliative 
toxin A (P09331), which showed a single hit with a query 
cover of 57% and identification of 23.98%, lysostaphin-like 
metalloprotein (O33599), gamma haemolysin (P0A071) 
and toxic shock syndrome toxin (P06886) showed no 
significant hit. The protein drug targets were subjected to 
molecular docking analyses with the compounds identified 
as potential drug candidates. The output of the docking 
analyses in terms of their binding energies, inhibition 
constant (Ki) and molecular interactions are summarised 
in Table 4.
Chrysophanol was found to bind with all four drug targets, 
Hastatusides A with two drug targets, whereas Pinoresinol 
and Schisandrin C interacted with one drug target each. 
Each of these interactions was supported with lower 
inhibition constants and binding energy values (Table 5). 
The best docking result of chrysophanol was seen with the 
Toxic Shock Syndrome Toxin target protein. The binding 
with the receptor molecule was mediated by a single 
hydrogen bond with the amino acid residue, GLU213, 
having a bond length of 1.924 Å (Fig. 4a). Chrysophanol 
showed interaction with the enterotoxin lysostaphin-
like metalloprotein facilitated by a single hydrogen 
bond via the residue ASN303 and with a bond length of 
2.113 Å (Fig. 4b). Chrysophanol and exfoliative toxin also 
showed significant interaction, which resulted from three 
hydrogen bonds via the residues GLN154, HIS156 and 
HIS145 with a bond length of 2.130 Å, 2.264 and 1.905 

Fig. 1: Well Diffusion Assay: Leaf Extract of R. nepalensis against S. 
Aureus

1. Treatment with 80 mg/mL concentration
2. Treatment with 50 mg/mL concentration
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Table 1: Compounds Identified based on LC-HRMS Mass Peak

Sl. No Name of Compound M+ions Peak MW Structure PubChem ID

1 Chrysophanol M(254)+Na((23) 277 254 10208

2 Torachysone-8-O-Beta 
–D-Glucoside M(408)+Na(23) 431 408.40 11972479

3 Hastatuside A M(354)+Na(23) 378.21 354 102480464

4 Valine M(165)+Na(23) 141.96 117 6287

5 L-phenylalanine M(384)+Na(23) 188.07 165 6140

6 Schisandrin C M(164)+Na(23) 407.29 384 443027

7 cis-p-Coumaric acid M(204)+Na(23) 187 164 1549106

8 Pinoresinol M(290)+Na(23) 381.08 358 73399

9 Iodotridecane M(311)+Na(23) 334 311 545617

10 Catechin M(358)+Na(23) 313 290 9064

11 Beta Caryophyllene M(416)+Na(23) 227 204
 
5281515

12 Pulmatin M(117)+Na(23)+H(1) 439 416 442731
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Fig. 3: Mass files obtained from Mestrenova

Table 2: Physicochemical properties of the compounds identified from LC-HRMS.

Sl. No. Name of Compound Mass H-bond donor H-bond acceptor LogP Molar Refractivity

1 Chrysophanol* 254 2 4 2.181 67.815

2 Torachrysone 8-O-glucoside 408 5 9 0.243 101.301

3 Hastatusides A* 354 5 9 -1.222 81.307

4 Valine 117 3 3 0.054 30.449

5 L- phenylalanine* 165 3 3 0.641 45.757

6 Schisandrin C* 384 0 6 4.198 102.96

7 Cis-p-coumaric acid* 164 2 3 1.49 44.776

8 Pinoresinol* 358 2 6 3.19 93.68

9 Iodotridecane 311 0 0 5.732 75.34

10 Catechin 290 5 6 1.546 72.622

11 Beta- Caryophyllene* 204 0 0 4.72 66.742

12 Pulmatin 416 5 9 -0.345 100.00

*Compounds selected based on Lipinski’s ROF test for docking studies.
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Table 3: Potential protein drug targets reported in S. aureus along with their PDB ID and other relevant information.

Sl No. Protein name Gene PDB ID Resolution Reference

1 Exfoliative toxin eta 1EXF 2.1 Å Vath et al. 1997.

2 Lysostaphin-type Metalloendopeptidase lytM 2B44 1.83 Å Firczuk et al. 2005.

3 Gamma-hemolysin hlgB 3B07 2.495 Å Yamashita et al. 2011.

4 Toxic shock syndrome toxin-1 tst 4OHJ 1.28 Å Sospedra et al. 2012.

Table 4: Docking score for each of the four drug targets with the ligand

Sl no. Protein name Drug target
(PDB ID) Ligand Binding Energy (kcal/

mol)
Inhibition constant, Ki (µM/
mol)

1

Exfoliative toxin 1EXF Chrysophanol* -6.14 31.55 

Schisandrin C -6.13 32.16 

Pinoresinol -5.94 43.99 

Beta Caryophyllene -5.57 82.96 

Cis-p-Coumarin -5.06 197.07 

Phenyalanine -4.9 257.99 

Hastatusides A -3.88 1130 

2 Lysostaphin like 
metalloprotein, LytM 2B44

Beta Caryophyllene -7.78 1.97 

Pinoresinol* -7.54 2.96 

Schisandrin C* -6.8 10.45 

Chrysophanol* -6.63 13.86 

Hastatusides A⃰ -6.16 30.63 

Coumarin -5.74 61.76 

Phenylalanine -5.72 63.79 

3 Toxic shock syndrome 
toxin 4OHJ

Chrysophanol⃰ -6.81 10.23 

Hastatusides A⃰ -6.41 20.1 

Pinoresinol -6.92 8.53 

Schisandrin C -6.75 11.3 

Phenylalanine -5.97 41.92 

Coumarin -5.86 50.75 

Beta Caryophyllene -7.35 4.07 

4 Gamma hemolysin 3B07

Hastatusides A⃰ -6.79 10.52 

Beta Caryophyllene -6.81 10.14 

Chrysophanol -6.39 20.55 

Pinoresinol -6.25 26.09 

Schisandrin C -6.71 29.78 

Phenylalanine -3.94 1300 

Coumarin -3.9 1400 

⃰ Significant interaction between the ligand and the receptor molecule.
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Fig. 4: Conformations of the ligands with four receptor molecules. The ligands are represented in magenta in the enlarged view. The  
hydrogen bonds and their respective bond lengths via the amino acid residues of the receptor molecule are also shown.
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Å, respectively (Fig. 4c). Moderate binding was evident 
between chrysophanol and gamma haemolysin through 
three hydrogen bonds via the residue GLU148 with the 
bond length of 1.767 Å and LYS171 having a bond length 
of 1.897 Å and 1.627 Å, respectively (Fig. 4d).
Pinoresinol showed a significant interaction with the 
enterotoxin-lysostaphin-like metalloprotein via a single 
hydrogen bond with the ASN303 residue of the receptor 
molecule, with a bond length of 1.864 Å (Fig. 4e). The 
compound Schisandrin C also showed considerable binding 
with the receptor molecule, enterotoxin-lysostaphin-like 
metalloprotein. The binding occurred via two hydrogen 
bonds with the ASN286 residue, with the bond lengths of 
2.129 Å and 2.292 Å (Fig. 4f).

Source: https://link.springer.com/
referenceworkentry/10.1007/978-3-030-45597-2_209-2

Fig 5: R. nepalensis plant

Table 5: Summary of the Best Docking Scores of the Protein-Ligand 
Complex.

Sl. no. Protein-ligand 
complex

Binding energy Inhibition 
constant

(kcal/mol) (µM/mol)

1 4OHJ_chrysophanol -6.81 10.35

2 2B44_chrysophanol -6.63 13.86 

3 1EXF_chrysophanol -6.14 31.55 

4 3B07_chrysophanol -6.39 20.55 

5 2B44_pinoresinol -7.54 2.96 

6 3B07_hastatusidesA -6.79 10.52 

7 4OHJ_hastatusidesA -6.41 20.1 

8 2B44_hastatusidesA -6.16 30.63 

Interac t ions were seen bet ween t he compound 
hastatusides A and the proteins toxic shock syndrome 
toxin and the gamma haemolysin. The binding with toxic 
shock syndrome toxin resulted in five hydrogen bonds 
with the residues GLN205, ASP207, and THR216 having 
bond lengths of 2.138, 2.208, and 2.337 Å, respectively, 
whereas the interaction with gamma haemolysin was 
also mediated via five hydrogen bonds with the residues 
MET173, SER149, and LEU216 with bond lengths of 1.968, 
2.369, and 1.990 Å, respectively (Figs. 4g & h).
Other compounds, including L-phenylalanine, Cis-p-
coumaric acid and beta-caryophyllene, did not show 
any significant interactions and demonstrated higher 
inhibition constant and binding energy values.

Discussion
Plants have been widely used for the treatment of human 
diseases owing to their promising therapeutic potential 
without adverse effects on health[43,44]. S. aureus poses 
a challenge to human health [16]. Methicillin-resistant S. 
aureus (MRSA) infection is on the rise in hospital and 
community settings[45,46], which highlights the need for 
the discovery of new drugs. In the present study, the 
leaf extract of R. nepalensis was tested for antibacterial 
potential, and the bioactive compounds present in the 
extract were explored. In-silico evaluation to understand 
the interaction between the compounds and the drug 
targets was also conducted.
Existing literature focuses on the potential of the root 
extract of R. nepalensis against a variety of bacterial 
pathogens[14,47–49]. Studies have also been carried out on 
the phytochemical constituents in the root extracts[50,51]. 
However, the antibacterial potential of the leaf extract and 
its phytoconstituents was not well established[52].
The well diffusion assay revealed the leaf extract to 
have antibacterial potential against S. aureus . The 
phytochemical screening revealed the presence of the 
common secondary metabolites in the leaf extract, 
like those reported from the roots of R. nepalensis and 
other Rumex species[53,54]. LC-HRMS resulted in the 
identification of 12 compounds, including 3 phenolic 
compounds, 2 lignans, 2 non-polar amino acids and 
1 each of anthraquinone, oxo acid, iodotridecane and 
sesquiterpene. However, only 7 compounds passed the 
drug likeness by Lipinski’s test and were identified as 
potential drug candidates. Interaction of the 7 compounds 
with the drug targets in S. aureus, as demonstrated by the 
molecular docking, revealed 4 compounds to be suitable 
for potent antibiotics against S. aureus. These compounds 
are chrysophanol, an anthraquinone; Hastatusides A, a 
phenolic glucoside; and Schisandrin C and Pinoresinol, 
both lignans. Among these, anthraquinones have been 
widely studied for antimicrobial potential[55–57]. Aloe-
emodin, another anthraquinone from the roots of R. 
nepalensis, has been reported to demonstrate antibacterial 
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activity.[58] Since aloe-emodin was not identified in the leaf 
extract, it may be assumed that chrysophanol present in 
the leaf is responsible for the antibacterial action against S. 
aureus. Moreover, the antibacterial action of chrysophanol 
has also been asserted previously.[59]

In this study, chrysophanol was seen to bind with all the 
drug target proteins in S. aureus. It interacts well with 
targets such as toxic shock syndrome toxin, exfoliative 
toxin and lysostaphin-type metalloendopeptidase, further 
strengthening that chrysophanol in the leaf extract induces 
its antibacterial action by inhibiting the drug targets. Its 
functional hydroxyl groups in the anthraquinone molecule 
probably make it easier for it to form hydrogen bonds with 
important amino acid residues. Additionally, chrysophanol 
has also been suggested to possess anti-diabetic and 
anti-inflammatory properties.[60,61] Other compounds, 
including Hastatusides A, Schisandrin C and Pinoresinol 
identified in the leaf extract, are known for their anti-
diabetic, antioxidant and anti-inflammatory properties.
[50,62,63]

These results provide a promising foundation for the 
development of plant-derived medicines and support the 
traditional use of R. nepalensis. Toxicological profiles, 
in-vitro efficacy testing, and formulation strategies 
for clinical translation should all be included in future 
research.
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