

Contents lists available at UGC-CARE

International Journal of Pharmaceutical Sciences and Drug Research

[ISSN: 0975-248X; CODEN (USA): IJPSPP]

journal home page: http://ijpsdronline.com/index.php/journal

Research article

Optimized Formulation of Sitagliptin Fast Dissolving Tablets Using Statistical Design Techniques

Devyani G. Bhadane, Sachin B. Somwanshi*

Department of Pharmaceutics, PRES's, College of Pharmacy (For Women), Nashik, Maharashtra, India.

ARTICLE INFO

Article history:

Received: 27 March, 2025 Revised: 18 June, 2025 Accepted: 30 June, 2025 Published: 30 July, 2025

Keywords:

Sitagliptin, Fast dissolving tablet, Factorial design, Crospovidone, Avicel 102, Disintegration time.

DOI:

10.25004/IJPSDR.2025.170404

ABSTRACT

The study focused on developing and statistically optimizing sitagliptin-loaded fast-dissolving tablets (FDTs) utilizing a systematic DoE-based approach to enhance oral drug delivery and patient compliance in type 2 diabetes management. FDTs were prepared via direct compression with varying concentrations of variable excipients, crospovidone (superdisintegrant) and Avicel 102 (binder) as part of a 3^2 full factorial design. The study assessed their impact on formulation attributes, specifically hardness and disintegration time, alongside pre- and post-compression characteristics, dissolution performance, and stability over time. All developed formulations met pharmacopoeial standards. The optimized batch (B7) disintegrated in 34 ± 3 seconds with adequate hardness of $4.5 \pm 0.09 \, \text{kg/cm}^2$ and achieved 99.11% drug release within 30 minutes. Statistical analysis confirmed significant effects of both excipients, with crospovidone having a greater influence on disintegration. Stability studies over three months indicated no significant changes in key parameters. The results demonstrated a robust, cost-effective sitagliptin FDT with improved dissolution properties, particularly beneficial for those with dysphagia or requiring immediate pharmacological response.

INTRODUCTION

The oral pathway remains predominant in pharmacotherapy, largely because of its convenience, safety, and broad patient acceptance. Despite their advantages, traditional oral formulations may be unsuitable for geriatric and pediatric populations, as well as for patients experiencing dysphagia or lacking immediate access to water during medication intake. Fast-dissolving tablets (FDTs) have been developed as a patient-friendly alternative that rapidly disintegrates in the oral cavity-usually within a minute, and requires no water for swallowing, ensuring rapid availability of the API, thereby enhancing convenience as well as treatment adherence. [2,3]

Numerous studies have validated the efficacy of FDTs in enhancing bioavailability and therapeutic outcomes. For example, Basu *et al.* formulated cinnarizine FDTs using superdisintegrants and sublimation techniques to achieve

faster onset of action. [4] Similarly, Sharma *et al.* developed salbutamol FDTs for respiratory disorders, demonstrating improved disintegration and absorption rates. [5] Satpute *et al.* also successfully formulated metoprolol tartrate FDTs and emphasized their advantages in terms of patient compliance and faster drug action. [6] These studies collectively highlight the growing interest in FDTs as a viable approach to enhance drug delivery for conditions requiring rapid therapeutic response.

Sitagliptin, a DPP-4 inhibitor, facilitates glycemic regulation by augmenting insulin secretion and inhibiting glucagon release, both of which are dependent on blood glucose concentrations. It is commonly prescribed for type 2 diabetes and is often used in combination with lifestyle interventions to achieve glycemic control. [7,8] Despite its clinical effectiveness, sitagliptin's conventional tablet form may not be ideal for all patients, particularly the elderly, who often face swallowing difficulties. Additionally,

*Corresponding Author: Dr. Sachin B. Somwanshi

Address: Department of Pharmaceutics, PRES's, College of Pharmacy (For Women), Nashik, Maharashtra, India.

Email ⊠: sachinsomwanshi27@gmail.com

Tel.: +91-9975101498

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2025 Devyani G. Bhadane *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

enhancing the dissolution rate of sitagliptin can potentially improve its bioavailability and therapeutic onset, especially in controlling postprandial hyperglycemia. Responding to the need for patient-centric drug delivery systems, particularly for chronic conditions like type 2 diabetes, this investigation utilized a systematic DoE framework to design and optimize sitagliptin-loaded FDTs. Their rapid disintegration and dissolution facilitate faster drug absorption, mitigating postprandial hyperglycemia as well, improving therapeutic effectiveness. [9]

To achieve a robust, cost-effective formulation with improved disintegration and mechanical properties, the study employed Quality by Design (QbD) principles. [10] A 3² full factorial design was adopted to systematically investigate the effects of crospovidone (as a superdisintegrant) and Avicel 102 (as a binder) on critical quality attributes, including tablet hardness and disintegration time. This structured approach ensured a better understanding of formulation behavior and enhanced reproducibility [11], ultimately supporting the development of an effective sitagliptin FDT for improved diabetes management.

MATERIALS AND METHODS

Materials

A complimentary sample of sitagliptin was supplied, and all other excipients of pharmaceutical grade, including Avicel 102, crospovidone, lactose, magnesium stearate, mannitol, talc, and aspartame, were sourced from Amishi Drugs and Chemicals Pvt. Ltd., Ahmedabad.

Methods

API characterization and compatibility analysis

Preformulation assessment examined the physicochemical characteristics of the API and its compatibility with selected excipients, serving as the initial step in dosage form development.

Organoleptic properties

Organoleptic properties, including color, odor, appearance, and melting point, were evaluated as part of physical and chemical characterization. [12]

Calibration Curve

To obtain standard solutions of concentrations 1000 μ g/mL, 10 mg of sitagliptin was accurately dissolved in 10 mL of phosphate buffer (pH 6.8). A 100 μ g/mL solution was prepared by diluting 2 mL of this stock to 20 mL. Further dilutions (1–5 mL) of this intermediate were made up to 10 mL to produce final concentrations of 10 to 50 μ g/mL and assessed at 267 nm.

Compatibility assessment

Compatibility testing of the API with excipients represents a critical phase in the formulation development of pharmaceutical products. Excipients, although pharmacologically inactive, can interact chemically and physically with APIs. Compatibility tests determine the suitability of excipients for use in pharmaceutical formulations. In this study, the API was blended with individual excipients (crospovidone, Avicel 102, talc, aspartame, mannitol, magnesium stearate, and lactose) in a 1:1 (w/w) ratio. The mixtures were uniformly blended, screened (40# mesh), and filled into glass vials, closed with grey rubber stoppers and aluminum seals. These samples underwent accelerated conditions of 40 ± 2 °C/ 75 ± 5 % RH as per ICH guidelines. [13]

Development and Evaluation of FDTs

Sitagliptin FDTs were developed employing the direct compression method, as detailed in Table 1. Sitagliptin, crospovidone, Avicel 102, lactose, talc, aspartame, mannitol, and magnesium were individually sieved using a 60-mesh sieve to ensure consistent particle size distribution. A drug-excipient mixture was created by uniformly mixing sitagliptin, mannitol, and lactose using gentle trituration with a mortar and pestle. Crospovidone,

Table 1: Formulation composition

Sr. No.	In anadianta	Quanti	Quantity (mg)							
	Ingredients	B1	B2	В3	B4	B5	B6	<i>B7</i>	B8	В9
1.	Sitagliptin	100	100	100	100	100	100	100	100	100
2.	Crospovidone	12.5	12.5	12.5	18.75	18.75	18.75	25	25	25
3.	Avicel 102	37.5	43.75	50	37.5	43.75	50	37.5	43.75	50
4.	Lactose	45	38.75	32.5	38.75	32.5	26.25	32.5	26.25	20
5.	Mannitol	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5
6.	Aspartame	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5
7.	Magnesium stearate	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
8.	Talc	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5

Total weight of tablet

250 mg

Avicel 102, and aspartame were then added according to the formulation and mixed with the initial mixture. The resulting blend was further homogenized for 30 minutes using a rapid mixer granulator operated at a speed of 150 rpm to ensure uniform blending. Magnesium stearate, as well as talc, was subsequently incorporated as lubricants and blended with the mixture for an additional 5 minutes to ensure uniform distribution. Tablets weighing 250 mg with a convex surface were manufactured using a 9 mm punch on a 10-station rotary tablet press fitted with 'B' type tooling. [13,14]

Pre and post-compression evaluation

The powder mixture was assessed for flowability characteristics, including density indices, Hausner's ratio, Carr's index, and angle of repose, [12,15,16] whereas post-compression evaluation of the formulated FDTs comprised tests for hardness, diameter, thickness, weight variation, friability, drug content, and disintegration time. [17-20]

Dissolution Profiling

The dissolution profiling of sitagliptin-loaded FDTs was conducted employing a USP Type II (paddle) apparatus. The speed of the rotation of the paddle was 50 rpm. Dissolution flask contains 900 mL dissolution medium (phosphate buffer-pH 6.8) kept at $37 \pm 0.5^{\circ}$ C. At specified time points (every 5 minutes up to 30 minutes), 10 mL samples were taken out, filtered, and assessed at 267 nm. Fresh buffer was immediately added to maintain sink conditions. [21] The cumulative percentage of drug release was calculated and plotted against time to assess the release profile.

Experimental design

A 3^2 factorial experimental design was utilized to investigate how varying levels of crospovidone (X_1) - Avicel 102 (X_2) influence disintegration time (Y_1) - tablet hardness (Y_2), aiming to develop an FDT demonstrating optimal performance. Table 2 outlines the factor levels along with their respective coded values. [22] The study's approach of pre-selecting the levels of Crospovidone and Avicel 102 based on preliminary studies ensured that the experimental design started with factor levels most likely to achieve desirable results. This strategy facilitated the efficient development of an FDT that balanced both quick disintegration and adequate hardness, optimizing the formulation for effective delivery and patient convenience.

Table 2: Optimization design strategy

Symbol	Independent variables	Level					
	variables	Low (-1)	Medium (0)	High (+1)			
X ₁	Crospovidone (%)	5	7.5	10			
X_2	Avicel 102 (%)	15	17.5	20			

Stability assessment

Following the ICH stability testing protocol, the optimized formulation of sitagliptin FDTs underwent accelerated conditions of $40 \pm 2^{\circ}\text{C}/75 \pm 5\%$ RH for three months. [23] Triplicate measurements were obtained for each parameter, followed by statistical assessment using one-way ANOVA, taking p < 0.05 as the threshold for statistical significance. Stability under accelerated conditions was assessed by comparing results over time with initial values.

Statistical assessment

The experimental layout and subsequent statistical interpretation were carried out using Design-Expert version 7.0. DoE approach was utilized to optimize the formulation by evaluating the impact of formulation variables on key responses. Model validation was assessed through ANOVA and, and the regression model's strength was confirmed by R² value, indicating adequacy and predictability of the models.

RESULTS AND DISCUSSION

Preformulation Studies

Organoleptic properties

Sitagliptin in its original form is presented as a white, finely powdered substance, exuding an odorless characteristic.

Calibration curve of sitagliptin

The UV absorbance profile of sitagliptin at various concentrations in a phosphate buffer (6.8 pH) is graphically depicted in Fig. 1. The absorbance versus concentration graph for sitagliptin showed a linear relationship between 10 to 50 μ g/mL. The correlation coefficient values (R²) were 0.9929, indicating excellent linearity of the data.

Compatibility assessment

The results of the compatibility assessment indicated no observable color change, precipitation, or odor, and

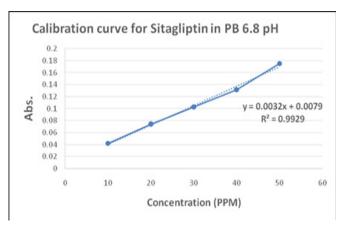


Fig. 1: Calibration curve for sitagliptin

no significant shifts in physical state were detected. Moreover, there was no evidence of drug degradation or incompatibility upon visual inspection, suggesting that sitagliptin maintained its stability with the selected excipients under stress conditions. These findings confirm the suitability of the excipients for use in the formulation of FDTs of sitagliptin.

Pre-compression parameters

All powder blends of the trial batches (B1–B9) were subjected to pre-compression parameters testing, and all were observed within predefined acceptable ranges. Formulations exhibited bulk densities (0.609 ± 0.001 - 0.641 ± 0.001 g/cm³) as well as tapped densities (0.691 ± 0.001 - 0.731 ± 0.001 g/cm³) across all formulations. The Carr's index values (11.05 ± 0.05 - 13.95 ± 0.05 %) confirmed good powder flow, which was supported by Hausner's ratios (1.12 ± 0.01 - 1.16 ± 0.01), falling within an acceptable limit for good flowability (<1.25).

The formulations demonstrated angle of repose values from $23.04 \pm 0.02^{\circ}$ to $26.13 \pm 0.03^{\circ}$, falling within the $20^{\circ}-30^{\circ}$ range typically associated with desirable flow properties.

^[24] These observations confirm that the prepared blends exhibited favorable flow and compressibility characteristics, rendering them appropriate for direct compression in tablet production. ^[14] **Table 3:** The findings in the following manner.

Development and evaluation of FDTs

The direct compression method was used to develop FDTs due to its simplicity and benefits. Post-compression evaluations showed all nine batches (B1–B9) complied with pharmacopoeial standards. Tablet dimensions, measured with a vernier caliper, were: thickness 4.51 ± 0.02 to 4.55 ± 0.05 mm, and diameter 8.80 ± 0.02 to 8.85 ± 0.02 mm, indicating uniformity in die fill and compression. Hardness ranged from 4.0 ± 0.13 to 5.5 ± 0.08 kg/cm², reflecting enough mechanical durability suitable for handling and packaging. Friability remained below the acceptable limit of 1% in all batches, ranging from 0.40 ± 0.01 to $0.84 \pm 0.02\%$, suggesting sufficient tablet integrity (Table 4A).

Weight variation analysis revealed that all tablets were within the acceptable limits, with observed

	Table 3: Assessment of now property										
Batches Bulk density		Tapped density	Hausner's ratio	Carr's index	Angle of repose						
B1	0.641 ± 0.001	0.721 ± 0.001	1.12 ± 0.01	11.10 ± 0.10	23.23 ± 0.03						
B2	0.631 ± 0.001	0.721 ± 0.020	1.14 ± 0.01	12.48 ± 0.08	24.34 ± 0.04						
В3	0.629 ± 0.001	0.731 ± 0.001	1.16 ± 0.01	13.95 ± 0.05	24.87 ± 0.02						
B4	0.630 ± 0.050	0.727 ± 0.020	1.15 ± 0.01	13.34 ± 0.04	23.23 ± 0.02						
B5	0.618 ± 0.001	0.718 ± 0.001	1.16 ± 0.01	13.93 ± 0.03	23.04 ± 0.02						
В6	0.609 ± 0.001	0.691 ± 0.001	1.13 ± 0.01	11.87 ± 0.07	24.09 ± 0.02						
B7	0.620 ± 0.001	0.697 ± 0.030	1.12 ± 0.01	11.05 ± 0.05	26.13 ± 0.03						
B8	0.617 ± 0.001	0.701 ± 0.030	1.14 ± 0.01	11.98 ± 0.08	25.25 ± 0.02						
В9	0.627 ± 0.050	0.711 ± 0.001	1.13 ± 0.01	11.81 ± 0.06	24.63 ± 0.02						

Table 3: Assessment of flow property

^{*}Results reported as mean ± SD, using triplicate observations.

		31
Table 4A: Asse	ssment of tablet	quality attributes

Batches	Thickness (mm)	Diameter (mm)	Hardness (kg/cm²)	Friability (%)
B1	4.55 ± 0.01	8.81 ± 0.01	4.0 ± 0.13	0.40 ± 0.01
B2	4.55 ± 0.05	8.84 ± 0.03	4.5 ± 0.16	0.42 ± 0.01
В3	4.50 ± 0.05	8.85 ± 0.02	5.0 ± 0.13	0.81 ± 0.03
B4	4.52 ± 0.02	8.80 ± 0.02	4.5 ± 0.18	0.41 ± 0.01
B5	4.52 ± 0.01	8.83 ± 0.02	4.5 ± 0.09	0.84 ± 0.02
B6	4.50 ± 0.01	8.85 ± 0.02	5.0 ± 0.05	0.42 ± 0.01
B7	4.53 ± 0.05	8.83 ± 0.02	4.5 ± 0.09	0.41 ± 0.01
B8	4.53 ± 0.05	8.85 ± 0.02	5.0 ± 0.03	0.40 ± 0.01
В9	4.54 ± 0.02	8.83 ± 0.02	5.5 ± 0.08	0.40 ± 0.01

^{*}Results reported as mean ± SD, using triplicate observations.

Table 4B: Assessment of tablet quality attributes

Batches	D	Weight va	Weight variation				
	Drug content	Weight* (mg)	Weight variation (5 %)	Disintegration time* (s)			
B1	100.15	258 ± 3	Passes	48 ± 2			
B2	98.61	245 ± 2	Passes	52 ± 3			
В3	99.74	255 ± 5	Passes	58 ± 4			
B4	99.89	250 ± 7	Passes	38 ± 2			
B5	100.65	245 ± 4	Passes	46 ± 2			
B6	101.28	244 ± 6	Passes	50 ± 4			
B7	100.5	252 ± 6	Passes	34 ± 1			
B8	100.41	249 ± 5	Passes	37 ± 4			
B9	100.45	240 ± 8	Passes	39 ± 3			

^{*} Results reported as mean ± SD, using triplicate observations.

120-B1 % Cumulative Drug Release 100 B2 **B**3 80. **B**4 60 **B5 B6 B7** 20 **B8 B9** 5 10 15 20 25 30 Time (min)

Fig. 2: Assessment of dissolution characteristics of FDTs

weights ranging from 240 to 258 mg, complying with pharmacopoeial specifications for \pm 5% deviation. Drug content uniformity for all batches met specifications, ranging from 98 to 101%, ensuring dose accuracy (Table 4B).

Disintegration time ranged from 34 ± 1 to 58 ± 4 seconds. The inverse relationship between crospovidone concentration and disintegration time observed in this study is well-supported by superdisintegrant theory, where water uptake and particle swelling disrupt tablet cohesion. In contrast, increasing concentrations of Avicel 102, a directly compressible binder with moderate disintegration capacity, increased hardness but also delayed disintegration. This indicates that excessive binder content can reduce porosity and water penetration, thus slowing tablet breakup. [25]

Notably, batch B7 exhibited the most desirable balance-rapid disintegration ($34 \pm 1 \,\mathrm{s}$) and adequate hardness ($4.5 \pm 0.09 \,\mathrm{kg/cm^2}$)-demonstrating that higher concentrations of crospovidone effectively reduced disintegration time without compromising tablet integrity. This aligns with previous findings that crospovidone, due to its capillary action and swelling mechanism, rapidly draws water into the tablet matrix, promoting quick disintegration. [26]

Dissolution Profiling

All sitagliptin FDT batches (B1–B9) demonstrated rapid and complete drug release within the specified time (Fig. 2). The percentage cumulative drug release ranged between 95.21 and 99.11% at 30 minutes, depending on the formulation composition.

Notably, batches B7, B8, and B9 exhibited superior dissolution profiles, with drug release exceeding 99% within 30 minutes. Among them, Batch B7 achieved 99.11% drug release, which is indicative of excellent dissolution behavior. This enhanced dissolution rate is attributed to the synergistic effects of high crospovidone concentration,

which promotes rapid disintegration and increased surface area, and the optimized level of Avicel 102, which ensures adequate porosity and compressibility.

The dissolution performance aligns with the disintegration data and confirms the effectiveness of the selected formulation variables in enhancing the drug release kinetics of sitagliptin from FDTs.

Optimization of FDT

The experimental design for the optimization of sitagliptin FDTs generated a total of nine formulation runs, as presented in Table 5. Design-Expert® 7.0 was employed for model generation, regression analysis, and response surface methodology. The software suggested and tested suitable models (Linear, 2FI, Quadratic, and Cubic) using ANOVA statistical analysis.

Table 5: Experimental configuration for DoE

	Factor		Response			
	X_1	X_2	<i>Y</i> ₁	Y_2		
Runs	Crospovidone (%)	Avicel 102 (%)	Disintegration time (s)	Tablet hardness (kg/cm²)		
1	7.5	15	38	4.5		
2	10	15	34	4.5		
3	10	20	39	5.5		
4	10	17.5	37	5		
5	5	17.5	52	4.5		
6	5	20	58	5		
7	7.5	17.5	46	4.5		
8	7.5	20	50	5		
9	5	15	48	4		

Effect of formulation variables on disintegration time

Interaction between Crospovidone and Avicel 102 on disintegration rate is illustrated in Fig. 3. FDT batches exhibited disintegration times ranging from 34 to 58 s. A minimum disintegration time was observed in the batch with a Crospovidone: Avicel 102 ratio of 10:15%.

Formulation percentages of Crospovidone and Avicel 102 significantly impact drug disintegration time. Crospovidone (X_1) showed a strong negative effect on disintegration time, significantly reducing it as concentration increased (p < 0.0001).

Design-Expert software's fit summary suggested a "Linear vs Mean" model after data input for the disintegration time effect (Table 6).

The ANOVA results, as presented in Table 7, identified both formulation factors as statistically significant contributors to disintegration time. The model exhibited a high F-value of 91.91 (p <0.0001), indicating that the model's predictive capability is not a result of random error. Variables exhibiting Prob > F value below 0.05 were identified as significant contributors, confirming that both factors significantly influenced the response variable. These findings support the robustness and predictive reliability of the fitted model.

Fit statistics summarized in Table 8 further support the reliability of the disintegration time model. The model exhibited a strong goodness of fit, as reflected by an R² (0.9684) and an adjusted R² (0.9579). The predicted R² value (0.9194) confirms its strong predictive performance.

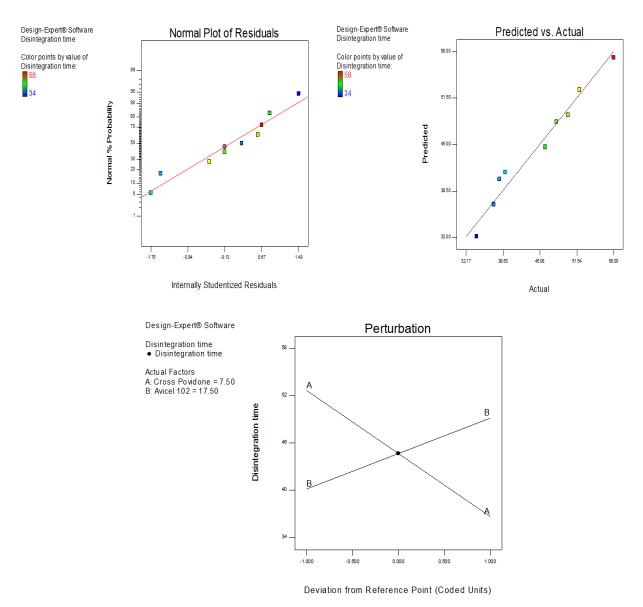


Fig. 3: Interaction plot for crospovidone and Avicel 102 influencing the disintegration time of the formulation

Bhadane and Somwanshi

Table 6: Regression fit statistics for disintegration time

The state of the s								
Source	SS	df	MS	F-statistic	p-value <i>Prob > F</i>	Remarks		
Mean vs Total	17956	1	17956					
Linear vs Mean	505.5	2	252.75	91.90909	< 0.0001	Suggested		
2FI vs Linear	6.25	1	6.25	3.04878	0.1412			
Quadratic vs 2FI	0.5	2	0.25	0.076923	0.9277			
Cubic vs Quadratic	7.5	2	3.75	1.666667	0.4804	Aliased		
Residual	2.25	1	2.25					
Total	18478	9	2053.111					

Table 7: ANOVA results for the disintegration time response variable

Source	SS	df	MS	F-statistic	p-value Prob > F	Remarks
Regression	505.5	2	252.75	91.90909	< 0.0001	Significant
Crospovidone	384	1	384	139.6364	< 0.0001	
Avicel 102	121.5	1	121.5	44.18182	0.0006	
Unexplained Variation	16.5	6	2.75			
Corrected Total	522	8				

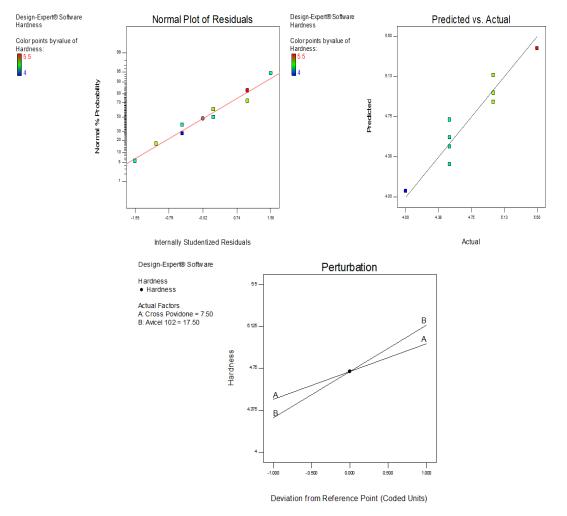


Fig. 4: Interaction plot for Crospovidone and Avicel 102 influencing the hardness of formulation

Table 8: Statistical significance and model fit of disintegration time

		<u> </u>	
SD	1.66	R^2	0.9684
Mean	44.67	Adj R ²	0.9579
CV %	3.71	Pred R ²	0.9194
PRESS	42.09	Adeq Precision	26.112

A low CV of 3.71% further validates the model's precision, and an adequate precision of 26.112 confirms a strong signal relative to noise, making the model appropriate for navigating the response surface.

Effect of formulation variables on tablet hardness

Fig. 4 illustrates the interaction between Crospovidone and Avicel 102 on hardness. FDT batches exhibited hardness ranging from 4 to $5.5~kg/cm^2$. A maximum hardness was observed in the batch with a Crospovidone: Avicel 102 ratio of 10:20%.

Percentages of Crospovidone and Avicel 102 significantly impact on hardness of FDTs. Hardness increases with increasing Crospovidone and Avicel 102 concentration. Avicel 102 has a greater impact on the hardness of FDTs than Crospovidone, evidenced by its significantly lower p-value.

Design-Expert software suggested "Linear vs Mean" as a fit summary model after data input for the disintegration time effect (Table 9).

As shown in Table 10, ANOVA analysis for the response variable 'hardness' revealed that both independent variables had statistically significant effects on tablet hardness. The model demonstrated F-value-30.6 (p = 0.0007), indicating that the observed variation is highly significant and not attributable to random error. Both factors exhibited 'Prob > F' values well below the 0.05 threshold, affirming their substantial influence on tablet mechanical integrity. The results affirm that the linear model is both adequate and dependable for predicting hardness as a function of formulation variables.

Fit statistics in Table 11 confirm the adequacy and reliability of the model developed for tablet hardness. With an R^2 (0.9107), adjusted R^2 (0.8810), and predicted R^2 (0.8233), the model showed strong fit and predictive validity. Additionally, the low CV (3.22%) and an adequate signal-to-noise ratio of 15.179 (adequate precision) highlight minimal variability, making the model appropriate for navigating the response surface.

The optimization study effectively demonstrated that crospovidone had a more dominant influence on

Table 9: Regression fit statistics for hardness

Source	SS	df	MS	F-statistic	p-value Prob > F	Remarks
Mean vs Total	200.6944	1	200.6944			
Linear vs Mean	1.416667	2	0.708333	30.6	0.0007	Suggested
2FI vs Linear	0	1	0	0	1.0000	
Quadratic vs 2FI	0.027778	2	0.013889	0.375	0.7155	
Cubic vs Quadratic	0.083333	2	0.041667	1.5	0.5000	Aliased
Unexplained Variation	0.027778	1	0.027778			
Total	202.25	9	22.47222			

Table 10: ANOVA results for the hardness response variable

Source	SS	df	MS	F-statistic	p-value Prob > F	Remarks
Regression	1.416667	2	0.708333	30.6	0.0007	significant
Crospovidone	0.375	1	0.375	16.2	0.0069	
Avicel 102	1.041667	1	1.041667	45	0.0005	
Unexplained Variation	0.138889	6	0.023148			
Corrected Total	1.555556	8				

Table 11: Statistical significance and model fit for hardness

SD	0.15	R^2	0.9107
Mean	4.72	Adj R ²	0.8810
CV %	3.22	Pred R ²	0.8233
PRESS	0.27	Adeq Precision	15.179

disintegration time, while Avicel 102 played a key role in ensuring tablet integrity. High R² values and adequate precision confirmed the model's predictability and reliability. The factorial design approach enabled efficient screening and fine-tuning of excipient levels, leading to a robust and patient-compliant formulation. Based on pre-

Table 12: Stability assessment

Evaluation parameters	Hardness (kg/cm²)	Friability (%)	Disintegration Time (s)	Drug Content (%)
0 Month	4.50 ± 0.09	0.41 ± 0.01	34.00 ± 1.00	100.50 ± 0.03
1 Month	4.60 ± 0.10	0.48 ± 0.01	37.33 ± 0.58	99.87 ± 0.05
2 Month	4.60 ± 0.10	0.57 ± 0.01	40.00 ± 1.00	99.52 ± 0.05
3 Month	4.70 ± 0.10	0.65 ± 0.01	39.00 ± 1.00	99.33 ± 0.04

^{*}Results reported as mean ± SD, using triplicate observations.

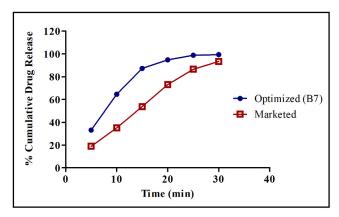


Fig. 5: Comparative analysis of drug release behavior

and post-compression data and factorial design modelling, batch B7- comprising 10% crospovidone and 15% Avicel 102, as the optimal formulation, offering an ideal balance between rapid disintegration (34.00 \pm 1.00 seconds) and sufficient mechanical strength (4.50 \pm 0.09 kg/cm²). It also showed 99.11% drug release within 30 minutes, confirming excellent dissolution behavior.

Stability study

The accelerated stability testing under ICH conditions demonstrated that the optimized formulation retained its physicochemical characteristics, including disintegration time, drug content, and hardness (Table 12). The results revealed no statistically significant change in tablet hardness (F = 02.00, p = 0.1927), suggesting the formulation retained mechanical integrity throughout the study. However, friability (F=306.00, p <0.0001), disintegration time (F=26.02, p = 0.0008), and drug content (F=26.02, p <0.0001) showed statistically significant differences over time. Despite these changes, drug content remained above 99% and disintegration time within acceptable limits, indicating that the formulation exhibited consistent pharmaceutical stability and effectiveness under said circumstances.

The overall results confirm that the optimized FDT formulation retained its physical and chemical integrity over the course of three months under accelerated

conditions. The minor variations observed were statistically significant for some parameters, but not pharmaceutically critical, indicating the formulation's robustness and suitability for commercial development.

Comparative study- Dissolution profiling

Dissolution profiling of an optimized sitagliptin 100 mg FDT batch and a marketed formulation was compared using the same controlled conditions of dissolution testing. Aliquots were withdrawn every 5 minutes to quantify the cumulative amount of drug released. After 30 minutes, the optimized formulation released > 99% drug release within 30 minutes, significantly outperforming the marketed formulation (93.41%) (Fig. 5), suggesting improved therapeutic potential.

CONCLUSION

A sitagliptin-loaded FDT was effectively developed and optimized as part of the present investigation employing a 3² full factorial design and QbD principles. Crospovidone, utilized as a superdisintegrant, significantly reduced disintegration time, while Avicel 102 functioned as a compressible binder, ensuring adequate tablet hardness. Statistical analysis confirmed that crospovidone exhibited a more significant role in controlling disintegration time compared to the impact of Avicel 102 on mechanical strength. The optimized batch (B7) demonstrated superior performance, disintegrating in 34.00 ± 1.00 seconds with sufficient mechanical strength (4.50 ± 0.09 kg/cm²) and 99.11% drug release within 30 minutes. The formulation exhibited acceptable stability under accelerated ICH conditions over three months, maintaining critical quality attributes. These findings affirm the robustness, patient compliance potential, and clinical relevance of the optimized sitagliptin FDT, particularly for populations with dysphagia or requiring rapid therapeutic onset in type 2 diabetes management.

ACKNOWLWDGMENT

The authors would like to thank the entire faculty and administration of the Pravara Institute for their motivation and support throughout this endeavor.

REFERENCES

- Masih A, Kumar A, singh S, Tiwari AK. Fast dissolving tablets: A Review. International Journal of Current Pharmaceutical Research. 2017;9(2):8-18. Available from: doi.org/10.22159/ ijcpr.2017v9i2.17382
- Okuda Y, Irisawa Y, Okimoto K, Osawa T, Yamashita S. Further improvement of orally disintegrating tablets using micronized ethyl cellulose. International Journal of Pharmaceutics. 2012;423(2):351– 9. Available from: doi.org/10.1016/j.ijpharm.2011.10.050
- 3. Patel D, Patel DJ, Shah S and Shah A. Formulation and evaluation of fast dissolving tablet of nebivolol and valsartan. International Journal of Pharmaceutical Sciences and Research. 2020;11(11):5530-5539. Available from: doi.org/10.13040/IJPSR.0975-8232.11(11).5530-39
- 4. Basu B, Bagadiya A, Makwana S, Vipul V, Batt D, Dharamsi A. Formulation and evaluation of fast dissolving tablets of cinnarizine using superdisintegrant blends and subliming material. Journal of Advanced Pharmaceutical Technology & Research. 2011;2(4):266. Available from: doi.org/10.4103/2231-4040.90885
- Sharma D. Formulation Development and Evaluation of Fast Disintegrating Tablets of Salbutamol Sulphate for Respiratory Disorders. ISRN Pharmaceutics. 2013;2013:1–8. Available from: doi.org/10.1155/2013/674507
- Satpute MM, Tour NS. Formulation and in vitro evaluation of fast dissolving tablets of metoprolol tartrate. Brazilian Journal of Pharmaceutical Sciences. 2013;49(4):783-92. Available from: doi. org/10.1590/s1984-82502013000400018
- Plosker GL. Sitagliptin: A review of its use in patients with type 2 Diabetes Mellitus. Drugs. 2014;74(2):223-42. Available from: doi. org/10.1007/s40265-013-0169-1
- Scott LJ. Sitagliptin: A Review in Type 2 Diabetes. Drugs. 2017;77(2):209-224. Available from: doi.org/10.1007/s40265-016-0686-9
- Sharma D, Singh G, Kumar D, Singh M. Formulation Development and Evaluation of Fast Disintegrating Tablets of Salbutamol Sulphate, Cetirizine Hydrochloride in Combined Pharmaceutical Dosage Form: A New Era in Novel Drug Delivery for Pediatrics and Geriatrics. Journal of Drug Delivery. 2015;2015:1–10. Available from: doi.org/10.1155/2015/640529
- Yamuna B, Reshma T, Mahammed N. Quality by design (QbD) based approach for development of fast dissolving tablets. International Journal of Pharmaceutical Sciences and Research. 2023;14(4):1642-48. Available from: doi.org/10.13040/IJPSR.0975-8232.14(4).1642-48
- 11. Parshuramkar P, Khobragade D, Kashyap P. Comprehension of Quality by Design in the Development of Oral Solid Dosage Forms. Journal of Young Pharmacists, 2023; 15(3):406-418. Available from: doi.org/10.5530/jyp.2023.15.56
- 12. Zhu Y, Yu J, Zhou G, Gu Z, Adu-Frimpong M, Deng W, et al. Piperine fast disintegrating tablets comprising sustained-release matrix pellets with enhanced bioavailability: formulation, in vitro and in vivo evaluation. Pharmaceutical Development and Technology. 2020;25(5):617–24. Available from: doi.org/10.1080/10837450.2 020.1725892
- 13. Kathpalia H, Venkatesh A, Sathe N. Topical Film Forming Clotrimazole Emulgel, Indian Journal of Pharmaceutical Education

- and Research. 2023;57(2s):s250-s261. Available from: doi.org/IndJPhaEdRes-57-2s-29
- 14. Chauhan A, Rohilla S, Jain S, Direct compression method. World Journal of Pharmacy and Pharmaceutical Sciences. 2019;8(9):692-701. Available from: doi.org/10.20959/wjpps20199-14588
- 15. Maheshwari S, Singh A, Varshney AP, Sharma A. Advancing oral drug delivery: The science of fast dissolving tablets. Intelligent Pharmacy. 2024;2(4):580–7. Available from: doi.org/10.1016/j. ipha.2024.01.011
- 16. Fahmy R, Kassem M. Enhancement of famotidine dissolution rate through liquisolid tablets formulation: In vitro and in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics. 2008;69(3):993-1003. Available from: doi. org/10.1016/j.ejpb.2008.02.017
- 17. Rada SK, Kumari A. Fast dissolving tablets: waterless patient compliance dosage forms. Journal of Drug Delivery and Therapeutics. 2019;9(1):303–17. Available from: doi.org/10.22270/jddt.v9i1.2292
- Rane DR, Gulve HN, Patil VV, Thakare VM, Patil VR. Formulation and evaluation of fast dissolving tablet of albendazole. International Current Pharmaceutical Journal. 2012;1(10):311-6. Available from: doi.org/10.3329/icpj.v1i10.11848
- 19. Tiwari R, Siddiqui MohdH, Mahmood T, Farooqui A, Tiwari M, Ahsan F. Formulation and Optimization of Polyherbal Fast Dissolving Tablet of Curcumin, Quercetin and Rutin. International Journal of Pharmaceutical Science and Drug Research. 2021;661–70. Available from: doi.org/10.25004/ijpsdr.2021.130609
- 20. Kotagale N, Maniyar M, Somvanshi S, Umekar M, Patel CJ.. Eudragit-S, Eudragit-L and cellulose acetate phthalate coated polysaccharide tablets for colonic targeted delivery of azathioprine. Pharmaceutical Development and Technology. 2010;15(4):431–437. Available from: doi.org/10.3109/10837450903264401
- 21. Saif A, M. Alburyhi M, Alwan Noman M. Formulation and Evaluation of Ketoprofen Fast Dissolving Tablets. International Journal of Sciences. 2018;4(09):27–39. Available from: doi.org/10.18483/ijSci.1789
- 22. Gunda R, Suresh Kumar J, Babu CA, Anjaneyulu M. Formulation development and evaluation of lamotrigine sustained release tablet using 3² factorial designs. International Journal of Pharma Sciences and Research. 2015;6(4): 1746-1752. Available from: doi. org/10.13040/IJPSR.0975-8232.6(4).1746-52
- 23. The Guideline, I.H. Stability Testing: Requirements for New Dosage Forms Q1C. 1996. Available from: database.ich.org/sites/default/files/Q1C Guideline.pdf
- 24. Eisa AM, El-Megrab NA, El-Nahas HM. Formulation and evaluation of fast dissolving tablets of haloperidol solid dispersion. Saudi Pharmaceutical Journal. 2022;30(11):1589–602. Available from: doi.org/10.1016/j.jsps.2022.09.002
- 25. Babu A, Akhtar MdS. Overview of formulation and evaluation of fast dissolving tablet: A promising tablet dosage form. Journal of Applied Pharmaceutical Science. 2020;8(3):1–9. Available from: doi. org/10.18231/j.joapr.2020.v.8.i.3.1.9
- 26. Borse BL, Bendale AR, L. Borse S, D. Naphade V, G. Jadhav A. Formulation and Evaluation of Mouth Dissolving Tablet Rivaroxaban and its Validation. Biosciences Biotechnology Research Asia. 2022;19(4):943–54. Available from: doi.org/10.13005/bbra/3043

HOW TO CITE THIS ARTICLE: Bhadane DG, Somwanshi SB. Optimized Formulation of Sitagliptin Fast Dissolving Tablets Using Statistical Design Techniques. Int. J. Pharm. Sci. Drug Res. 2025;17(2):334-343. **DOI:** 10.25004/IJPSDR.2025.170204