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Introduction
Diabetes mellitus is a chronic metabolic disorder marked 
by persistent hyperglycemia resulting from insufficient 
insulin production, impaired insulin action, or both. This 
condition increases the risk of cardiovascular disease, 
neuropathy, kidney failure, and vision loss.[1] Globally, 
about 529 million people live with diabetes, and this 
number is projected to reach 1.31 billion by 2050.[2] 
The disease, largely genetic in nature, arises from β-cell 
dysfunction and elevated blood glucose, ranking as the 
8th leading cause of mortality and disability worldwide in 
2019, affecting nearly 460 million people.[3]

Types of Diabetes Mellitus
Diabetes mellitus (DM) is classified into three forms: 
type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus 
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This review thoroughly assesses the antidiabetic properties of natural alkaloids, addressing their modes 
of action and treatment prospects for diabetes mellitus. Following PRISMA 2020 guidelines, literature 
from databases like PubMed/MEDLINE, Scopus, and Science Direct, published from 2000 to May 2025, 
was analyzed. The review highlights several promising alkaloids, including berberine, vindoline, harmine, 
trigonelline, oxymatrine, and solanine. These compounds have various antidiabetic actions via improving 
insulin sensitivity, increasing insulin secretion, blocking digestive enzymes, modifying gut microbiota, and 
reducing oxidative stress and inflammation. For instance, berberine demonstrates efficacy comparable to 
standard hypoglycemics, partly through gut microbiota modulation. Harmine uniquely promotes pancreatic 
β-cell regeneration. Despite their therapeutic promise, significant challenges persist, including issues of 
bioavailability, varying toxicity profiles, and a notable scarcity of robust clinical trials. Standardization of 
plant sources and extraction methods also remains a critical challenge. Future research must prioritize 
rigorous clinical validation, advanced formulation development to enhance efficacy and safety, and 
strengthened regulatory frameworks. Alkaloids represent a promising frontier for developing novel, 
effective, and safe antidiabetic therapies.
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A B S T R A C TA R T I C L E  I N F O

(T2DM), and gestational diabetes mellitus (GDM). Among 
these, T2DM is the most prevalent, representing over 90% 
of global cases, including in Africa, where data remain 
limited.[4]

Type 1 Diabetes Mellitus
This autoimmune condition destroys pancreatic β-cells, 
causing insulin deficiency and hyperglycemia. It accounts 
for 5 to 10% of cases and is associated with autoantibodies 
such as GAD65, insulin, IA-2, IA-2b, and ZnT8.[5,6]

Type 2 Diabetes Mellitus
Accounting for 90 to 95% of cases, T2DM involves 
insulin resistance and relative insulin deficiency. Most 
patients are overweight or obese, with excess abdominal 
fat contributing to insulin resistance and metabolic 
dysfunction, including MASLD.[5]
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Gestational Diabetes Mellitus 
GDM arises during pregnancy and may progress to T1DM 
or undiagnosed T2DM, though it often resolves after 
delivery. Children of GDM mothers are at higher risk of 
obesity and T2DM later in life.[6]

Role of Medicinal Plants in the Management of 
Diabetes Mellitus
Despite advances in antidiabetic drugs, side effects like 
hypoglycemia, organ toxicity, and weight gain remain 
concerns. WHO supports medicinal plants, as 4 billion 
people in developing regions rely on them for metabolic 
disorders. Plants such as Berberis vulgaris, Trigonella 
foenum-graecum, and Coptis chinensis show hypoglycemic 
effects by improving insulin sensitivity and secretion.[7] 

Drugs like metformin and sulfonylureas are effective but 
may cause diarrhea, obesity, hypothyroidism, liver failure, 
and cardiovascular issues. Many modern drugs are plant-
derived, emphasizing the value of botanicals.[8] Secondary 
metabolites (flavonoids, saponins, terpenes, alkaloids, 
tannins, coumarins, phenols, anthocyanins) show strong 
antidiabetic potential by targeting key proteins and 
enzymes in glucose regulation.[9]

Methodology

Literature Search Strategy and Methodology
This review followed PRISMA 2020 guidelines, with 
literature (2000–May 2025) searched across Science 
Direct, PubMed/MEDLINE, EMBASE, Scopus, Web of 
Science, MDPI, Springer, Google Scholar, and Taylor & 
Francis. Botanical names were validated via World Flora 
Online. Search terms included alkaloids, antidiabetic, 
diabetes mellitus, medicinal plants, insulin sensitivity, 
hypoglycemic, and specific alkaloids (berberine, vindoline, 
and trigonelline).

Inclusion criteria
•	 Peer-reviewed articles in English
•	 Studies on natural plant-derived alkaloids with 

antidiabetic activity
•	 Conducting in vitro, in vivo, and clinical research.
•	 Botanical names verified using World Flora Online.

Exclusion criteria
•	 Synthetic alkaloids without natural analogs
•	 Non-English publications
•	 Reviews without new data
Two impartial reviewers screened the entire texts, 
abstracts, and titles as part of the selection process. 
Disputes were settled through agreements.

ALKALOIDS
Alkaloids are low-molecular-weight nitrogen-containing 
compounds, often derived from amino acids and forming 
complex ring structures. Endophytic fungi produce 
hundreds with diverse bioactivities.[10] Their biosynthesis 
and pharmacological actions are well studied, and many 
are exploited in drug development.[11] Alkaloids are 
classified into three groups: True alkaloids (heterocyclic), 
protoalkaloids (non-heterocyclic), and pseudoalkaloids 
(Table 1).

Types of Alkaloids

True alkaloids
These are complex, physiologically active compounds 
derived from cyclic amino acids, containing intracyclic 
nitrogen. They commonly exist as salts of organic acids 
such as oxalic, lactic, malic, tartaric, acetic, and citric acids.
[12] Notable examples include pyrrolidine, pyrrolizidine, 
pyridine, piperidine, tropane, quinolone, isoquinoline, 
aporphine, quinolizidine, indole, indolizidine, and 
imidazole alkaloids.[13]

Protoalkaloids
Protoalkaloids originate from amino acids or biogenic 
amines but have nitrogen outside the ring system, 
integrated into the side chain rather than the heterocycle.[12] 
Well-known examples include vinblastine and vincristine, 
dimeric alkaloids with potent anticancer activity.[13]

Pseudoalkaloids
Unlike true alkaloids, these are not directly derived from 
amino acids. Instead, their carbon skeletons arise through 
amination or transamination of amino acid precursors or 
intermediates. They may also originate from compounds 
like acetate, pyruvic acid, adenine/guanine, or geraniol.
[14] Common pseudoalkaloids include ephedrine, caffeine, 
and capsaicin.[13]

Specific Alkaloids with Their Antidiabetic Activity
Alkaloids exert antidiabetic effects by stimulating 
insulin secretion, inhibiting gastrointestinal enzymes, 
preventing AGEs, and enhancing glucose uptake.[15] They 
also suppress α-glucosidase and α-amylase, reducing 
postprandial hyperglycemia. Alkaloids from B. vulgaris, 
T. foenum-graecum, C. chinensis, and E. microphylla lower 
insulin resistance, enhance secretion, and modulate gut 
microbiota.[16]

BERBERINE (Isoquinoline)
Berberine, a quaternary benzylisoquinoline alkaloid from 
B. vulgaris, B. aristata, and C. chinensis, has long been used 

Table 1: Examples of Types of Alkaloids

True alkaloids Protoalkaloids Pseudoalkaloids

Pyrrolidine, pyrrolizidine, pyridine, piperidine, tropane, quinolone, 
isoquinoline, aporphine, quinolizidine, indole, indolizidine, imidazole

Vinblastine, vincristine Capsaicin, caffeine, ephedrine
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for infections, wounds, indigestion, and gynecological 
disorders. Modern studies show anti-inf lammatory, 
hepatoprotective, anti-obesity, hypoglycemic, and 
hypolipidemic effects.[17] Clinical trials confirmed its 
ability to reduce HbA1c and fasting glucose, comparable 
to standard antidiabetics, partly via gut microbiota 
modulation.[18] Nano-formulations improve bioavailability 
and glucose-lowering efficacy, supporting their role in 
metabolic and cardiometabolic health [19,20] (Fig. 1).
Contemporary issues  include variable standardization, 
extraction inconsistencies, and potential long-term safety 
and drug interaction concerns.[21,22]

Mechanisms of Action
Summarized in Table 2.

Structural Activity Relationship
Summarized in Fig. 2.

Toxicity 
Berberine shows significant toxicity in zebrafish embryos, 
affecting cardiovascular development and raising 
concerns for use in sensitive groups such as pregnant 
women. Its toxicity also impacts gastrointestinal, hepatic, 
and immune functions, necessitating caution in dosage 
and administration.[53] Though promising in therapies like 
cancer treatment, careful supervision and further studies 
are essential to clarify its clinical safety profile.[54]

VINDOLINE (Indole)
Vindoline, a monoterpene indole alkaloid from Catharanthus 
roseus, is a precursor of vinblastine and vincristine. 
Traditionally, C. roseus has been used to treat diabetes, 
cancer, hypertension, and infections.[55,61] Vindoline 
demonstrates antidiabetic activity by enhancing insulin 
sensitivity, lowering oxidative stress, and reducing 
hepatotoxicity and hyperlipidemia in diabetic rats.[56,57] 

Advances in CRISPR-based metabolic engineering have 
improved vindoline yields.[58] The structure of vindoline 
is shown in Fig. 3.

Contemporary Issues
Limited clinical validation and lack of toxicity data.[56,58]

Mechanism of action 
Summarized in Table 3.

Structural activity relationship
Summarized in Fig. 4.

Toxicity
In-silico studies indicate vindoline from C. roseus has 
low acute toxicity and carcinogenic risk, with potential 
benefits in diabetes by reducing oxidative stress. However, 
reported effects like neurotoxicity, myelosuppression, and 
risks with skin exposure demand cautious monitoring, 
making its therapeutic use in diabetic complications 
promising but requiring strict safety evaluation.[65,66,75]

4.3 HARMINE (Indole)
Harmine, isolated from Peganum harmala L ., is known 
for its anti-inflammatory, anticancer, and neuroactive 
properties.[76] Importantly, harmine stimulates β-cell 
regeneration and enhances insulin secretion by inhibiting 
DYRK1A kinase, making it a unique candidate for diabetes 
therapy.[77,78] Nano-delivery systems and harmine analogs 
are being developed to enhance efficacy and reduce 
toxicity.[79,80] The structure of harmine is shown in Fig. 5.

Contemporary Issues
Neurotoxicity and MAO inhibition, along with a lack of 
clinical data, limit its application.[78,80]

Mechanism of action
Summarized in Table 4.

  

Fig 2: SAR of Berberine[50-52]

Fig 3: Structure of Vindoline.[67]

Fig 1: Structure of Berberine.[23]
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Table 2: Mechanism of action of berberine

Mechanism Key actions Primary effects References

Activation of 
AMPK

•	 Stimulates AMPK activity (including lysosomal AMPK 
via reduced UHRF1)

•	 Enhances glucose uptake and lipid metabolism
•	 Inhibits gluconeogenesis and modulates mTOR to 

improve liver function and reduce fat.

Enhances insulin sensitivity, 
improves glucose absorption 
and helps maintain cellular 
energy balance by lowering 
blood sugar levels.

[23,24,25,26,27,28]

Activation of 
PPARγ

•	 Activates peroxisome proliferator-activated receptor 
gamma.

•	 Elevates expression of adipogenic markers such as 
PPARγ and C/EBPβ, enhancing insulin signaling.

Improves insulin sensitivity 
and regulates glucose and 
lipid metabolism.

[23,29,30,31]

Inhibition of 
gluconeogenesis

•	 Inhibits key hepatic gluconeogenesis enzymes
•	 Elevates FGF21 and GLUT2 levels
•	 Increases insulin and leptin; reduces NEFA and MDA
•	 Enhances hepatic glycolysis via hexokinase and 

pyruvate kinase
•	 Modulates glycolysis indirectly through FXR 

inhibition

Lowers hepatic glucose 
production and fasting blood 
glucose levels, contributing to 
overall glycemic control.

[32,23,29,33,34, 
35,26,36]

Improved lipid 
metabolism

•	 Activates AMPK in fat, liver, and kidney tissues
•	 Promotes ACC phosphorylation, inhibiting lipid 

synthesis
•	 Reduces HMGCR, limiting cholesterol and triglyceride 

production

Lowers triglyceride and 
cholesterol levels, reduces fat 
accumulation, and improves 
overall lipid metabolism.

[29,23,37,24,30]

Regulation of gut 
microbiota

•	 Modulates gut flora by increasing beneficial bacteria 
(Bacteroidaceae, Akkermansiaceae) and reducing 
harmful ones (Lachnospiraceae).

•	 Reduces abundance and activity of TMA-producing 
bacteria

Enhances insulin sensitivity 
and improves metabolic 
balance through beneficial 
modulation of the gut 
microbiome.

[38,39,40,34,33,41]

Oxidative stress 
reduction

•	 Acts as an antioxidant by scavenging free radicals. 
•	 Reduces oxidative damage in cells, including wound 

repair and neuronal tissues.
•	 Lowers liver oxidative stress while increasing hepatic 

glycogen.

Protects cells against 
oxidative damage, which 
is critical for reducing 
complications in 
cardiovascular diseases and 
diabetes.

[23,25,32,42,43, 
44,33,45]

Anti-inflammatory 
properties

•	 Lowers pro-inflammatory cytokines (TNF-α, IL-6)
•	 Modulates cAMP/PKA/CREB and NLRP3 

inflammasome pathways.
•	 Inhibits apoptosis and extracellular matrix 

remodelling
•	 Activates Sirt1 to regulate inflammation

Reduces chronic 
inflammation associated 
with insulin resistance 
and diabetes, supporting 
improved metabolic health 
and tissue repair.

[23,32,46,42,31,43,4
4,35,47,48,49]

Structural activity relationship
Summarized in Fig. 6.

Toxicity 
Harmine shows strong toxicity, inducing neurological 
and cardiovascular effects even at low doses through 
acetylcholinesterase inhibition and MAO inhibition. It 
also acts as a natural insecticide against Aedes albopictus 
larvae, but its therapeutic and environmental use 
requires caution and further study to balance efficacy 
with safety.[92-94]

TRIGONELLINE (Pyridine)
Trigonelline, an alkaloid in fenugreek, shows antioxidant, 
anti-aging, and antidiabetic effects. Fenugreek seed 
extract lowers glucose and improves lipid profiles 

in human and animal models. Derived from vitamin 
B6, trigonelline enhances insulin sensitivity, reduces 
nephropathy, protects endothelial function, and supports 
muscle health via its role as an NAD+ precursor. Despite 
benefits, challenges in standardizing trigonelline-rich 
formulations remain[95-97] (Fig. 7).

Contemporary Issues
Evidence is mostly limited to preclinical and in vitro studies, 
with inconsistent protocols for herbal standardization.
[96,98]

Mechanism of action
Summarized in Table 5.

Structural activity relationship
Summarized in Fig. 8.
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Table 3: Mechanism of action of vindoline

Mechanism Key actions Primary effects References

Interaction with 
α-amylase and 
α-glucosidase

•	 Vindoline modulates the immune system and 
inflammation.

•	 It inhibits α-amylase/α-glucosidase, with 
strong docking affinity for α-glucosidase 
(–13.2250 vs. acarbose –14.7983).

Supports recovery in diabetic rats by 
reducing carbohydrate digestion rates 
and modulating inflammation.

[60,61] 
(docking 
details also in 
[60])

Improvement of 
glucose uptake

•	 Enhances basal glucose consumption in insulin-
resistant rats.

•	 Upregulates GLUT-4 and insulin receptor 
substrate-1 (IRS-1) expression in adipocytes 
and myoblasts.

Boosts insulin sensitivity and 
increases glucose uptake, aiding 
in blood sugar management and 
resolution of insulin resistance.

[62,63,61]

Lipid metabolism 
modulation

•	 Exhibits hepatoprotective effects by reducing 
liver enzyme levels associated with 
hepatotoxicity.

•	 Lowers serum lipid levels.

Improves the lipid profile in diabetic 
rats and reduces cardiovascular risks 
related to hyperlipidemia.

[64,65]

Oxidative stress 
mitigation

•	 Functions as a natural antioxidant by 
scavenging free radicals.

•	 Boosts antioxidant defense through enzyme 
activity and ferric reducing antioxidant power.

Decreases oxidative stress in diabetic 
tissues, protecting liver cells and 
renal tissues, and supporting overall 
metabolic health.

[64,66,61, 
65,62,67,68]

Inflammatory pathway 
inhibition

•	 Lowers pro-inflammatory cytokine levels in 
diabetic rats, including IL-6 and TNF-α.

Mitigates chronic inflammation, 
thereby enhancing insulin sensitivity 
and protecting against tissue damage.

[64,69]

Fig 4: SAR of Vindoline[70-74]

Fig 5: Structure of Harmine.[82]

Fig 6: SAR of Harmine[89-91]

Fig 7: Structure of Trigonelline.[100]

Fig 8: SAR of Trigonelline [109-111]

Toxicity
Trigonelline is safe for human use and shows benefits 
in allergic asthma and age-related muscle loss. Toxicity 
reports indicate low risk at therapeutic doses, and its role 
as an NAD+ precursor supports muscle function in older 
adults, highlighting its therapeutic potential with minimal 
safety concerns.[112-114]
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Table 4: Mechanism of action of harmine

Mechanism Key actions Primary effects References

Promotion of β-cell 
proliferation

•	 Significantly stimulates proliferation of beta 
and non-beta cells in human islet microtissues 
at moderate doses.

•	 Suppresses DYRK1A to enhance pancreatic 
beta-cell replication.

Increases the number and function 
of insulin-producing cells, thereby 
improving insulin secretion and aiding 
in glucose homeostasis.

[81,82,83]

Regeneration of 
pancreatic islets

•	 Regenerates beta cells, including conversion 
from other cell types.

•	 Restores or preserves pancreatic function in 
type 1 diabetes

Offers promise as a regenerative 
therapy for diabetes by re-establishing 
beta-cell mass and restoring insulin 
production.

[84,81,83]

Antioxidant activity •	 Acts as a potent antioxidant by scavenging free 
radicals.

•	 Enhances the body’s antioxidant capacity to 
reduce cellular damage.

Lowers oxidative stress levels in 
diabetic models, which is critical 
for reducing insulin resistance and 
protecting pancreatic beta cells.

[84,85]

DYRK1A inhibition •	 Blocks dual specificity tyrosine 
phosphorylation-regulated kinase 1A 
(DYRK1A), a crucial modulator of insulin 
release and beta-cell proliferation.

Stimulates the replication of pancreatic 
beta cells, leading to improved insulin 
levels and better glycemic control.

[82–84,
86-88]

Enhancement of
Insulin secretion

•	 Enhances basal and stimulated insulin secretion 
from beta cells.

•	 Improves insulin production via DYRK1A 
suppression.

Improves glycemic control by ensuring 
sufficient insulin availability to regulate 
blood glucose levels.

[81,84,83,6,
82,88]

Anti-inflammatory 
effects

•	 Blocks inflammatory signaling pathways such 
as NF-κB.

•	 Reduces levels of pro-inflammatory cytokines.

Mitigates chronic inflammation 
associated with insulin resistance, 
thereby enhancing insulin sensitivity 
and overall metabolic health.

[83,84,85,86]

Table 5: Mechanism of action of trigonelline

Mechanism Key actions Primary effects References

Wnt/β- catenin 
pathway 
regulation

•	 Modulates Wnt/β-catenin signaling involved in 
cell growth, differentiation, and apoptosis.

•	 Prevents glucose-induced overactivation, 
reducing excessive proliferation and fibrosis.

Prevents the downstream effects that 
lead to renal impairment by averting 
abnormal cell proliferation and 
fibrosis.

[99]

Modulation 
of glucose 
transporters

•	 Enhances the expression of GLUT-4 by 
modulating glucose metabolism enzymes in 
adipocytes.

Improves glucose absorption and 
uptake in adipocytes, contributing to 
better blood sugar regulation.

[100]

Activation of
the IRS1-GLUT2 
pathway

•	 Stimulates the insulin receptor substrate 
1 (IRS1) pathway, which triggers the 
translocation of GLUT2 to the cell membrane in 
liver cells.

Enhances glucose metabolism and 
lowers blood sugar levels by increasing 
glucose uptake in liver cells.

[101]

AMPK
activation

•	 Promotes autophagy and cell survival by 
stimulating the AMPK pathway under high-
glucose stress conditions.

Improves metabolic activity and energy 
balance, thereby reducing the harmful 
consequences of high glucose levels.

[99,102]

Antioxidant 
activity

•	 Suppresses ROS formation via PI3K-Akt-Nrf2 
pathway activation.

•	 Strengthens antioxidant defense by boosting 
enzymes, lowering MDA, and increasing total 
antioxidant capacity.

Reduces oxidative stress and 
protects cellular components—
including pancreatic β-cells—from 
hyperglycemia-induced oxidative 
damage.

[100,103,104,105,
102,106,107,108]

Anti-
inflammatory 
effects

•	 Reduces levels of pro-inflammatory cytokines 
(e.g., TNF-α, IL-6).

•	 Modulates inflammatory pathways that are 
typically upregulated in diabetes.

Mitigates chronic inflammation, 
which improves insulin sensitivity 
and minimizes diabetes-related 
complications (including effects on 
bone and tissue degeneration).

[106,100, 
105,108]
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OXYMATRINE (Quinazolidine)
Oxymatrine, a quinolizidine alkaloid from Sophora 
flavescens roots, shows immune-modulating, antioxidant, 
anti-inf lammatory, antiviral, and cardioprotective 
effects.[115] Traditionally used for myocardial ischemia, 
it also regulates metabolism, improves lipid and 
glucose handling, and protects against obesity and 
met abolic disorders. [116 -117 ] St udies highlight it s 
antidiabetic potential in kidney disease and diabetes-
induced cardiomyopathy by mitigating oxidative stress, 
inflammation, and apoptosis[118-120] (Fig. 9).

Contemporary Issues
Hepatotoxicity concerns; limited clinical data.[119,120]

Mechanism of action
Summarized in Table 6.

Structural activity relationship
Summarized in Fig. 10.

Toxicity
Oxymatrine shows cytotoxicity by reducing human 
liver cell viability and inducing programmed cell death, 
warranting cautious monitoring in clinical use. Further 
studies are required to clarify its mechanisms and 
establish safety standards.[133,134]

SOLANINE (Steroidal)
Solanine, a bitter glycoalkaloid (C₄₅H₇₃NO₁₅) from 
nightshade plants (S. lycopersicum, S. tuberosum, S. 
erianthum), has traditional uses against infections, 
gastrointestinal issues, fever, gout, dermatitis, and 
liver disorders. In Nigeria, its leaves are used for 
cancer and malaria remedies.[135,136] Beyond its role as 
a plant defense compound, solanine enhances insulin 
sensitivity, lowers postprandial hyperglycemia in 
diabetic mice, and modulates mitochondrial function 
via PPARγ activation [137-139] (Fig. 11).

Contemporary Issues
Strong neurotoxicity narrows its therapeutic window, 
requiring further safety studies.[138,139]

Mechanism of action
Summarized in Table 7.

Structural activity relationship
Summarized in Fig. 12.

Toxicity 
α-Solanine damages mitochondr ia l membranes, 
overst imulates t he ner vous s ystem, leading to 
neurological symptoms due to cell lysis and blockage of 
acetylcholinesterase activity.[146-148]

Recent Advances in Alkaloid-based Antidiabetic 
Therapy

Berberine
Recent studies show berberine lowers blood glucose 
in T2DM, with eff icacy comparable to metformin. 
Nano-formulat ions enhance their bioavailabilit y 
and hypoglycemic effects. Its mechanisms include 

Fig 9: Structure of Oxymatrine.[120]

Fig 10: SAR of Oxymatrine[128-132]

 

  Fig 11: Structure of Solanine.[140]

Fig 12: SAR of Solanine [143-145]
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Table 7: Mechanism of action of solanine

Mechanism Key actions Primary effects References

antihyperglycemic 
properties

•	 Stimulates adrenal glands to enhance hepatic 
glucose synthesis and release.

•	 Induces dose-dependent hyperglycemia in rats, 
with smaller doses normalizing faster

Increases blood sugar levels by promoting 
hepatic glucose production.

[140]

Inhibition of
Digestive enzymes

•	 Inhibits α-amylase and α-glucosidase.
•	 Slows starch breakdown and glucose absorption

Reduces postprandial blood sugar spikes 
by delaying glucose absorption.

[135,141]

Antioxidant 
properties

•	 Exhibits antioxidant activity that reduces oxidative 
stress.

•	 Disrupts mitochondrial membranes by opening 
potassium channels, altering membrane potential 
and cytosolic Ca²⁺, thereby inducing apoptosis.

Lowers oxidative stress linked to insulin 
resistance and β-cell damage and Induces 
apoptosis, aiding cancer prevention.

[135,142]

Modulation of 
signaling pathway 
(Akt/mTOR)

•	 Inhibits the Akt/mTOR pathway, which is critical 
for cell growth, survival, and insulin signaling.

•	 Although more established in cancer models, this 
modulation might enhance insulin sensitivity or 
alter glucose metabolism.

Potentially influences glucose uptake and 
metabolism by promoting autophagy 
and apoptosis, though this connection in 
diabetes remains speculative and requires 
further characterization.

[142]

Table 6: Mechanism of action of oxymatrine

Mechanism Key actions Primary effects References

Regulation of 
oxidative stress

•	 Lowers ROS and MDA while increasing SOD 
activity.

•	 Activates SIRT1 to boost antioxidant enzyme 
production in cardiomyocytes.

Lowers oxidative damage in brain, 
heart, and other tissues; improves 
cellular stress tolerance and metabolic 
regulation.

[120–122,
115,123,124]

Anti-
Inflammatory effects

•	 Suppresses expression of pro-inflammatory 
cytokines (e.g., TNF-α, IL-1β).

•	 Lowers inflammatory markers in the 
cerebellar cortex.

Reduces liver damage, fibrosis, and 
neuroinflammation associated with 
diabetes, thereby alleviating cognitive 
decline and neurological impairments.

[120,121]

Regulation of 
gluconeogenesis

•	 Modulates key enzymes (e.g., PEPCK, G6Pase) 
involved in hepatic glucose synthesis.

Decreases excessive hepatic glucose 
production, improves insulin sensitivity, 
and lowers hyperglycemia.

[120,125]

AKT phosphorylation •	 Promotes AKT phosphorylation via the PI3K/
Akt signaling pathway.

•	 Enhances cell survival by blocking pro-
apoptotic proteins and promoting anti-
apoptotic processes.

Improves glucose absorption and 
utilization in liver cells, counteracting 
insulin resistance, and protecting 
hepatocytes from hyperglycemia-
induced apoptosis.

[125,122,126]

Inhibition of
apoptosis

•	 Reduces diabetes-induced caspase-3 
expression and activity.

•	 Blocks Toll-like receptor 4 (TLR4) activation to 
mitigate downstream inflammatory signals.

Protects neuronal and liver cells from 
apoptosis, thereby reducing cell death 
and tissue damage associated with 
diabetes.

[115,121,123,
124,126, 
127,122]

gut microbiota modulation and anti-inf lammatory 
activity.[18-20]

Vindoline
Vindoline from C. roseus improves insulin sensitivity and 
reduces oxidative stress in diabetic models. CRISPR-based 
engineering has improved yields, supporting future large-
scale production. [56,58] 

Harmine
Harmine st imulates insulin secret ion and β-cell 
regeneration by inhibiting DYRK1A. Nanoparticle-based 
delivery has been developed to enhance efficacy and 
reduce neurotoxicity. [78,80]

Trigonelline
Trigonelline from fenugreek improves insulin sensitivity, 
protects against nephropathy, and supports NAD+ 
synthesis, aiding muscle health in diabetes and aging. [96,97]

Oxymatrine
Oxymatrine reduces inflammation in diabetic nephropathy 
and protects against cardiomyopathy through Nrf2/HO-1 
and JAK/STAT signaling pathways. [117,118]

Solanine
Solanine enhances insulin sensitivity and reduces 
hyperglycemia in diabetic mice. It modulates mitochondrial 
function and PPARγ signaling. [138,139]
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Review Merits, Limitations, and Future Directions

Berberine

•	 Merits
Most extensively studied alkaloid; lowers glucose and 
improves insulin sensitivity via AMPK activation and anti-
inflammatory effects.[18,19]

•	 Limitations
Poor or a l  bioav a i labi l i t y a nd v a r iable ex t r ac t 
standardization.[19,21]

•	 Future directions
Development of nano-formulations and derivatives to 
enhance absorption and efficacy.[19]

Vindoline

•	 Merits
Shows strong antidiabetic potential in preclinical studies; 
metabolic engineering has increased yields.[56,58]

•	 Limitations
Evidence is largely preclinical; lack of human trials.[56]

•	 Future directions
Clinical validation, improved delivery systems, and safety 
studies are required.[56,58]

Harmine

•	 Merits
Promotes pancreatic β-cell regeneration, offering unique 
therapeutic potential.[78]

•	 Limitations
Neurotoxicity and absence of clinical studies.[80]

•	 Future directions
Development of safer analogs and targeted delivery 
systems.[80]

Trigonelline

•	 Merits
Improves insulin sensitivity and reduces nephropathy in 
preclinical models.[96]

•	 Limitations
Most findings are from animal studies; lack of human 
validation.[96,97]

•	 Future directions
Standardized formulations and clinical trials are needed 
to confirm benefits.[96,97]

Oxymatrine

•	 Merits
Exhibits multiple antidiabetic mechanisms and protects 
against diabetic complications.[118,119]

•	 Limitations
Hepatotoxicity and insufficient clinical data.[118,119]

•	 Future directions
Dose optimization and long-term safety studies are 
essential.[118,119]

Solanine

•	 Merits
Demonstrates antidiabetic effects by improving insulin 
sensitivity in preclinical models.[138]

•	 Limitations
High neurotoxicity and narrow therapeutic index.[139]

•	 Future directions
Research on structural modifications and safe dosing 
strategies.[138,139]

General Review Merits, Limitations, and Future 
Directions

General merits of the review
•	 Comprehensive coverage of recent findings (upto 

2025) on key antidiabetic alkaloids.
•	 Balanced discussion of therapeutic potential and 

challenges.
•	 Identification of research gaps, including safety and 

standardization.

General limitations
•	 Evidence for many alkaloids is limited to preclinical 

studies.
•	 Variability in extraction and formulation affects 

reproducibility.
•	 Long-term and population-specific safety data are 

lacking.

Future directions
•	 Development of standardized clinical protocols.
•	 Exploration of patient-specif ic (personalized) 

responses.
•	 Stronger regulatory and ethical frameworks for herbal 

therapies.
•	 Use of nanotechnology and metabolic engineering to 

improve efficacy and safety.

Conclusion
Natural alkaloids like berberine, vindoline, harmine, 
trigonelline, oxymatrine, and solanine show promise in 
diabetes management by enhancing insulin sensitivity, 
secretion, gut microbiota modulation, and reducing 
oxidative stress and inflammation. Berberine has strong 
clinical evidence, while harmine offers potential for 
β-cell regeneration. Others demonstrate encouraging 
preclinical effects, but challenges remain, including 
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poor bioavailability, toxicity risks, lack of standardized 
extraction, and limited large-scale trials. Future progress 
requires optimized dosing, safety evaluation, and 
advanced delivery systems, with collaborative research 
to translate these compounds into effective therapies.
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