

International Journal of Pharmaceutical Sciences and Drug Research

[ISSN: 0975-248X; CODEN (USA): IJPSPP]

journal home page : <http://ijpsdronline.com/index.php/journal>

Research Article

Isolation and Characterization of Phenolic Derivative (Flavonoid) from *Crassocephalum crepidioides* with Antiangiogenic, Anti-inflammatory and Antioxidant Activities

Naziya Habeeb M¹, N Vijendra Kumar², Mahesh B³, Rashmi Ramesh⁴, ND Rekha^{5*}

¹Department of Biotechnology, St. Philomena's College (Autonomous), Bannimantap, Mysore-570019, Karnataka, India

²PG Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru-25, Karnataka, India

³Department of Chemistry, JSS Academy of Technical Education (Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru-560060, Karnataka, India

⁴Department of Studies in Microbiology, University of Mysore, Mysuru-570006, Karnataka, India

⁵Department of studies in Biotechnology, JSS College of Arts, Commerce and Science, Mysore-570025, Karnataka, India

ARTICLE INFO

Article history:

Received: 27 September, 2025

Revised: 18 December, 2025

Accepted: 29 December, 2025

Published: 30 January, 2026

Keywords:

Crassocephalum crepidioides, Antiangiogenic, Anti-inflammatory, Antioxidant, Chorioallantoic membrane

DOI:

10.25004/IJPSDR.2026.180103

ABSTRACT

A phenolic compound was successfully isolated from the methanolic extract of the aerial parts of *Crassocephalum crepidioides*. Structural elucidation was carried out using spectroscopic techniques, including UV-vis, IR, mass spectrometry, and nuclear magnetic resonance (NMR). Based on the combined spectral data, the compound was identified as 3-(dimethylamino)-2-hydroxy-5-(3,5,7-trihydroxychroman-2-yl)benzaldehyde. The bioactivity of the isolated compound was evaluated for antiangiogenic, anti-inflammatory, and antioxidant properties. In the shell-less chorioallantoic membrane (CAM) assay, the compound exhibited significant inhibition of angiogenesis. Furthermore, it demonstrated inhibitory activity against phospholipase A₂ enzyme derived from *Daboia russelii* (Russell's viper), suggesting potential anti-inflammatory effects. The compound also displayed notable antioxidant activity, supporting its therapeutic potential in conditions associated with oxidative stress and aberrant angiogenesis. These findings warrant further investigation into its pharmacological applications.

INTRODUCTION

The plant *Crassocephalum crepidioides* (CC), which belongs to the family of Asteraceae, is an erect, annual, and juicy herb generally seen in hot and humid provinces. The herb is commonly known as bushy head or red flower rag leaf. CC plant is used in many cultures as food and medicine.^[1] The plant is reported to have antitumour,^[2] anti-inflammatory,^[3] antimicrobial,^[4] and antidiabetic activities.^[5]

The blood vessel formation from pre-existing vasculature is called angiogenesis, which has a critical role in many physiological events, including wound healing

and embryonic development.^[6] However, dysregulated angiogenesis is also associated with numerous pathological conditions such as rheumatoid arthritis, certain immune disorders, and cancer. In oncology, angiogenesis is particularly significant, as the sprouting of new blood vessels within tumors ensures an adequate supply of oxygen and micro nutrients required for the proliferation of neoplastic cells. Primary tumors often invade the blood and lymphatic systems, facilitating metastasis to distant sites.^[7] The essential role of angiogenesis in sustaining tumor growth has prompted the development of therapeutic strategies aimed at selectively inhibiting the

*Corresponding Author: Dr. ND Rekha

Address: Department of studies in Biotechnology, JSS College of Arts, Commerce and Science, Ooty road, Mysore-570025, Karnataka, India

Email ✉: rekhand1972@gmail.com

Tel.: +91-9880929555

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2026 Naziya Habeeb M *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

formation of tumor-associated microvasculature.^[8] The potential of antiangiogenic therapy was demonstrated in preclinical studies, where tumor-bearing mice treated with angiogenesis inhibitors such as endostatin and angiostatin exhibited marked suppression of tumor growth.^[9] These findings have intensified efforts to identify novel angiostatic agents capable of specifically inhibiting endothelial cell proliferation and migration, thereby preventing neovascularization.^[10] Recently, considerable attention has turned toward the identification of dietary phytochemicals with antiangiogenic properties, which may serve as potential chemopreventive or therapeutic agents in cancer management.^[11]

Inflammation is an inborn defence mechanism to remove the microbe or the extraneous particles and to protect the tissue from damage. Inflammation is characterized by dilatation of blood vessels, outpouring of plasma, and release of certain cytokines, and migration of leukocytes through the blood vessels. Further, it leads to multiplication of blood vessels, fibroblasts and more connective tissue formation. The enzyme phospholipases A₂ (PLA₂) hydrolyses the Sn2-ester bond of phospholipids present in the plasma membrane, and releases arachidonic acid (AA) and lysophospholipid (LP). The released arachidonic acid enters two different pathways. In the cyclooxygenase pathway, it produces prostaglandins and thromboxanes. In the lipoxygenase pathway, it produces leukotrienes and lipoxins. The platelet-activating factor (PAF) is synthesized using lysophospholipid as a precursor; these molecules cause inflammation under normal physiological conditions.^[12] Many findings highlight the importance of PLA₂ in inflammatory conditions, inhibitions of the PLA₂ enzyme by dietary molecules is a potential remedy in many inflammatory disease states.

Antioxidants, both endogenous and exogenous, are compounds that either prevent the formation of harmful oxidants or neutralize them post-formation, thereby interrupting the oxidative chain reactions typically initiated by these species.^[13] *In-vivo*, the generation of free radicals such as superoxide anion (O₂⁻), nitric oxide (NO[•]), and reactive oxygen species like hydrogen peroxide is a continuous physiological process.^[14] Increasing attention is being directed toward natural free radical scavengers derived from plants. These phytochemicals can function as nutraceuticals, contributing significantly to human health promotion and disease prevention.^[15]

In the present study we have isolated a phenolic compound from CC aerial parts and evaluate its biological activity. Phytochemical analysis of the extract revealed a high concentration of phenolic compounds, flavonoids, ascorbic acid, total sugars, and vitamin C. In addition to these, other bioactive constituents previously reported in CC include alkaloids, diterpenoid lactones, glycosides, steroids, sesquiterpenoids, aliphatic compounds, and polysaccharides.^[16]

MATERIALS AND METHODS

Ethyl acetate, chloroform, n-Hexane, acetone, methanol, silica gel G (for TLC and column chromatography), DPPH, NBT, gallic acid, thiobarbituric acid (TBA), potassium hydroxide, EDTA, ascorbic acid, phenazine methosulfate (PMS), ferric chloride (FeCl₃), deoxyribose, sulfanilamide, 1-naphthyl ethylenediamine dihydrochloride, hydrogen peroxide were purchased from SRL, Mumbai, India. *Vipera russelli* venom was acquired from IRULA snake catchers (Madras). All reagents used were of analytical grade. Fertilized eggs were procured from the local shop, Mysore.

Preparation of Leaf and Stem Powder and Extraction

Fresh aerial parts of CC were collected from Hunsur, India. The leaves and stems were separated, thoroughly cleansed, shade-dried, crushed into powder, and stored in an airtight container until further use. A 40 g quantity of the parched powder was subjected to serial extraction utilizing a soxhlet device. The extraction was performed using highly non-polar hexane, chloroform, ethyl acetate, acetone, and polar methanol, followed by an aqueous extract.

Measurement of complete phenolic contents

The total amount of phenolic content in the extract was measured using the reported method^[17] with minor changes, using gallic acid as the compound of reference. The total phenolic content was computed and articulated as milligrams of gallic acid per gram of dried powder.

Estimation of flavonoids

Flavonoids were estimated by the Woisky *et al.* method. Aluminium chloride favours acid-stable complexes either with the C-4 keto group or with the hydroxyl groups at C-3 or C-5 of flavones and flavanols. Further, it creates acid-sensitive complexes with ortho-dihydroxyl groups present on either of the two rings of flavonoid structures. Quercetin is employed as a reference criterion for the quantification of total flavonoid content, owing to its well-characterized chemical reactivity and distinctive structural characteristics. Thus, a sequence of quercetin standard solutions at diverse concentrations was prepared to construct a calibration curve for subsequent analytical determinations. The aluminium chloride method was used from the protocol illustrated by Woisky *et al.*^[18] with minor changes. A standard calibration curve was established utilizing quercetin.

Detection of α - tocopherol

The α -tocopherol (vit E) content was estimated using the approach defined by Kivçak and Mert^[19] here α -tocopherol reducing ferric to ferrous ions. The produced ferrous ions form an orange-red colour with 2,2'-dipyridyl, which can be determined by a spectrophotometer.

Measurement of carbohydrates

The complete carbohydrate present in the extracts was assessed as per the reported method.^[20] Plant extract

in various aliquots, along with glucose as a reference in the range of (0–100 µg), were made up to 1000 µL with distilled water. To this, 1000 µL of 5% phenol and 5000 µL of concentrated H₂SO₄ were added. The absorbance of the orange-red colour produced was read at 520 nm.

Determination of ascorbic acid

The total quantity of ascorbic acid was calculated by Das Gupta *et al.*^[21] using pure ascorbic acid (0–16 µg) as the standard.

Separation of Bioactive Molecules from *C. crepidioides*, Purification of the Methanol Extract

A total of 40 g of dried powder of CC was taken for sequential extraction using a soxhlet device. Various solvents, which have increased polarity, were used in the following order: n-hexane, chloroform, ethyl acetate, acetone, and methanol. The resulting extracts were evaluated for antiangiogenic activity. Among them, the methanol extract exhibited the highest antiangiogenic property and was further concentrated using a rotavapor. Analysis of the methanol extract by analytical TLC showed three separate spots. The crude methanol extract was further fractionated by column chromatography employing a glass column (22 × 1.3 cm) sealed with silica gel G for column chromatography (100–200 mesh), which was pre-equilibrated with chloroform. Elution was executed using chloroform: methanol mixtures in the ratios 9:1, 8:2, and 7:3 to get three fractions, F1, F2, and F3. These fractions were further scrutinized using analytical TLC using a solvent system of methanol: chloroform: hexane (1:1:0.5). A single spot was observed in each fraction upon exposure to iodine vapours, showing compound purity. The compounds in the F1 and F2 fractions degraded subsequently; only F3 compound was stable. It was then subjected to spectral characterization.

Analysis of Purified Bioactive Compound by Spectroscopic Methods

UV spectroscopy

A UV spectrum of the purified bioactive molecule was noted using a Hitachi spectrophotometer at RT. The scanning was executed in the wavelength range between 200 and 700 nm. For the investigation, 1-mg of the pure compound was dissolved in 1-mL of methanol and employed as the sample.

Mass spectroscopy

Mass of the isolated compound was acquired using an HP 1100 MSD Series device provided with an electrospray ionization source. The study was conducted in positive ionization mode with a flow rate of 200 µL/min using a C-18 column for a running time of 40 minutes.

Nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance spectra were documented on a Bruker Avance spectrometer functioning at 100 MHz for ¹³C nuclei and 400 MHz for ¹H. The chemical shifts of both proton and carbon spectra were referenced to the internal standard tetramethylsilane (TMS).

Inhibition of angiogenesis by the shell-less chorioallantoic membrane assay

Angioinhibitory outcome of the isolated flavonoid from CC was validated using a shell-less chorioallantoic membrane assay. The experiment was carried out according to the method of Rekha, N.D *et al.*^[22] The surface of the fertilized hens' eggs was sterilized with 70% ethanol and incubated at 37°C in a humidified incubator. After 5 days of incubation, the shells of the eggs were removed carefully and the contents were released into a hammock; the whole procedure was carried out in a laminar air flow cabinet. The hammock was kept back into incubator. On the 6th day, a paper disc containing 100 µg of flavonoid was placed upon the proliferating blood vessels (on the chorioallantoic membrane) and further incubated. Results were observed the next day.

Anti-inflammatory Activity

Inhibition of phospholipase A2

V. russelli venom was used as a source of phospholipase A2 and was assayed by the indirect haemolytic method (Boman and Kaletta's method).^[23] Here, egg yolk, phosphate-buffered saline and packed human erythrocyte, was mixed in the ratio of 1: 8:1 (v/v). About 1-mL of this solution was used as substrate and incubated with the enzyme (70 µg) for 30 minutes at room temperature. The reaction was terminated with the addition of 9 mL of ice-cold phosphate-buffered saline; the reaction mixture was centrifuged at 4°C for 10 minutes at 1500 rpm. The extent of haemoglobin released in the supernatant due to lysis of erythrocytes was noted at 540 nm. The lysis of erythrocytes by the addition of 9 mL of distilled water was considered as positive control (100%). The assay was also carried out with different concentrations of flavonoids.

Determination of Antioxidant Activity

Scavenging assay for DPPH radical

The scavenging capacity of DPPH radical was measured by the method designed by Scherer and Godoy.^[24] About 1-mL of 0.3% DPPH solution prepared in methanol was combined with various amounts of flavonoid isolated from CC. The content was incubated at RT for 20 minutes. The absorbance of the resultant solution was obtained at 517 nm. As a control, ascorbic acid was used. The capacity of the flavonoid as a radical scavenger was represented as the EC₅₀ value, described as the quantity of flavonoid needed to scavenge 50% of the DPPH radicals.

Scavenging assay for hydroxyl radical

Phenolic derivative (flavonoid) of different aliquots, EDTA (1-mM), 10 mM deoxyribose, FeCl_3 (5 mM), H_2O_2 , including 5 mM of vitamin C in neutral buffer (50 mM, pH 7.2), was incubated for 50 minutes at room temperature.^[25] 5% TCA was used to stop the reaction and the resultant outcome was noted by the reaction with 1-mL of 0.2% TBA in a hot water bath for 20 min. The absorbance was estimated at 530 nm using a proper blank. Ascorbic acid was employed as a standard reference, and radical scavenging capacity was described as an EC_{50} value.

DNA protection assay

The protective consequence of the phenolic derivative from *CC* against hydroxyl radical-induced DNA impairment was evaluated using a DNA protection assay.^[26] The reaction mixture consisted of 5 μL of calf thymus (CT) DNA, 5 μL of Fenton's reagent (Composed of 0.03M H_2O_2 , 0.05M ascorbic acid, and 0.08M FeCl_3), and variable amounts of phenolic derivatives (0, 5, and 10 $\mu\text{g/mL}$) (Table 5). The total volume was adjusted to 20 μL with water. The content was kept for incubation at room temperature up to 20 minutes. After incubation, 2 μL of 0.25% bromophenol blue dye was added to every sample. The reaction contents (30 μL) were later loaded onto a 1% agarose gel (prepared by boiling 1 g of agarose in 100 mL of TAE buffer, and 5 μL of ethidium bromide was added when the temperature of the agarose was 55°C.) and subjected to electrophoresis at 90 V for 1-hour. DNA bands were observed by keeping the gel on a trans-illuminator.

Scavenging of nitric oxide radical

Sodium nitroprusside was used to generate nitric oxide (NO) radical and measured using the Griess reaction.^[27] Sodium nitroprusside (5 mM) spontaneously produces nitric oxide; oxygen reacts with nitric oxide to produce nitrite ions. Griess reagent was employed to detect nitrite ions. Scavengers of nitric oxide compete with oxygen, thereby reducing the formation of nitrite. Here in the assay, sodium nitroprusside (5 mM) in phosphate buffer saline was combined with variable concentrations of phenolic derivative and incubated at room temperature for 2 hours. Further, the reaction mixture was added with Griess reagent and the optical density was measured at 546 nm using a double-beam UV-vis spectrophotometer. AA was employed as a positive control. Scavenging activity of the nitric oxide radical was computed and described as an EC_{50} value, denoting the concentration needed to scavenge 50% of nitric oxide formation.

Scavenging assay of superoxide radical

The capacity of the flavonoid to scavenge the superoxide radical was determined according to the Nishikimi *et al.* method.^[28] The reaction contents having various concentrations of 20 to 100 μg of phenolic derivative, 0.01M of PMS, 0.001M of NBT and 0.01M NADH in neutral

buffer (0.1 M, pH 7.2) were kept at room temperature for 30 minutes. The colour reaction was documented at 560 nm by a spectrophotometer. AA was used as a reference, and radical scavenging capacity was expressed as an EC_{50} value.

Statistical Evaluation

Results were conveyed as mean \pm SEM, EC_{50} values were calculated by using Graph pad prism, using non-linear regression with two parameters.

RESULTS

Yield from Different Extracts

The weight of the solid mass of different solvent extracts is given in Table 1. Among the extracts, maximum yield was found in the extract of methanol, followed by ethyl acetate, chloroform, n-hexane, and acetone extracts. The high yield in methanol extract appears to be because of the presence of ascorbic acid, phenolic derivatives and other hydrophilic molecules.

Biochemical Constituents of *C. crepidioides*

Table 2 exemplifies the relative composition of diverse bioactive constituents across various solvent extracts. Phenolics were recognized as the most plentiful bioactive compounds, with a total content of 15.23 mg/g. The highest concentration was observed in the methanol extract (9.04 \pm 1.2 mg), followed by the acetone extract (4.19 \pm 1.4 mg). These two extracts also demonstrated relatively high levels of phenolic derivatives (flavonoids) and ascorbic acid. α -tocopherol were detected in minute quantities, with 0.22 \pm 1.1 mg in the chloroform extract and 0.05 \pm 1.5 mg in the hexane extract. The presence of these active molecules is likely to add greatly to the plant's observed bioactivities.

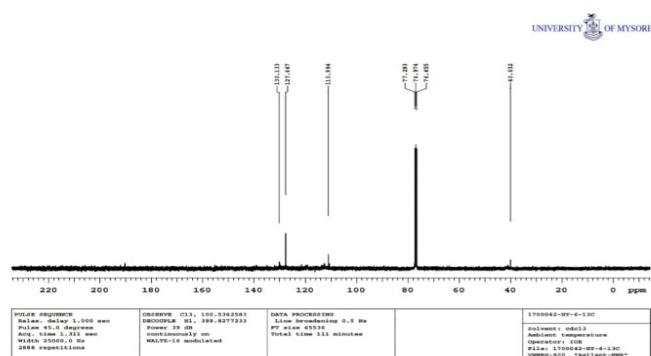
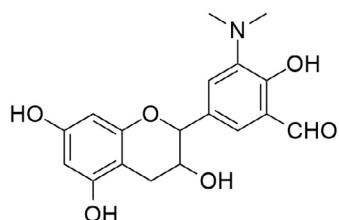
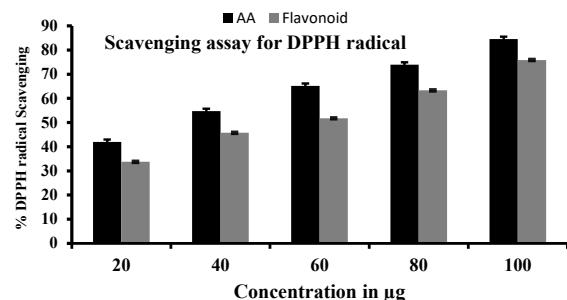
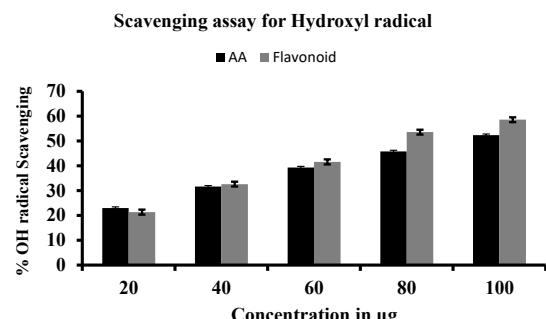
Spectral Analysis

UV-visible spectrum

The phenolic derivative (flavonoid) exhibited maximum absorption at 250.5 nm in UV-visible spectra confirm conjugation and aromatic systems.

IR spectroscopy

A wide peak at 3300 cm^{-1} indicates the presence of OH stretching. A peak at 1342 cm^{-1} confirms the presence of





Table 1: Weight of different solvent extracts

Extracts	Yield (in g)
HEGC	0.9
CEGC	1.02
EAEGC	1.6
AEGC	0.24
MEGC	4.09

Table 4: ^1H -NMR Chemical shift observed for the proposed structure

S. No.	Chemical shift (δ)	Proton type
1.	2.98	N-methyl
2.	6.6-7.8	Aromatic
3.	9.7	Aldehyde

Fig. 4: Spectra of the isolated compound- ^{13}C -NMR**Fig. 5:** Structure of the isolated molecule (Flavonoid)**Fig. 6:** Scavenging assay of DPPH radical by flavonoid and ascorbic acid**Fig. 7:** Scavenging assay for hydroxyl radical by flavonoid from *C. crepidioides*

DNA protection assay

The DNA protection assay reveals the capacity of the flavonoid to protect the calf thymus (CT) DNA against hydroxyl (OH^\bullet) radicals, which damage the DNA. Fenton's reagent, when exposed to CT DNA, results in DNA strand breaks because of the generation of hydroxyl radical. CT DNA incubated using different concentrations of flavonoid (5, 10 μg) was protected from damage (Fig. 8). The protecting effect of flavonoid on CT DNA is mainly because of the scavenging ability of hydroxyl radicals.

Assay for nitric oxide radical scavenging activity

Nitric oxide radical scavenging activity of flavonoid appears to be moderate with (EC_{50} value $54 \pm 0.8 \mu\text{g/mL}$) in contrast to that of the reference standard AA (EC_{50} value $50 \pm 1.23 \mu\text{g/mL}$) as shown in Fig. 9.

Scavenging assay for superoxide radical

Flavonoid proved insignificant in scavenging superoxide radicals by having an EC_{50} value of $75.91 \pm 1.1 \mu\text{g/mL}$ when compared to AA with an EC_{50} value of $53.61 \pm 0.8 \mu\text{g/mL}$, as illustrated in Fig. 10.

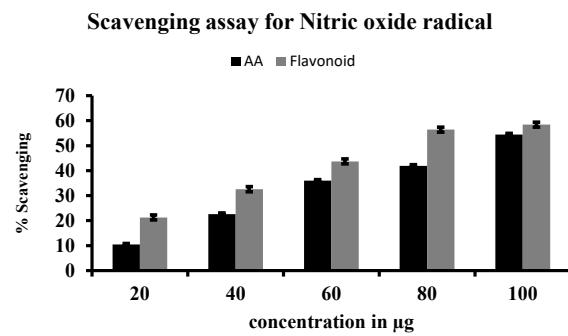
It is noticed that, though flavonoid from *CC* showed scavenging activity of DPPH, hydroxyl, nitric oxide and superoxide radical, based on the T-test analysis, there was no statistically significant difference ($p > 0.05$) in the EC_{50} value between standard ascorbic acid and the flavonoid. Therefore, we fail to reject the null hypothesis. The two-tailed p -value equals 0.3909.

Anti-inflammatory Activity (In-vitro)

Indirect haemolytic assay/PLA2 Inhibitory assay

With an increase in the concentration of flavonoid, the inhibition of PLA_2 of *V. russelli* also increased, with an EC_{50} value of $31.77 \pm 1.3 \mu\text{g/mL}$. Inhibition appears to be dose-dependent, as depicted in Fig. 11.

Angiogenic assay


The inhibition of vasculature by flavonoid is as displayed in Fig. 12. The investigation of antiangiogenic activity of flavonoid, a bioactive compound from the methanol extract of *C. crepidioides* exhibiting a noticeable decrease in the formation of blood vessels around the disc loaded with the flavonoid when compared to a control, which reveals the potency of flavonoid in regulating angiogenesis. Though the antiangiogenic effect of 3-(dimethylamino)-2-hydroxy-5-(3,5,7-trihydroxychroman-2-yl)benzaldehyde was proved using *in-vivo* CAM assay, further confirmation requires experiments using animal models.

DISCUSSION

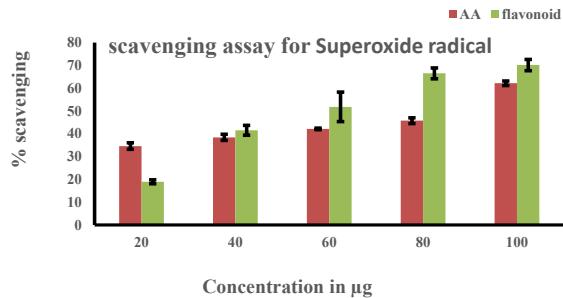

Flavonoids exert antioxidant activity primarily by removing free radicals such as 2,2-diphenyl-1-picrylhydrazyl (DPPH). When a DPPH radical encounters a molecule capable of giving a hydrogen atom or electron,

Fig. 8: CT DNA as observed under UV illuminator of gel documentation instrument.

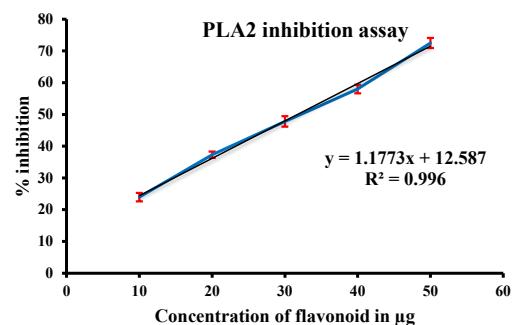


Fig. 9: Scavenging assay for nitric oxide radical by flavonoid from *C. crepidioides*

Fig. 10: Scavenging assay for superoxide radical by flavonoid from *C. crepidioides*

it undergoes reduction. Flavonoids possessing many hydroxyl groups on the B-ring generally exhibit strong antioxidant activities.^[29] In the present study, the isolated flavonoid demonstrated marginal DPPH radical scavenging activity when compared to ascorbic acid (AA), a standard antioxidant, which may be credited to the presence of only a single hydroxyl group in the B-ring. Structural features of the B and C rings largely determine the hydroxyl radical ($\bullet\text{OH}$) scavenging potential of flavonoids. The existence of a tertiary amine group in the B ring further enhances this activity by stabilizing reactive oxygen species.^[30] Flavonoids also scavenge nitric oxide ($\text{NO}\bullet$) radicals primarily through single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms. This

Fig. 11: Inhibition of PLA₂ by a flavonoid from *C. crepidioides*
Note: Values are the average of 3 separate experiments.

Fig. 12: Shell less CAM assay showing disappearance of vasculature around the disc loaded with flavonoid

antioxidant property contributes to their beneficial effects in various physiological processes, including the attenuation of inflammation and improvement of endothelial function.^[31] Additionally, flavonoids effectively scavenge superoxide anion radicals (O_2^-) via direct electron transfer, converting them into hydrogen peroxide (H_2O_2). This reaction is facilitated by the hydroxyl group at the C3 position of the flavonoid structure, which acts as a hydrogen donor.^[32] As the antioxidant activity of the isolated flavonoid molecule is similar to that of ascorbic acid, which relates to specific structural features. Biological activity confirms the presence of a phenolic hydroxyl group, which behaves like the engine of antioxidant activity; it further confirms the presence of conjugated double bonds, and these help stabilize the compound after it has donated an electron, preventing it from becoming a dangerous radical itself. The flavonoid molecules are more stable over time, even at different temperatures, than ascorbic acid, which degrades easily and is temperature sensitive. In this context, an isolated flavonoid has high therapeutic and preservative potential. Flavonoids can inhibit the activity of phospholipase A2 (PLA₂), a key enzyme that begins the inflammatory responses through the release of arachidonic acid and lysophospholipids. They exert this effect by directly binding to the enzyme, potentially altering its conformation or interfering with its active site. *In-silico* studies suggest that the interaction at the C6 position of the flavonoid scaffold plays a critical role in determining its affinity, selectivity, and inhibitory potency toward PLA₂.^[33] Diosmin is a

Table 5: Different components loaded into four wells of agarose gel electrophoresis

S. No.	Components
1.	20 µg CT DNA+ loading dye
2.	Fenton's reagent + CT DNA (20 µg)
3.	5 µg of flavonoid+ Fenton's reagent + CT DNA
4.	20 µg CT DNA + 10µg of flavonoid +Fenton's reagent + CT DNA

naturally occurring plant flavonoid compound, primarily found in citrus fruits inhibited *Daboia russelii* venom PLA₂s.^[34] Morelloflavone, a flavanone- (C-3 C-8")-flavone biflavonoid, from *Garcinia madruno*, is reported to inhibit the venom PLA₂.^[35] Quercetin-3-O- α -rhamnoside is a flavonoid separated from *Euphorbia hirta* and is known to inhibit the PLA₂.^[36]

Flavonoids also modulate key signaling pathways involved in angiogenesis. They interfere with the mitogen-activated protein kinase pathway, which controls cellular growth and differentiation, including endothelial cell proliferation. Additionally, they impact the phosphoinositide 3-kinase pathway, which governs cell survival, proliferation, and migration—processes essential to angiogenesis.^[37] Tricin, namely 4',5,7-trihydroxy-3',5'-dimethoxyflavone, found in navara rice and wheat varieties inhibits the proliferation of blood vessels triggered by VEGF by downregulating the signal transduction by VEGFR2 and also by averting the accumulation of HIF-1 α in tumor cells.^[38-40] Cremastanone is a natural homoisoflavanone that has been isolated from the rhizome of plants belonging to the Asparagaceae and Orchidaceae families. The compound effectively inhibits neovascularization in models by reducing the proliferation of endothelial cells (HUVECs) and showing potent antiangiogenic effects in animal studies.^[41] In the present study, the isolated molecule 3-(dimethylamino)-2-hydroxy-5-(3,5,7-trihydroxychroman-2-yl)benzaldehyde is a flavonol with a key biological activity. The fundamental C6-C3-C6 structure allows it to interact with various intracellular and extracellular targets. The presence and position of multiple hydroxyl (-OH) groups are crucial for its antioxidant and anti-inflammatory properties, enabling it to modulate crucial cellular pathways and scavenge reactive oxygen species (ROS). Antiangiogenic activity of the flavonols increased with the lipophilicity of the molecule.^[42] The proposed structure has two methyl groups in the B ring, which increase its lipophilicity and thereby its antiangiogenic activity. Lipophilicity allows the molecule cross the cell membranes easily, allowing it to reach intracellular targets like HIF-1 α . The -OH group at the 3- position in the C-ring is vital in the proposed structure. It is a distinguishing feature of flavonols like kaempferol and quercetin and is strongly associated with their ability to inhibit kinases like PI3K and VEGFR2.^[43]

CONCLUSION

The results of this study demonstrate that the purified compound separated from the methanolic extract of the aerial parts of *C. crepidioides* possesses significant antioxidant, anti-inflammatory, and antiangiogenic properties. These bioactivities suggest that the plant represents a valuable source of naturally occurring therapeutic molecules with potential pharmacological applications. The results further highlight the promise of plant-based compounds as alternatives or adjuncts to synthetic drugs, offering benefits such as reduced toxicity and better biocompatibility to reduce the burden of snakebite envenomation. Plant-derived molecules may serve as effective adjuncts to conventional antivenoms, addressing issues of cost, availability, and side effects. Further kinetic and *in-silico* studies on PLA₂ inhibition are needed to clarify the underlying mechanisms and pathways involved.

Though the CAM assay reveals the potency of flavonoids to inhibit angiogenesis, the percentage of inhibition cannot be calculated by calculating the microvessel density using an image processor; the results are based on visual observation. Further animal-based experiments need to be carried out to confirm the same.

ACKNOWLEDGMENT

The authors express their gratitude to JSS College of Arts, Commerce and Science, Ooty Road, Mysore.

REFERENCES

1. Gurung S, Poudel P, Adhikari N, Lamichhane G, Thapa R. *Crassocephalum crepidioides* (Benth.) S. Moore: traditional uses, chemical constituents, and biological activities. In: Medicinal plants of the Asteraceae family. Singapore: Springer Nature Singapore; 2022. p. 145–152. doi:10.1007/978-981-19-6080-2_9.
2. Tomimori K, Nakama S, Kimura R, Tamaki K, Ishikawa C, Mori N. Antitumor activity and macrophage nitric oxide producing action of medicinal herb, *Crassocephalum crepidioides*. BMC Complement Altern Med. 2012;12:78. doi:10.1186/1472-6882-12-78.
3. Akinpelu BA, Godwin A, Gbadegesin T, Ajakaye N, Omotosho SE, Azeez SO, Oziegbe M, Oyedapo OO. Comparative studies on anti-inflammatory, antioxidant and antimutagenic activities of *Crassocephalum crepidioides* leaf cold and hot water extracts. Asian Food Sci J. 2019;9(1):1-12.
4. Devi YA, Prathiba G, Haorongbam JD. Antibacterial, antioxidant and cytotoxicity assessment of *Crassocephalum crepidioides* leaf extract. J Pure Appl Microbiol. 2024;18(4):2528–2538. doi: 10.22207/JPAM.18.4.24.
5. Bahar E, Akter KM, Lee GH, Lee HY, Rashid HO, Choi MK, Bhattacharai KR, Hossain MM, Ara J, Mazumder K, Raihan O, Chae HJ, Yoon H. β -Cell protection and antidiabetic activities of *Crassocephalum crepidioides* (Asteraceae) Benth. S. Moore extract against alloxan-induced oxidative stress via regulation of apoptosis and reactive oxygen species. BMC Complement Altern Med. 2017;17(1):179. doi:10.1186/s12906-017-1697-0.
6. Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023;26(3):313–347. doi:10.1007/s10456-023-09876-7.
7. Popper H. Primary tumor and metastasis—sectioning the different steps of the metastatic cascade. Transl Lung Cancer Res. 2020;9(5):2277–2300. doi:10.21037/tlcr-20-175.

8. Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor angiogenesis and antiangiogenic strategies for cancer treatment. *J Clin Med.* 2019;9(1):84. doi:10.3390/jcm9010084.
9. Cogo E, Elsayed M, Bhardwaj S, Cooley K, Aycho C, Liang V, Papadogianis P, Psihogios A, Seely D. Mistletoe extracts during the oncological perioperative period: a systematic review and meta-analysis of human randomized controlled trials. *Curr Oncol.* 2023;30(9):8196-8219. doi:10.3390/curroncol30090595.
10. Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. *CA Cancer J Clin.* 2010;60(4):222-243. doi:10.3322/caac.20075.
11. Sharma E, Manju T, Priyanka S, Isha S, Dharam CA, Supriyanka R, Afaf AA. Serving up health: how phytochemicals transform food into medicine in the battle against cancer. *Food Frontiers.* 2024;5(5):1866-1908. doi:10.1002/fft.2439.
12. Dennis EA. The growing phospholipase A2 superfamily of signal transduction enzymes. *Trends Biochem Sci.* 1997;22(1):1-2. doi:10.1016/S0968-0004(96)20031-3.
13. Halliwell B. Understanding mechanisms of antioxidant action in health and disease. *Nat Rev Mol Cell Biol.* 2024;25(1):13-33. doi:10.1038/s41580-023-00645-4.
14. Engwa GA, Nweke FN, Nkeh-Chungag BN. Free radicals, oxidative stress-related diseases and antioxidant supplementation. *Altern Ther Health Med.* 2022;28(1): (no DOI found).
15. Akbari B, Namdar BY, Manochehr B, Fatemeh MA. The role of plant-derived natural antioxidants in reduction of oxidative stress. *BioFactors.* 2022;48(3):611-633. doi:10.1002/biof.183.
16. Karakoti M, Arya P, Joshi PK. Chemical composition of essential oils of flower and aerial part (leaves and stems) of *Crassocephalum crepidioides* (Benth.) S. Moore collected from foothills of Kumaon region of Uttarakhand, India. *J Essent Oil Bear Plants.* 2022;25(3):651-656. doi:10.1080/0972060X.2022.2100230.
17. Kujala TS, Loponen JM, Klika KD, Pihlaja K. Phenolics and betacyanins in red beetroot (*Beta vulgaris*) root: distribution and effect of cold storage on total phenolics and three individual compounds. *J Agric Food Chem.* 2000;48(11):5338-5342. doi:10.1021/jf000523q.
18. Woisky R, Salatino A. Analysis of propolis: some parameters and procedures for chemical quality control. *J Apic Res.* 1998;37:99-105. doi:10.1080/00218839.1998.11100961.
19. Kivçak B, Mert T. Quantitative determination of alpha-tocopherol in *Arbutus unedo* by TLC-densitometry and colorimetry. *Fitoterapia.* 2001;72(6):656-661. doi:10.1016/S0367-326X(01)00305-7.
20. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. *Anal Chem.* 1956;28(3):350-356. doi:10.1021/ac60111a017.
21. Padayatty SJ, Levine M. Vitamin C: the known and the unknown and Goldilocks. *Oral Dis.* 2016;22(6):463-493. doi:10.1111/odi.12446.
22. Rekha ND, Aradhya SM, Jayashree K. The antiangiogenic, antioxidant and proapoptotic chemopreventive properties of tannins from *Memecylon malabaricum*. *Int J Pharm Sci Res.* 2015;6:259-266.
23. Boman HG, Kaletta U. Chromatography of rattlesnake venom; a separation of three phosphodiesterases. *Biochim Biophys Acta.* 1957;24(3):619-631.
24. Scherer R, Godoy HT. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. *Food Chem.* 2009;112(3):654-658.
25. Halliwell B. Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. *Mutat Res.* 1999;443:37-52.
26. Chandel M, Kumar M, Sharma U, Kumar N, Singh B, Kaur S. Isolation and characterization of flavanols from *Anthocephalus cadamba* and evaluation of their antioxidant, antigenotoxic, cytotoxic and COX-2 inhibitory activities. *Rev Bras Farmacogn.* 2016;26:474-483. doi:10.1016/j.bjfp.2016.02.009.
27. Marcocci L, Maguire JJ, Droy-Lefaux MT, Packer L. The nitric oxide-scavenging properties of *Ginkgo biloba* extract EGb 761. *Biochem Biophys Res Commun.* 1994;201:748-755. doi:10.1006/bbrc.1994.1764.
28. Nishikimi M, Rao NA, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. *Biochem Biophys Res Commun.* 1972;46(2):849-854.
29. Dimitrios IT, Vassiliki O. The contribution of flavonoid C-ring on the DPPH free radical scavenging efficiency: a kinetic approach for the 3',4'-hydroxy substituted members. *Innov Food Sci Emerg Technol.* 2006;7:140-146. doi:10.1016/j.ifset.2005.05.008.
30. Li C, Sun P, Yu H, Zhang N, Wang J. Scavenging ability of dendritic PAMAM-bridged hindered phenolic antioxidants towards DPPH- and ROO[·] free radicals. *RSC Adv.* 2017;7:1869-1878. doi:10.1039/C6RA24980E.
31. van Acker SA, Tromp MN, Haenen GR, van der Vijgh WJ, Bast A. Flavonoids as scavengers of nitric oxide radical. *Biochem Biophys Res Commun.* 1995;214(3):755-759.
32. Jadwiga R, Ryszard JG. Flavonoids are scavengers of superoxide anions. *Biochem Pharmacol.* 1988;37:837-841. doi:10.1016/0006-2952(88)90169-4.
33. Lättig J, Böhl M, Fischer P, Tischer S, Tietböhl C, Menschikowski M, Gutzeit HO, Metz P, Pisabarro MT. Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: rationale for lead design. *J Comput Aided Mol Des.* 2007;21(8):473-483. doi:10.1007/s10822-007-9129-8.
34. Kiran KS, Vivek HK, Nagaraju KK, Prasad N, Kavitha RV, Karthik NA, Guru Kumar D, NanjundaSwamy S, Krishna KL, Kumar JR. Diosmin: a *Daboia russelii* venom PLA2 inhibitor purified and characterized from *Oxalis corniculata* L. *J Ethnopharmacol.* 2024;318(Pt B):116977. doi:10.1016/j.jep.2023.116977.
35. Pereañez JA, Patiño AC, Núñez V, Osorio E. The biflavonoid morelloflavone inhibits the enzymatic and biological activities of a snake venom phospholipase A2. *Chem Biol Interact.* 2014;220:94-101. doi:10.1016/j.cbi.2014.06.009.
36. Gopi K, Anbarasu K, Renu K, Jayanthi S, Vishwanath BS, Jayaraman G. Quercetin-3-O-ramnoside from *Euphorbia hirta* protects against snake venom-induced toxicity. *Biochim Biophys Acta.* 2016;1860(7):1528-1540. doi:10.1016/j.bbagen.2016.03.023.
37. Saini S, Tuli HS, Saini RV, Saini AK, Sak K, Kaur D, Shahwan M, Chauhan R, Chauhan A. Flavonoid-mediated suppression of tumor angiogenesis: roles of Ang-Tie/PI3K/AKT signaling. *Pathophysiology.* 2014;31:596-607. doi:10.1016/j.pathophys.2014.09.002.
38. Jiang B, Song J, Jin Y. Aflavonoid monomer tricin in gramineous plants: metabolism, biosynthesis, biological properties and toxicology. *Food Chem.* 2020;320:126617. doi:10.1016/j.foodchem.2020.126617.
39. Han JM, Kwon HJ, Jung HJ. Tricin, 4',5,7-trihydroxy-3',5'-dimethoxyflavone, exhibits potent antiangiogenic activity in vitro. *Int J Oncol.* 2016;49:1497-1504. doi:10.3892/ijo.2016.3644.
40. Tuli HS, Garg VK, Bhushan S, Uttam V, Sharma U, Jain A, Sak K, Yadav V, Lorenzo JM, Dhama K, Behl T, Sethi G. Natural flavonoids exhibit potent anticancer activity by targeting microRNAs in cancer. *Transl Oncol.* 2023;27:101580. doi:10.1016/j.tranon.2022.101580.
41. Heo M, Lee B, Sishtla K, Fei X, Lee S, Park S, Yuan Y, Lee S, Kwon S, Lee J, Kim S, Corson TW, Seo SY. Enantioselective synthesis of homoisoflavanones by asymmetric transfer hydrogenation and their biological evaluation for antiangiogenic activity. *J Org Chem.* 2019;84(16):9995-10011. doi:10.1021/acs.joc.9b01114.
42. Kajiyama K, Ichiba M, Kuwabara M, Kumazawa S, Nakayama T. Role of lipophilicity and hydrogen peroxide formation in the cytotoxicity of flavonols. *Biosci Biotechnol Biochem.* 2001;65:1227-1229. doi:10.1271/bbb.65.1227.
43. Alrumaihi F, Almatroodi SA, Alharbi HOA, Alwanian WM, Alharbi FA, Almatroodi A, Rahmani AH. Pharmacological potential of kaempferol, a flavonoid, in the management of pathogenesis via modulation of inflammation and other biological activities. *Molecules.* 2024;29(9):2007. doi:10.3390/molecules29092007.

HOW TO CITE THIS ARTICLE: Habeeb NM, Kumar NV, Mahesh B, Ramesh R, Rekha ND. Isolation and Characterization of Phenolic Derivative (Flavonoid) from *Crassocephalum crepidioides* with Antiangiogenic, Anti-inflammatory and Antioxidant Activities. *Int. J. Pharm. Sci. Drug Res.* 2026;18(1):28-36. DOI: 10.25004/IJPSDR.2026.180103

