
Research Article

Analyzing the Role of Phytochemicals in targeting Drug Transporter 
Protein ABCC6 using Molecular Docking and Molecular Dynamics 
Simulations
Heena Pandya1, Chirag N. Patel1, Mansi Bhavsar1, Pujan N. Pandya1, Saumya K. Patel1, Rakesh M. Rawal2*

1Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Sciences, Gujarat University, 
Ahmedabad-380009, Gujarat, India 
2Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad-380009, Gujarat, India

Introduction
Breast cancer (BC) is one of the most common malignancies 
amongst women across the globe. Of all molecular subtypes 
of breast cancer, TNBC is the most aggressive subtypes with 
increased rates of recurrence and metastasis. It accounts 
for 10 to 15% of all breast cancer types with high histologic 
grade.[1] This subtype of BC is characterized by a lack of 
hormonal receptor expression–estrogen (ER) negative, 
progesterone (PR) negative, and absent or reduced levels 
of HER2 protein. TNBC shows a strong correlation with 
BC gene (BRCA) 1/2 mutations and is commonly found 
in young and obese women. There are limited treatment 
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Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that lacks hormonal receptors. 
This reduces the therapeutic options for TNBC patients creating more focus on chemotherapy. Drug 
resistance has posed a major hurdle in treating TNBC patients. Deregulation of drug transporter proteins 
is one of the major factors that cause resistance to chemotherapeutic drugs. In this study, ABCC6, a drug 
transporter protein that is found dysregulated in several resistant cancer cells has been docked with natural 
compounds or phytochemicals with known anti-cancer activities. Subtrifloralactone G, a withanolide 
extracted from Deprea subtriflora is found to show highest binding energy with ABCC6 protein. Molecular 
dynamics simulations further prove the stability of the ABCC6 protein-subtrifloralactone G ligand complex. 
ADMET analysis shows that phytochemical subtrifloralactone G can be used as an anti-cancer therapeutic 
drug in treating resistant cancer cells. The study mainly focuses on the role of phytochemicals in treating 
resistant TNBC cells. 
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options for TNBC patients. Hormonal and targeted 
therapies do not work for TNBC patients, as TNBC lacks 
hormone receptors and reduced HER2 levels.[2] Lack of 
hormonal receptors makes treatment of TNBC even more 
challenging. Chemotherapy and adjuvant chemotherapy 
are limited treatment options for TNBC patients.[1] Drug 
resistance is another major obstacle in the treatment of 
TNBC. Patients receiving chemotherapy often face drug 
resistance to a broad spectrum of chemotherapeutic 
agents. Of several factors that cause drug resistance in 
cancer, ATP-binding cassette (ABC) drug transporters 
are the major causative factor inducing drug resistance.[3]
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ATP-binding cassette (ABC) transporter superfamily 
members are involved in the transport of molecules across 
the cell membrane.[4] The structure of ABC transporters 
consists of two nucleotide-binding domains (NBD) and 
two transmembrane domains (TMD).[5] On the basis of 
sequence similarity and structure, the transporter family 
has been divided into seven subfamilies, designated 
as ABC A-G.[6] ABCC6, also known as multi-resistance 
protein (MRP) 6 belongs to ABC gene subfamily C and is 
encoded by the ABCC6 gene. ABCC6 is efflux transporter 
and effectively pumps NEM-GS (glutathione conjugate 
of N-ethlmaleimide and LTC4 (leukotriene C4).[7-9] 
Dysregulation of ABCC6 is observed in TNBC.[10-13] Studies 
show that MRP 6 is capable of inducing drug resistance in 
cancer for etoposide, doxorubicin, daunorubicin, cisplatin, 
and actinomycin D.[14,15]

For hundreds of years, humans have used herbs 
and plants for the treatment of several diseases.[16-19] 
Enough emphasis has been made on the relevance of 
phytochemicals (biologically active plant chemicals) in 
cancer prevention. Plants have been used as an alternative 
to chemotherapeutic drugs in cancer treatment, and more 
than 3,000 plants have been reported to exhibit anti-
cancer properties.[20] Phytochemicals have shown cancer 
preventive properties, ability to restore sensitivity in 
resistant cancer cells,[21,22] and increase the efficiency of 
chemotherapeutic drugs.[23] Inhibitory action on NF-κB, 
a key player in tumorigenesis, has been observed by 
resveratrol, limonene, gingerol, genistein, apigenenin, and 
many others.[24] 

Bioinformatics tools, like molecular docking, enable 
understanding of ligand interaction with small molecules, 
like substrate or regulators.[25] Molecular docking has 
gained immense importance in drug designing and 
discovery as they are fast, reliable, and economic alternative 
to the experimental approach. Molecular docking is used 
to find binding poses and binding affinity prediction. 
These predictions further suggest use of candidates as 
active compounds.[26] Molecular dynamics simulations 
study was developed in the late 1970s and has gained 
immense importance in studying atoms and molecules of 
biological importance. It enables the study of entire protein 
complexes in solvents, in proteins embedded in membranes 
or in nucleosomes or ribosomes complexes. Molecular 
dynamics study is a widely used simulation tool that allows 
understanding protein-ligand interactions at increased 
flexibility more effectively than molecular docking.[27] 
Molecular dynamics simulation allows evaluation of protein 
structures in equilibrium state. The binding ability and 
stability of protein-ligand complexes were evaluated using 
molecular dynamics simulations,[28,29] while molecular 
docking uses rigid structures obtained from protein data 
bank (PDB), molecular dynamics (MD) simulations work in 
more relevant dynamics.[30] 

Resistant cancers have become a major problem in 
treating patients. In this study, 1,574 natural compounds 

were docked with ABCC6 protein to evaluate the binding 
stability of protein-ligand complex, and molecular 
dynamics simulat ions were performed of ABCC6 
protein and docked phytochemical subtrifloralactone 
G. ADMET properties were also checked for ligand 
subtrifloralactone G. 

Materials and Methods 

ABCC6 Protein Preparation
The protein structure of ABCC6 was downloaded from 
Research Collaboratory for Structural Bioinformatics 
(RCSB) PDB (Fig. 1). PDB ID of ABCC6 protein is 6BZR, which 
is inbound with ADP ligand (adenosine-5’-diphosphate) 
(C10H15N5O10P2) and citric acid (C6H8O7). It is a membrane 
transport protein in Homo sapiens. It has two chains, A 
and B, with a 251 sequence length. The crystal structure 
of this protein is obtained through X-ray diffraction with 
resolution 2.79 Ǻ. Water molecules were removed, and the 
energy minimization step was performed with the help 
of the standard steepest descent method in “yet another 
scientific artificial reality application” (YASARA).[31] 

Preparation of Natural Compounds 
In this study, the ligands were derived from naturally 
occurring plant-based anti-cancer compound activity 
target (NPACT) database (http://crdd.osdd.net/raghava/
npact/). This database has approximately 1,500 natural 
compounds with known anti-cancer activities, and these 
compounds were compiled into a single dataset for docking 
purposes. For further use, ligands were cleaned, and 
hydrogens were added using the Marvin sketch tool.[32] 

Fig. 1: ABCC6 protein structure downloaded from PDB  
(PDB ID: 6BZR)
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Molecular Docking
It is an important tool in structural biology and assists 
in computational drug designing by presenting the 
interactions between two molecules and finds most 
feasible orientation that forms a reliable complex with 
minimum energy. The main objective of molecular docking 
is prediction of protein-ligand complex, wherein ligand 
binds to the cavity of protein. These cavities are called 
active sites as these sites become functionally active when 
acted by external molecules.[33] Docking is a crucial step 
to choose potential hits in virtual screening. It allows 
interaction between different atoms and molecules for 
a fixed period of time.[34] YASARA software was used to 
investigate the detailed interactions between hits and 
drug transporter proteins ABCC6. For molecular docking, 
YASARA uses AutoDock Vina 4.2 algorithm and AMBER03 
force field. Removal of water molecules, small ions, and 
energy minimization was performed in YASARA. A profile 
was generated of all the hits and proteins. The protein-
ligand interactions were further visualized in Discovery 
Studio. The free binding energy ∆Gbind was given by the 
following equation:

∆G = ∆GvdW + ∆GHbond + ∆Gelec + ∆Gtor + ∆Gdesolv
where, ∆G vdW  = van der Waals term for dock ing 
energy; ∆GHbond = H bonding term for docking energy; 
∆Gelec =  electrostatic term for docking energy; ∆Gtor = 
torsional free energy term for ligand when the ligand 
transits from unbounded to bounded state; ∆Gdesolv = 
desolvation term for docking energy.

The results of molecular docking are dependent on 
two factors: optimization search method, which detects 
docking complexes with minimum binding energies, and 
scoring function is used as benchmark to evaluate results 
obtained after docking.[35] 

Molecular Dynamics Simulations
Molecular dynamics simulations allow understanding 
of binding stability of desired ligands to the proteins. A 
molecular dynamics simulation study was undertaken 
by using YASARA with AMBER03 force field for docked 
complex. Energy minimization was performed for protein-
ligand complexes to remove unfavorable atoms. Steepest 
descent minimization was used, and simulation was 
continued at 10 ns. The molecular dynamics simulation 

was carried out within simulation box at following 
conditions: temperature 298 K, pressure 1 bar, coulomb 
electrostatics at cut-off 7.86, 0.9% NaCl, solvent density 
0.997, pH 7.0, 1-fs time steps, periodic boundaries, and 
all atoms mobile.[34] The molecular complexes were 
stimulated at 10 ns with frame capture at every 2.5 ns (0, 
2.5, 5, 7.5, and 10 ns). Different trajectories were analyzed 
through several quantities, including root mean squared 
deviation (RMSD).[35] 

ADMET Analysis
To check different ADMET properties, admetSAR (http:// 
www.admetexp.org) and Molinspiration tool (https://
www.molinspiration.com/) was used. 

Results and Discussion 

Molecular Docking
In drug designing, molecular docking is the first approach 
to check feasibility of any biochemical reaction before 
carrying out experimental approach. This approach allows 
prediction of several different binding sites in target 
allowing development and selection of efficient and potent 
drug candidates. It also allows in silico evaluation of large 
databases to search for potent drug candidates.[36] 

For ABCC6, the three best ligands are subtrifloralactone, 
helioxanthin, and 5-beta-spirostan-3-beta-ol 3-O-beta-D-
glucopyranosyl-(1-2)-beta-D-glucopyranoside (Table  1). 
Subtrif loralactone G showed highest binding energy 
(9.053 kcal/mol). Positive YASAR A score indicates 
stronger, stable, and efficient binding. Contacting residue 
receptors, hydrogen bond interactions, pi-sigma bond, 
alkyl bond, and pi-alkyl bond were noted. Fig. 2 shows 
docked results of ABCC6 protein and subtrifloralactone G 
in 3D and 2D format with different interactions at specified  
distances. 

Fig. 2 shows 3D and 2D pose of ABCC6 protein-
subtrifloralactone G ligand complex. The active compound, 
subtrifloralactone G showed hydrogen bond interactions 
with residues Ser-1306, Gly-1304, Ser-1307, and Lys-
1305, van der Waals interactions with residues Tyr-1274,  
Thr-1301, Ile-1456, Val-1282, Ala-1303, Gly-1475, and Leu-
1280, alkyl bonds with residues Ala-1281, Pro-1279, and 
pi-alkyl bonds with residues His-1458. Forces between 

Table 1: Top three molecular docking results of phytochemicals with ABCC6

Ligand name
Binding energy 
(kcal/mol) Contacting residue receptors

Subtrifloralactone G 9.053
Tyr 1274, Leu 1278, Pro 1279, Leu 1280 Ala 1281, Val 1282, Arg 1300, 
Thr 1301, Gly 1302, Ala 1303, Gly 1304, Lys 1305, Ser 1306, Ser 1307, 
Ile 1456, His 1458, Lys 1474, Gly A 1475

Helioxanthin 9.03 Tyr 1274, Leu 1278, Pro 1279, Leu 1280, Ala 1281, Thr 1301, Gly 1302, 
Ala 1303, Gly 1304, Lys 1305, Ser 1306, Ser 1307

5-beta-spirostan-3-beta-ol 3-O-beta-
D-glucopyranosyl-(1-2)-beta-D-
glucopyranoside

8.914
Tyr 1274, Leu 1278, Pro 1279, Leu 1280, Ala 1281, Arg 1300, Thr 1301, 
Gly 1302, Ala 1303, Gly 1304, Lys 1305, Ser 1306, Ser 1307, Pro 1346, 
Gln 1347, Asp 1348, Asp 1426, Ile 1456, His 1458, Lys 1474, Gly 1475

Q5
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molecules create interactions between the particles. There 
are four main types of interactions, viz., electrostatic forces 
due to charges within the compound, electrodynamics 
forces, or van der Waals forces, steric forces that are 
generated due to proximity of different molecules and 
solvent related forces, like hydrophilic (hydrogen bonds) 
and hydrophobic interactions.[33]

The protein-ligand complex ABCC6 and subtrif lora-
lactone G was further subjected to molecular dynamics 
simulations. Certain conditions were kept constant during 
simulations, like number of atoms, pressure, temperature, 
pH, and density. Fig. 3 shows time (in ps) vs. energy 
(kJ/mol) plot that depicts fluctuations of the complexes. 
Time (in ps) vs. RMSD plot (Fig. 4) shows stability of docked 
protein-ligand complex. Fig. 5 shows time (in ps) vs. radius 
of gyration plot, which shows spatial packing of amino 
acid residues, which shows protein stability. Higher value 
of radius of gyration indicates less compact structure. 
Further, the docked complexes were visualized in 
Discovery Studio 3 to display various interactions involved 
in the protein-ligand docking. Fig. 6 shows conformational 
changes in the protein-ligand complex when simulated at 
time period of 10 ns. 

Multi-drug resistance proteins (MRP) are membrane 
glycoproteins that are ATP-dependent and facilitate the 
export of drugs from cells.[37] ABCC6 is an efflux drug 
transporter with a known role in inducing resistance to 

Table 3: Lipinski’s rule of five

Molecular weight 472.58

AlogP 1.98

H-bond acceptor 7

H-bond donor 3

Rotatable bonds 3

Table 2: ADMET properties of compound subtrifloralactone G

ADMET properties Subtrifloralactone G

Blood-brain barrier penetration + 0.81

Human intestinal absorption + 0.96

CYP2D6 inhibitor - 0.94

Caco-2 cell permeability - 0.79

Carcinogenicity - 0.97

Human oral bioavailability - 0.68

Fig. 6: Conformational changes in protein-ligand complex observed 
after every 2.5 ns of the molecular dynamics simulation (10 ns)

Fig. 5: Time (ps) vs. radius of gyration plot of ABCC6 protein-
subtrifloralactone G ligand complex

Fig. 4: Time (ps) vs. RMSD (Å) of ABCC6 protein-subtrifloralactone 
G ligand complex

Fig. 3: Time (ps) vs. energy (kJ/mol) plot of ABCC6 protein-
subtrifloralactone G ligand complex

Fig. 2: 3D and 2D pose of ABCC6 and subtrifloralactone G
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drugs, like etoposide, doxorubicin, daunorubicin, cisplatin, 
and actinomycin D.[38] 

ADMET Analysis
ADMET analysis allows computational analysis of 
absorption, distribution, metabolism, excretion, and 
toxicity properties of drug candidate. In this study, 
we performed ADMET analysis of subtrif loralactone 
G compound to check whether it can be used as drug 
candidate or not. Several analyses like blood-brain 
barrier penetration, human intestinal absorption, CYP2D6 
inhibitor, Caco-2 cell permeability, carcinogenicity, 
and biodegradation were calculated. The cytochrome 
P450 family plays a critical role in drug metabolism 
and excretion through liver. CYP1A2, CYP2A6, CYP2C9, 
CYP2C19, CYP2D6, CYP2E1, and CYP3A4 are the most 
important isoforms. Dysregulation of these isoforms 
may lead to decreased drug metabolism. BBB is a highly 
selective membrane that prevents blood components 
from crossing the extracellular fluid in brain. Health 
impact assessment (HIA), Caco-2 cell permeability, and 
bioavailability are also important parameters that are 
considered for potential drug identification.[39] Table 2 
shows blood-brain barrier penetration, human intestinal 
absorption, CYP2D6 inhibitor, Caco-2 cell permeability, 
carcinogenicity, and biodegradation. Subtrifloralactone 
G shows BBB penetration and HIA, but fails to show 
Caco-2 permeability. The compound also exhibits negative 
human oral bioavailability. The major drawback of natural 
compounds is reduced bioavailability. However, this can be 
solved by chemically modifying the structure or by using 
nanoparticle delivery of drugs in the body.[40] 

Lipinski’s rule of five states that a drug candidate 
should fulfill certain conditions to be used in humans–
octanol-water partition coefficient (logP) should be < 5, 
molecular weight ≤ 500  kDa, number of H-bond donors 
should be ≤ 5; number of H-bond receptors should be 
≤ 10.[39] Another rule was included: the number of rotatable 
bonds should be < 10 (Table 3). 

Molinspiration Analysis
Molecular weight plays a key role in determining the 
therapeutic efficiency of the drug. Bulkier molecules 
cannot be easily transported, diffused, and absorbed 
when compared to lighter molecules. The molecular 
weight of subtrifloralactone G is 472.58, which is < 500. 
Oral bioavailability of drug molecules was characterized 
by lipophilicity (log P value) and topological polar surface 
area (TPSA) values. Log P value for subtrifloralactone G 
is 0.94. This value is within the acceptable limit for drug 
permeability. Table 4 shows that subtrifloralactone G 
ligand showed no violations of drug-likeness conditions.

The compound subtrif loralactone G is derived from 
D. subtrif lora (Solanaceae family) , a plant native to 
Peru.[41] Subtrif loralactone is a withanolide that are 
found exclusively in Solanaceae family.[42] Withanolides 
have shown potent ial in ant i-tumor, ant i-stress, 
anti-microbial, and anti-inflammatory activities. These 
withanolides have exhibited the potential to function as 
chemopreventive agents. 10 norwithanolides (a subclass 
of withanolides), subtrifloralactone A-J are isolated from 
D.  subtriflora.[41] The helioxanthin is extracted from 
Taiwania  cryptomerioides plant. This phytochemical 
exhibits a broad spectrum of activities. A study by Yueh-
Min Lin showed anti-cancer activity of helioxanthin in oral 
squamous cell carcinoma.[43] 

Drug resistance poses as one of the major obstacles in 
cancer treatment management. ABC transporter family 
plays an important factor in inducing resistance to drugs 
in cancer treatment. Up regulation of ABCC6, an efflux 
drug transporter is found in diverse cancer types.[44-46] 
Molecular docking was used to investigate ABCC6 protein-
phytochemicals ligand affinity. ABCC6 protein has been 
observed to be interacting with subtrifloralactone  G, 
helioxanthin, and 5-beta-spirostan-3-beta-ol 3-O-beta-
D-glucopyranosyl-(1-2)-beta-D-glucopyranoside with 
binding energies 9.053, 9.03, and 8.914 kcal/mol, 
respectively. Molecular dynamics simulations showed 
that subtrifloralactone G shows stable configuration and 
has potential to be used as an anti-cancer agent. Molecular 
dynamics simulations results support the hypothesis that 
phytochemicals are reliable ligands that can be used as 
anti-cancer therapeutic agents. These results could be 
further used for designing phytochemicals derived drugs 
for resistant cancer types. ADMET analysis shows that 
subtrifloralactone G can be used as potential therapeutic 
candidate in targeting ABCC6 protein; however, further 
analysis is required to validate these results. 
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