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Microarray Data Analysis, Structure Prediction, and In silico Docking 
of Drugs for Inhibiting Overexpression of High Mobility Group A1 in 
Human Malignant Neoplasias
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Introduction
Microarray technology has equipped scientists with 
the capabilit y to explore the expression levels of 
numerous  genes in one single experiment. Microarray 
data analysis has been employed to identify any significant 
biomarkers for diseases. Differentially expressed  genes 
have been recognized by exploiting the technique of 
significance analysis of microarray  (SAM).[1-3] The 
protein microarray database  (PMD) has been specially 
constructed to archive and evaluate protein microarray  
data.[4]

The High Mobility Group A (HMGA) is a family of non-
histone chromatin binding small nuclear proteins, which, 
as the name suggests, possesses high electrophoretic 
mobility in polyacrylamide  gels. The HMGA family is 
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The High Mobility Group A1 (HMGA1) gene overexpression has been widely observed in various types of 
cancers. The raw data for microarray data analysis was obtained from the dataset record GDS3525. The SOM 
and K-means of the genesis led to the identification of two clusters (each consisting of 30 genes) bearing 
the HMGA1 gene. This on further analysis resulted in the identification of 14 similar genes by Easy M-A. 
The evolutionary similarity of HMGA1 and GORASP2 is clearly observed in the phylogenetic tree. Due to the 
absence of precise structures, the homology modeling was done by using EasyModeller, and the resulting 
models of proteins HMGA1 and GORASP2 were validated by the Ramachandran plot. These models were 
further put to loop optimization by Modloop, and the output models were assessed by Ramachandran 
plot (Rampage) and through SAVS (Procheck). The molecular docking was done by using Autodock. This 
resulted in two ligands, DB11641 (vinflunine) and DB12674 (lurbinectedin), showing potential for the 
effective treatment of various types of cancers characterized by the overexpression of HMGA1 and GORASP2.
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A B S T R A C TA R T I C L E  I N F O

comprised of HMGA1 and HMGA2. Both of these are encoded 
by different  genes present on chromosomes 6p21 and 
12q14-15, respectively. There are three isoforms of HMGA1, 
i.e., HMGA1a, HMGA1b, and HMGA1c. The HMGA proteins 
have acidic carboxyl-terminal, and they all are linked with 
chromatin. These proteins have N-terminal DNA binding 
domains, known as “AT-hook” that interpose in the binding 
to AT-rich regions of chromatin. The normal human adult 
cells contain a very low amount of HMGA protein or maybe 
even absent.[5-13]

One st udy suggested that HMGA1  and matrix 
met alloproteinase-11 have a crucial f unct ion in 
the generation and advancement of human skin cancer.[14] 
Another study analyzed the HMGA1 expression in human 
epidermal squamous carcinoma SCC-13 cells and HeLa 
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cells. They suggested that HMGA1 has a significant role 
in managing autophagy and insinuated a unique way of 
contributing to HMGA1 towards cancer progression.[5] Yet 
another study emphasized the role of both HMGA1 and 2 
in the formation of gastric cancer.[8]

A study evaluated the expression of HMGA1 proteins 
in a  group  of ovarian carcinoma cell lines and tissues 
and recommended that ovarian cancer cell  growth can 
be repressed by arresting HMGA1 proteins.[15] Another 
study concluded that the cancer cells’ sensitivity to 
antineoplastic agents could be increased by blocking 
HMGA1 proteins.[6] Yet another study emphasized the 
importance of overexpression of HMGA1 in human uterine 
tumors and suggested HMGA1 to be a rational therapeutic 
target.[7]

The three-dimensional protein structure helps to 
understand not only its functions but also its dynamics, 
interactions with ligands, and other proteins. The in vitro 
methods of determination of protein structure, i.e., nuclear 
magnetic resonance  (NMR) and X-ray crystallography, 
are expensive, time-consuming, and complex processes. 
Moreover, the large size of some proteins also plays a role 
in the failure of NMR to determine the structure. In the 
absence of an experimentally determined structure, the 
in  silico method of comparative or homology modeling 
has proved to be an asset. This method is established 
on the basis of the relationship between the structure 
of the protein and its amino acid sequence. Human 
evolution changes the structure slowly vis-à-vis the 
associated sequence. The homology modeling method 
has been utilized to derive the structure of proteins. 
The 3D model structures of the proteins have been 
utilized to identify their probable interactions with other 
proteins and small ligand molecules, thereby identifying 
the potential inhibitors by exploiting the technique of 
in  silico docking.[16-24] In this study, the vast amount of 
raw gene expression data for HMGA1 was analyzed, and 
differentially co-expressed  genes were identified. The 
phylogenetic analysis was performed to establish closely 
related genes. The corresponding proteins were modeled 
by utilizing homology modeling, and potential molecules 
were identified using docking. 

The current study recognizes the crucial role of HMGA1 
in various cancers. Certainly, it creates a groundwork for 
discovering and developing novel therapeutics in human 
malignant neoplasias by reporting certain potential drug 
molecules for the first time, which may act as inhibitors in 
HMGA1 and GORASP2 overexpressed cancers.

Methodology
The hardware comprised of a personal computer (Lenovo 
IdeaPad 330S) having Intel  (R) Core  (TM) i3-8130U 
central processing unit, Windows 10 Home Premium 
64-bit operating system having random access memory of  
4 GB.

Microarray Data Analysis

Data Retrieval
The Gene Expression Omnibus  (GEO) is a public 
functional genomics data repository supporting Minimum 
Information About a Microarray Experiment  (MIAME)-
compliant data submissions.[25,26] The raw data for 
microarray data analysis was obtained from the dataset 
record GDS3525. The tit le is “Ovarian cancer and 
depression,” and the reference series is GSE9116.[27,28] A 
total of 22,284 gene entries were taken into consideration. 
The average values from the 10 sample count for the 
respective genes were calculated.

Easy M-A
The Easy M-A program, developed by Mr. Deepankar 
Chakraborty, is distributed as a part of Bio-En-Gene-Ier. 
It has pre-clustering tools, like DelBGene, responsible for 
removing genes without any defined name. Out of the total 
values, only 22,216  genes with names were taken into 
consideration. Another tool, CpyAvg, fills the vacant cells 
with the average value. 

The HMGA1 average value was identified, and out of 
the two values  (6.038 and 9.041), the  greater value of 
9.041 was selected for further procedure. Yet another tool, 
FilterArray, selects only those rows whose average value 
falls within the specified range. The range of the value 
specified was determined to be 8.9 to 9.1 (9.041 ± 0.6%), 
and within this range, 159 rows  (159  genes) were 
selected. The post-clustering tool, SimGene, identifies 
the common  genes from two cluster’s text files with 
significantly similar images.

Genesis
Genesis assimilates numerous microarray data analysis 
tools, such as, filters, normalization and visualization tools, 
distance measures, and common clustering algorithms, 
including hierarchical clustering, self-organizing maps, 
k-means, principal component analysis, and support vector 
machines.[29]

The self-organizing maps  (SOM) have been used to 
clarify and streamline the  gene-expression data.[30] 
SOM was availed by adopting various parameters, like 
dimensions X and Y: 3; iterations: 2,000; alpha: 0.05; 
radius: 3; initialization: random  genes; neighborhood: 
Gaussian; and topology to be hexagonal. This resulted in 
the formation of nine clusters of genes.

The K-means clustering has led to the identification 
of the  genes with comparable expression patterns.[30] 
The K-means clustering was applied and defined by a 
few parameters: the number of clusters: 9; maximum 
iterations: 2,000; and runs to be 1. These eventuated nine 
clusters of genes with similar expressions.

The clusters bearing the HMGA1 gene were identified, 
and the same was subjected to the post-clustering tool, 
SimGene of the Easy M-A. 
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Phylogenetic Tree
Molecular Evolutionary Genetics Analysis  (MEGA 
version  5) is software for exploring online databases, 
constructing sequence alignment and phylogenetic trees, 
and keeping an evolutionary perspective in focus.[31] 
The multiple sequence alignment was created by using 
ClustalW. The evolutionary analogy between sequences 
was derived by calculating the proportion of amino acids/
nucleotide differences between sequences.

Homology Modeling
Both HMGA1 and Golgi Reassembly Stacking Protein 
2 (GORASP2, 55kDa) proteins arise from the same node, 
and thus, homology modeling was done to predict the 
structure of these two evolutionary proximate proteins. 
GORASP2 gene encodes a member of the Golgi Reassembly 
Stacking Protein family.[32]

Sequence Alignment
Fast alignment (FASTA): The nucleotide sequences or peptide 
sequences are expressed by the FASTA format, using 
single-letter codes.[33] The FASTA sequence of HMGA1 and 
GORASP2 were obtained from the website of the National 
Centre for Biotechnology Information (NCBI).[34,35] 
Basic local alignment search tool  (BLAST): The amino 
acid sequence of different proteins was investigated 
using the BLAST algorithm.[36] The BLAST-P was 
undertaken by using the protein data bank (PDB) proteins  
database. 
Protein homology/ analogy recognition engine (Phyre): To 
anticipate and interpret protein structure, function, and 
mutations, Phyre2 was utilized.[37] The FASTA sequences 
were subjected to Phyre for further analysis.[38]

Templates preparation: The data attained from BLAST 
and Phyre was subjected to analysis at the Research 
Collaboratory for Structural Bioinformatics (RCSB) protein 
data bank, which has facts and figures about the 3D shapes 
of proteins, nucleic acids, and complex assemblies.[39] The 
resolution  (Å), R value, and method of X-ray diffraction 
formed the template selection basis. 

Molecular Modeling
EasyModeller was employed for performing the homology 
modeling of HMGA1 and GORASP2. It is a front end graphical 
interface to MODELLER. EasyModeller has been applied to 
proteins to attain three-dimensional structure models. 
This software utilizes and analyzes the sequence and 
template data.[40] For the purpose of visualization, the 
Swiss-Pdb viewer was introduced.[41]

Structure prediction: The selected templates were 
proposed to the EasyModeller. The five models were 
designed, which were scored on the basis of discreet 
optimized protein energy (DOPE), GA341, and MODELLER 
objective function (molpdf). The DOPE score is a statistical 
tool used by various homology modeling programs and is 

probably the most reliable at separating native-like models 
from decoys. In the molpdf, the program minimizes the 
objective function F in relation to Cartesian coordinates 
of ~10,000 atoms (3D points) that form a system, i.e., one 
or more molecules. The fundamental principle of GA341 
lies in the similarity of the sequence of the template and 
the model. The successful protein model is required to 
have  a minimum DOPE score and  molpdf values. The 
GA341 values should lie between 0 and 1 for the models 
to be more fruitful.[42]

Predicted models validation: The predicted models of 
HMGA1 and GORASP2 were validated by the Ramachandran 
plot accomplished by Rampage and Procheck in structural 
analysis and verification server (SAVS).[43,44] 

Loop Modeling 
The shape and the physicochemical properties of the proteins 
are very important for its function; thus, a precise model is 
essential to understand the protein/ligand interaction 
studies. For more clarity on the structure of proteins, 
Modloop, a web server, was utilized for loop optimization. 
The output models were submitted to Rampage for 
Ramachandran plot assessment and Procheck in SAVS. The 
procedure of loop modeling and consecutive validation was 
executed till an optimized model is obtained.[45]

Ligand Generation
The potential agents active against HMGA1 and GORASP2 
proteins were searched using various databases, like 
PubMed, DrugBank, and ZINC database. Trabectedin 
was used as a lead compound in the similar chemical 
structure search with the similarity threshold of 0.6 in 
DrugBank.[46-49] 

Molecular Docking
Molecular docking is an indispensable tool for computer-
assisted drug designing. The feasible and reasonable 
binding mode(s) of the target protein and its ligands 
are predicted. These modes are then scored by utilizing 
various scoring functions.[50] The molecular docking was 
done against HMGA1 protein and GORASP2 using AutoDock, 
which is a suite of automated docking tools.[51]

Results and Discussion

Prediction of Co-Expressed Genes
The SOM and K-means were manually evaluated to 
identify the clusters bearing HMGA1 gene. This resulted 
in cluster number 9 from the SOM and cluster number 5 
from K-means. These clusters consisted of 30 genes (Figs 1 
and 2).

Identification of Common Genes
These two clusters were subjected to Easy M-A to identify 
the common genes, which resulted in 14 common genes 
with similar expressions (Table 1). 
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Phylogenetic Tree
The neighbor-joining method in MEGA5 was used to 
determine the evolutionary history. The displayed optimal 
tree has a sum of branch length equal to 6.15181327. The 
evolutionary distances (number of amino acid differences 
per site) were calculated by using the p-distance method. 
In this amino acid sequence analysis, all gaps and missing 
data positions were removed. The concluding data set 
consisted of 81 such positions. The evolutionary similarity 
of HMGA1 and GORASP2 can be clearly observed in Fig. 3.

Template Generation
The FASTA sequences for both HMGA1 and GORASP2 
proteins were extracted from NCBI. The GenBank no. 
of HMGA1 protein is AAH71863.1. It is a 107 amino acid 
protein. The GenBank no. of GORASP2, 55kDa protein 
is AAH07770.1. It consists of 452 amino acids. The 
NCBI was utilized to execute BLAST, using the program 
BLASTP2.9.0+, 02, and 14 BLAST hits were recorded 
for HMGA1 and GORASP2, as shown in Figs  4a and b, 
respectively. The Phyre was also exploited for protein 
structure prediction. The consolidated data of both BLAST 
and Phyre was subjected to RCSB protein data bank 
analysis. The attained results were organized in a sequence 
of decreasing % ID and increasing resolution (Table 2). The 
five templates (4j2l, 3gn6, 4zqy, 4do8, and 2h8u) in case 
of HMGA1 and five templates (4kfw, 4edj, 5h3j, 5gmi, and 

Table 2: Templates using Blast, Phyre, and RCSB protein data bank

S. No.
Template/ 
Accession No. ID % Resolution (Ǻ)

R-value 
(free/work) S. No.

Template/ 
Accession No. ID % Resolution (Ǻ)

R-value (free/
work)

HMGA1 GORASP2

1 4j2l 100 3.15 0.294/0.236 1 4kfw 99.53 2.7 0.29/0.202

2 3gn6 8.9 1.8 0.192/0.163 2 4edj 99.52 1.901 0.271/0.209

3 4zqy 44 7.2 2.951/0.268 3 5h3j 99.03 1.33 0.162/0.137

4 4do8 50 5.5 1.802/0.234 4 5gmi 99.52 2.71 0.291/0.256

5 2h8u 56 5.5 2.1/0.266
5 3rle 99.03 1.649 0.222/0.176

6 4rey 67.96 1.96 0.190/0.152

Fig. 4b: BLAST hits in case of GORASP2, 55kDa protein

Fig. 4a: BLAST hits in case of HMGA1 protein

Fig. 3: Phylogenetic tree: MEGA-estimation of evolutionary distance 
by using p-distance

Fig. 2: K-means result cluster no. 5

Fig. 1: SOM result cluster no. 9

Table 1: Common genes found using SimGene from  
Bio-En-Gene-Ier

S. No. Genes S. No. Genes

1 HNRNPA3 8 IDH1

2 VAMP3 9 ZC3H15

3 SNRPD3 10 GORASP2

4 HMGA1 11 PCNP

5 ST13 12 PRPF40A

6 SET 13 VPS26A

7 PSMC2 14 SPG21
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3rle) in case of GORASP2 were selected on the basis of their 
chains, ID%, resolution (≤ 3 Å), and the R value (≤ 0.5).

Molecular Modeling
The  molecular modeling was initiated by presenting 
the selected five templates to the EasyModeller. The 
analysis of all of the five models was done on the basis 
of GA341, molpdf, and DOPE scoring functions. This led 
to the suggestion of model no. 5 for HMGA1 and model 
no. 3 in case of GORASP2 based on lowest DOPE score 
and  minimum value of  molpdf, along with GA341 score 
lying in between 0 to 1.

Validation of Predicted Model
HMGA1 and GORASP2 models were evaluated by putting 
forward the PDB files to Rampage and SAVS (Procheck). 
The Ramachandran plot validated the result. The most 
stable model (minimum energy) is revealed by its lowest 
DOPE score and  molpdf or with the highest GA341 
assessment score. Model number 5 for HMGA1 and model 
number 3 for GORASP2 were selected on these bases for 
further analysis (Table 3).

Loop Modeling
The selected model of HMGA1  (no. 5) and that of 
GOR ASP2   (no.  3) were fur ther subjected to loop 
modeling  (ModLoop), and the output models were 
assessed by Ramachandran plot (Rampage) and through 
SAVS (Procheck). The protein model loop HMGA1 (Figs 5a 
and b) having maximum percentage (92.2%) of residues in 
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Fig. 5a: Ramachandran plot analysis of HMGA1 protein model
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most favored region and 7.8% residues in additional allowed 
regions with no residues in generously allowed, as well as, 
disallowed regions was selected for HMGA1 and in the case 
of GORASP2, the protein model loop GORASP2 (Figs 6a and 
b) having maximum percentage  (90.4%) of residues in 

most favored region and 9.3% residues in the additional 
allowed region along with 0.3% residues in  generously 
allowed region and no residues in disallowed regions was 
selected for GORASP2 (Table 4). 

Ligand Generation and Docking
D’Angelo et al. [46] suggested the applicability of trabectedin 
in the treatment of neoplasias, in which HMGA1 levels are 
overexpressed. The Zinc database and the Drugbank were 
used to accomplish the PDB files of trabectedin (DB05109) 
and other chemical structures with a similarity threshold 
of 0.6 to trabectedin. This led to the creation of a total of 
20 ligands for the purpose of docking to the protein models 
of HMGA1 and GORASP2 using Autodock. The number of 
points in the x-, y-, and z- dimensions were fixed at 40, 
and the center grid was X: 6.445; Y: 28.36; Z: 3.676, along 
with the spacing (angstrom) at one, in the case of HMGA1 
and for GORASP2 the number of points in the x-, y-, and 
z- dimensions were fixed at 78, 56, and 90, respectively, 
and the center grid was X: -30.453; Y: 13.652; Z: -12.501, 
along with spacing  (angstrom) at one. The docking 
results (Table 5) displayed the affinity (Kcal/mol), and the 
most stable docked ligand (having highest affinity or least 
energy) was found to be Vinflunine  (DB11641) (Figs 7a 
and b) and Lurbinectedin  (DB12674)  (Figs  8a and b) 
when docked against HMGA1 and GORASP2 proteins, 
respectively.

In the current study, the clustering result from SOM 
and K-means led to the identification of 14 genes having 
a similar expression. Furthermore, the evolutionary 
similarity of HMGA1 and GORASP2 is clearly observed 
from the phylogenetic tree. The technique of comparative 

Table 4: Validation of loop models of HMGA1 and GORASP2 proteins

Loop models of proteins

Validation by Rampage Validation by SAVS

Residues 
in favored 
regions
(%)

Residues 
in allowed 
regions
(%)

Residues 
in outlier 
regions
(%)

Residues in 
most favored 
regions
(%)

Residues in 
additional 
allowed regions
(%)

Residues 
in generously 
allowed regions
(%)

Residues in 
disallowed 
regions
(%)

Loop model HMGA1 96.2 2.9 1 92.2 7.8 0 0

Loop model GORASP2 95.6 4.2 0.2 90.4 9.3 0.3 0

Fig. 5b: HMGA1 protein model

Fig. 6b: GORASP2 protein modelFig. 6a: Ramachandran plot analysis of GORASP2 protein model
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Table 5: Docking of ligands against HMGA1 and GORASP2 proteins using Autodock 4

S. No.

Ligands Docking affinity (kcal/mol)

Name DrugBank code HMGA1 GORASP2

1 Trabectedin DB05109 -9.5 -12.4

2 Lurbinectedin DB12674 -11 -14.8

3 Zalypsis DB12454 -10.1 -12

4 Penimepicycline DB13264 -8.4 -10.8

5 Rifabutin DB00615 -9.8 -12.8

6 Vincristine DB00541 -10.4 -12.9

7 Vinorelbine DB00361 -10.1 -12.9

8 Naldemedine DB11691 -9.1 -11.3

9 Anhydrovinblastine DB12586 -10.3 -12.5

10 Vinflunine DB11641 -11.6 -13.6

11 Chlorophyll A DB02133 -10.3 -12.4

12 Vindesine DB00309 -10.4 -12.4

13 CGP 4832 DB04220 -10.7 -13.9

14 Siroheme DB02832 -10.3 -11.7

15 Cefiderocol DB14879 -8.6 -10.6

16 Bietaserpine DB13575 -8.9 -10.5

17 2-Phenylheme DB03906 -8.8 -11.6

18 Ceftolozane DB09050 -8.5 -8.9

19 Ceftobiprole DB14733 -8.2 -10.6

20 Bromocriptine DB01200 -8.9 -11.2

Fig. 7b: Docking of ligand DB11641 (vinflunine) against HMGA1 
protein

Fig. 7a: Chemical structure of ligand DB11641 (vinflunine)
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Fig. 8b: Docking of ligand DB12674 (lurbinectedin) against 
GORASP2 protein

Fig. 8a: Chemical structure of ligand DB12674 
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modeling was used to design models of HMGA1 and 
GORASP2 proteins. These models were evaluated by the 
Ramachandran plot. The Zinc database and the Drugbank 
were used to extract the PDB files of trabectedin (DB05109) 
and other similar chemical structures. Molecular docking 
done against these proteins led to the fact that the ligand 
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DB11641 (vinflunine) shows favorable binding interaction 
with HMGA1 protein, and ligand DB12674 (lurbinectedin) 
shows strong binding with GORASP2 protein. The study 
suggests that these compounds have potential. Thus, 
it necessitates further research in developing novel 
inhibitors for the effective treatment of various types of 
HMGA1 and GORASP2 overexpressed cancers.
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