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ABSTRACT
Huntington's disease (HD) is an inherited autosomal, progressive neurodegenerative disorder associated with involuntary 
abnormal movements (chorea), cognitive impairments and psychiatric disturbances. HD is caused by an abnormal 
expansion of a CAG region located in exon 1 of the gene encoding the huntingtin protein (Htt) and is the causative factor 
in the pathogenesis of HD. However, recent evidences show that impaired mitochondrial function plays a key role in the 
pathogenic processes of the desease. The underlying mechanisms by which mutant Htt (mHtt) causes HD have not been 
fully elucidated, however mutant Htt can impair mitochondrial function by dysregulation of transcriptional processes, 
calcium dyshomeostasis, and defective mitochondrial bioenergetics. Mutant Htt induce intracellular Ca2+ in neurons 
affected by HD and increased intracellular Ca2+ excessively enter mitochondria and induce to open the mitochondrial 
permeability transition pores (mPTP), leading to decreased mitochondrial ATP, and neuronal death. Transcriptional 
processes regulated by peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α), which are critical 
for mitochondrial biogenesis, have also been shown to be impaired in HD. This review article discusses current 
developments, in determining the role of mitochondrial morphological and functional abnormalities contributing to the 
pathogenesis of HD and also discusses the current other possible therapeutic interventions.
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INTRODUCTION
Huntington’s disease (HD) is an autosomal, 
neurodegenerative disease that is caused by the pathological 
expansion of the CAG repeat located in the exon 1 of the 
Huntingtin protein gene (Htt). HD is characterized by chorea, 
seizures, involuntary movements, dystonia, cognitive decline, 
intellectual impairment, and emotional disturbances. [1-8] HD 
usually occurs in midlife with some exceptional cases of 
early onset as early as 2 years and of late onset in the mid 
80s. [9] The disease is fatal within 15-20 years after onset.
Tremendous progress has been made in HD research for the 
last two decades in terms of discovering HD gene, 
understanding the expanded polyglutamine repeat containing 
the mutant Htt protein, developing HD cell, animal models, 
which now include HD fly, worm, mouse, and non-human 
primate models [10-24] developments in decreasing the 
expression of the expanded polyglutamine repeat allele that 
has been found to damage medium spiny neurons in HD 
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patients [25-29] developing therapeutics to reduce symptoms of 
HD in animal models and HD patients.
It has been demonstrated that mitochondria are the key 
factors in cell survival by controlling energy metabolism, 
apoptosis pathways and Ca2+ homeostasis. [30-33] The brain is 
acutely dependent on energy supplies for normal functioning 
and mitochondria are the intracellular founts of the brain’s 
energy supplies. Any changes in functional alterations in 
these essential cellular energy dynamos can lead to insidious 
pathological changes in neurons. [34-42]

Hypothesis for mitochondrial role in neurodegenerative 
diseases arises from the observation that mitochondrial 
defects and oxidative stress can be detected in biological 
materials from patients with neurodegenerative conditions. 
Several cell biology experiments have clearly demonstrated 
that mitochondria play an active role in the complex cascade 
of events leading to cell demise in various models of 
neurodegenerative disorders. [5, 43, 150]

Striatal neurons are highly sensitive to impairment in energy 
metabolism and several studies have shown that acute 
poisoning with mitochondrial toxins (cyanide, sodium azide, 
and 3NP) is often associated with striatal degeneration in 
man and laboratory animals. Mitochondrial defects of genetic 
origins (e.g. mutation or deletion of mitochondrial DNA or 
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nuclear DNA) can lead to striatal degeneration. [44-45] Recent 
studies have shown different possible mechanisms that link 
mitochondrial defects with the preferential vulnerability of 
the striatum in Huntington's disease. 
In HD although several cerebral regions show signs of 
neurodegeneration, the most important neuropathological 
feature of this disorder is the atrophy of the striatum as seen 
using post mortem histological evaluation [46] or non-invasive 
brain magnetic resonance imaging (MRI). Detection of pre-
symptomatic patients (i.e. carrying the mutation but 
asymptomatic) demonstrated significant atrophy of the 
caudate and putamen [47-49] suggesting that degenerative 
events (cell shrinkage or loss) begin years before the 
occurrence of clinical symptoms of HD. The disease 
preferentially affects the GABAergic medium size spiny 
neurons of the striatum that project to substantia nigra 
reticulata and pallidum. Intriguingly, large cholinergic 
interneurons and medium size spiny interneurons are 
preserved in the HD striatum. [50-51] Cortical atrophy and 
early degeneration of the hypothalamus are also important 
aspects of HD pathogenesis, and late stage HD patients show 
widespread brain degeneration. [52] The severity of striatal 
alterations is correlated with the degree of motor, cognitive 
and psychiatric perturbations, [53] suggesting that striatal 
degeneration is an important aspect of HD physiopathology. 
In this review we explore the current advances in 
determining the role of mitochondrial morphological and 
functional abnormalities contributing to the pathogenesis of
HD and also discuss recent and other possible therapeutic 
interventions.
Mitochondrial dysfunction: Role in HD
Brain examination using non-invasive methods indicated for 
energy metabolism problems in HD patients were reported. 
In particular, early striatal hypometabolism was detected in-
vivo using positron emission tomography and 
fluorodeoxyglucose [44, 54] increased lactate concentrations 
were found in the cortex of symptomatic HD patients using 
proton NMR spectroscopy. [55-56] Lactate/pyruvate ratio was 
elevated in the CSF of HD patients. [57] In one NMR study, 
half of the pre-symptomatic HD patients examined showed 
increased lactate concentration in the striatum. [56] In muscle, 
phosphorus NMR spectroscopy showed reduced ATP 
production. [58] Despite sustained caloric intake, HD patients 
exhibited profound weight loss suggesting that there was 
energetic impairment in HD. [59-60] Studies have shown that 
onset of the clinical symptoms of HD are preceded by energy 
dysfunction, suggesting that an energy failure may play a 
primary role in the pathogenesis of HD. [61-67]

Mitochondria are essential organelles that are involved in 
many vital processes such as energy production through 
oxidative phosphorylation (Oxphos) via the tricarboxylic acid 
(TCA) cycle, fatty acid oxidation and the electron transport 
chain (ETC), thermogenesis, cell death mechanisms, defense 
against reactive oxygen species (ROS), and Ca2+ buffering. 
Early ultrastructural studies of cortical biopsies obtained 
from patients with either juvenile or adult onset HD showed 
abnormal mitochondria morphology. [68-69] Mitochondrial 
functional abnormalities were also observed in early studies. 
In a recent study examination of mitochondria from 
preferentially vulnerable striatal calbindin-positive neurons in 
moderate-to-severe grade HD patients, using antisera
against mitochondrial markers of COX2, SOD2 and 
cytochrome c. Combined calbindin and mitochondrial marker 

immunofluorescence showed a significant and progressive 
grade-dependent reduction in the number of mitochondria in 
spiny striatal neurons, with marked alteration in size. 
Consistent with mitochondrial loss, there was a reduction in 
COX2 protein levels using western analysis that 
corresponded with disease severity. In addition, both
mitochondrial transcription factor A, a regulator of 
mitochondrial DNA (mtDNA), and peroxisome proliferator 
activated receptor-co-activator gamma-1 alpha, a key 
transcriptional regulator of energy metabolism and 
mitochondrial biogenesis, were also significantly reduced 
with increasing disease severity. Abnormalities in 
mitochondrial dynamics were observed, showing a 
significant increase in the fission protein Drp1and a reduction 
in the expression of the fusion protein mitofusin. 
Mitochondrial PCR array profiling in HD caudate nucleus 
specimens showed increased mRNA expression of proteins 
involved in mitochondrial localization, membrane 
translocation and polarization and transport that paralleled 
mitochondrial derangement. These findings reveal that there 
are both mitochondrial loss and altered mitochondrial 
morphogenesis with increased mitochondrial fission and 
reduced fusion in HD. These findings provide further 
evidence that mitochondrial dysfunction plays a critical role 
in the pathogenesis of HD. [70]

Mitochondrial enzymes
In 1974 a defect in succinate dehydrogenase, a component of 
both the Krebs cycle and the complex II of the electron 
transport chain, in the caudate and to a lesser extent in the 
cortex of postmortem HD brains was reported. [71] Reduced 
expression of complex II subunits has been observed in 
striatum of HD patients. [72] Subsequent studies confirmed 
that there was a significant decrease in complex II activity in 
the caudate nucleus of HD brains relative to the levels in 
matched control brains. In addition to decreases in complex 
II activity, decreases in complex III activity in the caudate 
and putamen, and of complex IV in the putamen have been 
observed. [73-75] Majority of these cases showed advanced 
neuropathology including dramatic striatal atrophy 
(pathological grades 3 and 4 of HD), and therefore alterations 
in the source (i.e., glial, neuronal, etc.) of the mitochondria is 
likely to have been affected. However, in presymptomatic 
and grade 1 HD cases no impairment of mitochondrial 
complex activities was observed. [76]

Animal and cell models
Compelling evidence has been provided by the animal and 
cell models of HD suggesting mitochondrial function is 
impaired in HD and that this occurs early in the disease 
process and is likely fundamental to the pathogenesis of HD. 
3-NP is an irreversible inhibitor of succinate dehydrogenase 
that inhibits both the TCA cycle and complex II activity, and 
in animal models, administration of 3-NP results in selective 
lesioning of the striatum. [77] Low doses of 3-NP 
administered chronically to both rodents and non-human 
primates resulted in pathology and symptomatology 
resembling HD. [78-80] It is intresting to note that striatal 
mitochondria contain more cyclophilin D than cortical 
mitochondria and are more sensitive to calcium-induced 
mitochondrial permeability transition pore (mPTP) opening. 
[81] Studies in rats exposed to intrastriatal injection of 
malonate (malonate being a reversible inhibitor of succinate 
dehydrogenase) [78] hence, support the hypothesis that 
impairment of mitochondrial function plays an important role 



Wani et al. / Huntington Disease: Current Advances in Pathogenesis…………….

IJPSDR April-June, 2011, Vol 3, Issue 2 (69-79) 71

in the pathogenesis of HD. These observations have lead to 
the hypothesis that the expression of mutant huntingtin 
results in impaired mitochondrial energy metabolism and 
calcium handling and therefore decreases in energy levels of 
the cells, increases in oxidative damage, and potentially 
secondary excitotoxic death. [59-60]

Mitochondrial dysfunction is apparent in two well-
established HD mice models; the 150/150Q mutant 
huntingtin knock-in mice, [82] and the R6/2 mice. [10]

Mitochondria isolated from 150/150Q mutant huntingtin 
knock-in mice show an increased sensitivity to calcium-
induced mPTP opening [83] and striatal neurons from 
heterozygous 150/150Q mutant huntingtin knock-in mice 
were more prone to undergo “deregulation” in response to 
NMDA compared to neurons from wild-type mice. [53] The 
R6/2 HD mouse model express exon 1 of the huntingtin gene 
with 155 CAG expansions. [84] In these mice a significant 
reduction in aconitase, an enzyme involved in the Krebs 
cycle has been reported. The activities of complex IV in the 
striatum and cerebral cortex were also reported to be 
significantly decreased in the R6/2 mice [75] Moreover, these 
results suggest that the deficiency in complex IV precedes 
neuronal death in the R6/2 mice and thus contribute to the 
pathogenesis. [85] A decreased stability of mitochondria from 
theHDR6/2 mouse muscle against calcium-induced mPTP 
opening has been detected. Complex-I dependent respiration 
of R6/2 mitochondria was more sensitive to calcium induced 
inhibition than wild-type mitochondria. [86] Further, 
significant alterations in mitochondrial ultrastructure were 
seen, consistent with metabolic stress in the heart of R6/2 
mice [87] Overall these mouse models exhibit mitochondrial 
and metabolic defects that are consistent with the defects that 
occur in HD pathology.
Clonal striatal precursor cells established from striatal 
primordia of E16 embryos of wild-type (STHdhQ7/Q7) and 
mutant Htt (STHdhQ111/Q111) knock-in mice [88] have been 
used in studies of mitochondrial function. Mitochondria from 
STHdhQ111/Q111 striatal cells, show significantly reduced 
respiration and ATP production as compared with 
mitochondria from STHdhQ7/Q7 striatal cells, when either 
glutamate/malate or succinate was used as the substrate, 
despite equivalent levels of ETC complex activities in the 
two cell lines. However, when the artificial electron donor 
TMPD/ascorbate for complex IV was used as the substrate, 
there was no difference in mitochondrial respiration between 
two cell lines. [89] Taken together, these mouse and cell 
models exhibit mitochondrial impairment and metabolic 
deficits similar to the pathological characteristics that have 
been observed in HD. [90-91] Interestingly, yeast expressing 
mutant Htt showed a significant reduction in mitochondrial 
Oxphos due to an alteration in complex II and III. [92]

Lymphoblasts derived from HD patients manifest a much 
greater increase in mitochondrial depolarization than control 
samples when treated with toxins that target complexes II 
and IV. [93] When ATP/ADP ratios were evaluated in 40 
human lymphoblastic cell lines an inverse between CAG 
repeat length in the HD gene and the ATP/ADP ratio was 
observed. [94] Mitochondrial respiration and ATP production 
are significantly impaired in striatal cells expressing mutant 
huntingtin, [89] which is considered a genetically accurate 
model of HD. [90] Further the mutant huntingtin-expressing 
cells exhibit a significant increase in sensitivity to 3-NP. [95-

96]

Mitochondrial calcium handling defects
It is becoming increasingly apparent that mitochondrial 
calcium handling defects are associated with the 
pathogenesis of HD. Increased cytoplasmic Ca2+ levels are 
toxic to neurons. [97] Impaired Ca2+ homeostasis in HD might 
have different causes; mechanisms related to mitochondrial 
dysfunction have received the closeslo6t attention. The Ca2+

buffering capacity of cells expressing mutant Htt (mutant 
Htt) can be reduced. This was first shown by Panov et al. in 
lymphoblasts derived from lymphocytes of HD patients. [98]

Similarly, reduced Ca2+ loading capacity was found in the 
brains of YAC72Q mice. [98] Compared to mitochondria from 
control cells (STHdhQ7/Q7), the mitochondria from clonal 
striatal cells with mutant Htt (STHdhQ111/Q111) undergo 
permeability transition at a lower Ca2+ concentration when 
treated with increasing Ca2+ loads and have a reduced 
capacity to take up Ca2+. [99] Isolated mitochondria from 
transgenic rats expressing mutant Htt, show reduced rates of 
Ca2+ accumulation compared to control rats. [100]

The presence of full length mutant huntingtin at 
physiological levels in clonal striatal cells has been clearly 
demonstrated to result in deficits in mitochondrial-dependent 
calcium handling. [89, 99, 101] When subjected to increasing 
calcium concentrations, mitochondria from mutant 
huntingtin-expressing cells were significantly more sensitive 
to calcium-induced decreases in state 3 respiration and ∆�m

than mitochondria from wild-type cells. [94] Further, mutant 
huntingtin-expressing cells had a reduced mitochondrial 
calcium uptake capacity in comparison with wild-type cells. 
[89, 99, 102] Decreases in state 3 respiration was associated with 
increased mitochondrial membrane permeability. The ∆�m

defect was attenuated in the presence of ADP and the 
decreases in calcium uptake capacity were abolished in the 
presence of mPTP opening inhibitors. [89] Treatment of the 
mutant huntingtin expressing cells with HDAC inhibitors 
(trichostatin A or sodium butyrate) ameliorated the 
mitochondrial calcium handling defects, suggesting the 
involvement of transcriptional dysregulation. [101] These 
findings clearly indicate that mutant huntingtin-expressing 
cells have mitochondrial calcium handling defects and that 
the increased sensitivity to calcium-induced mitochondrial 
depolarization maybe a contributing mechanism to the 
mitochondrial dysfunction in HD. Although mutant 
huntingtin induced transcriptional dysregulation likely 
contributes to the mitochondrial dysfunction in HD, direct 
effects cannot be ruled out. Choo et al. showed that 
huntingtin was present in a purified mitochondrial fraction in 
association with the outer mitochondrial membrane in clonal 
striatal cells established from wild-type and mutant 
huntingtin knockin mice. [83] Further, a recombinant truncated 
mutant huntingtin construct, but not a wild-type, directly 
induced mPTP opening in isolated mouse liver mitochondria, 
an effect that was prevented completely by cyclosporin A 
(CsA) and ATP. [83] In addition to increasing the sensitivity 
of mitochondria to Ca2+-induced mPTP opening, mutant Htt 
could contribute to the vulnerability of medium size spiny 
neurons (MSNs) by causing increased Ca2+ loading. mutant 
Htt directly interacts with C-terminal region of the type 1 
inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R1), 
resulting in increased sensitivity of InsP3R1 to activation by 
InsP3. [103] The implication of InsP3R1 activation for mutant 
Htt-induced toxicity was corroborated in MSN cultures from 
a HD mouse model using a pharmacological approach [104]
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and in a Drosophila HD model using genetic experiments. 
[105] Moreover, mutant Htt enhances the activity of N-methyl 
D-aspartate receptors (NMDARs) harboring the NR2B 
subunit, resulting from increased NMDAR trafficking to the 
plasma membrane. [106-108] Importantly, MSNs express high 
levels of the NR2B subunit, implying a greater sensitivity to 
excitotoxicity caused by NMDAR activation. [109-110]

Mitochondrial transcriptional dysregulation
Abnormal transcriptional regulation of nuclear-encoded 
mitochondrial genes may be involved in HD pathogenesis. 
Indeed, mutant Htt has been found to bind to several 
transcription factors, including TATA binding proteins, [111-

112] Sp1, [113] and the nuclear scaffold protein NAKAP. [114] 

Mutant Htt interaction may interfere with the gene 
expression, activity, and transcriptional regulation of HD 
neurons. This possibility is supported by recent studies of 
PGC1α (potent suppressor of reactive oxygen species [ROS]) 
in HD. [115-117,172] PGC1α was found decreased in HD 
postmortem brains, in cell lines expressing mutant Htt, and in 
HD mouse models, suggesting that the mutant Htt promotes 
the increased production of ROS; this increase in ROS may 
promote the interaction of Htt with the outer membrane of 
mitochondria, ultimately leading to decreased levels of 
PGC1α in mutant HD neurons. [115-117]

PGC-1α is a transcription coactivator that interacts with a 
range of transcription factors involved in a wide variety of 
biological responses, including adaptive thermogenesis and 
mitochondrial biogenesis of several tissues, including brain 
tissues. [118] Recently, using brain tissues from HD mice, 
postmortem brain tissues from HD patients, several 
researchers independently studied the connection between 
PGC-1α and HD mitochondrial bioenergetics. [115-117] Cui and 
colleagues (2006) studied striatal neurons from postmortem 
brain tissues from HD patients, brain tissues from an HD 
knock-in mouse model that over-expresses mutant Htt, and 
cultured striatal neuronal cells from a knockin mice 
expressing 111 polyglutamines. [115] They found a decrease in 
mRNA expression of PGC-1α in all 3 sources of striatal 
neurons, suggesting that mutant Htt interferes with the 
formation of the CREB/TAF4 complex that regulates 
transcription of the gene encoding PGC-1α. Using HD mice 
lines, Weydt and colleagues (2006) studied the connection 
between PGC-1α and adaptive thermogenesis in HD [117] and 
found marked hypothermia at baseline temperatures, 
following cold exposure in two truncated HD mouse models. 
St. Pierre and colleagues (2006) found an increased 
expression of genes encoding ROS defense enzymes, 
including copper/zinc superoxide dismutase (SOD1), 
manganese SOD (SOD2), catalase, and glutathione 
peroxidase. [116] In a study of PGC-1α-deficient mice, they 
also found that the basal expression of SOD1, SOD2, and 
catalase was considerably lower in the heart and brain of 
PGC-1α-deficient mice, regions known to be sensitive to 
oxidative stress, suggesting that the activation of PGC-1α 
protects HD neurons from mitochondrial toxicity caused by 
mutant Htt.
In another study of PGC1α, the hypothesis that mutant Htt 
influences the mitochondria via the interaction of 
polyglutamine repeats or the decrease in PGC-1α expression 
was tested. [119] They compared gene expression changes due 
to mutant Htt expressed in STHdh(Q111/Q111) cells with 
changes in gene expression produced by 3-NP treatment of 
wild-type striatal cells. In general, the HD mutation did not 

mimic 3-NP features, although both changes in gene 
expression produced a state of energy collapse that was 
mildly alleviated by the PGC-1α-coregulated nuclear 
respiratory factor 1. Moreover, unlike 3-NP, the HD 
polyglutamine repeat did not significantly alter mitochondrial 
pathways in STHdh(Q111/Q111) cells, despite a decrease in 
Ppargc1α gene expression. Instead, the HD mutation 
enriched for processes linked to the normal functioning of 
huntingtin and of NFκ-B signaling. Thus, rather than directly 
impacting mitochondria, the HD polyglutamine repeats 
protein may modulate some aspect of Htt’s activity in 
metabolizing extra-mitochondrial energy.
Findings from these studies suggest that in HD pathogenesis, 
PGC-1α may play a significant role in protecting neurons 
against mitochondrial toxicity and oxidative damage by 
increasing PGC-1α transcription and interaction with several 
transcription factors in HD neurons.
Mitochondrial DNA defects 
It has been hypothesized that age-dependent mitochondrial 
DNA (mtDNA) damage plays a role in HD pathogenesis. 
Investigation of mitochondrial DNA defects in two HD 
mouse models: the chemically induced 3-nitropropionic acid 
model and the HD transgenic mouse model of the R6/2 strain 
containing 115–150 polyglutamine repeats in the HD gene. 
[120] They found that mitochondrial toxin 3-NPA inhibits 
complex II of the ETC and causes neurodegeneration that 
resembles HD in the striatum of postmortem brain specimens 
from HD patients and the HD mice. They measured nuclear 
and mtDNA damage by quantitative PCR in the striatum of 5 
and 24 month old untreated and 3-NPA-treated C57BL/6 
mice. They found an increase in damage in both nuclear and 
mitochondrial genomes in the untreated 24 month old mice. 
3-NPA induced 4–6 times more damage in the mtDNA than 
in the nuclear DNA in the 5-month-old mice; mtDNA 
damage was repaired by 48 h after 3-NPA treatment. In the 
24 month old mice, 3NPA caused equal amounts of nuclear 
and mitochondrial damage that persistent in both genomes 
for 48 h. QPCR analysis showed a progressive increase in the 
levels of mtDNA damage in the striatum and cerebral cortex 
of 7–12 week-old R6/2 mice. Striatum exhibited eight-fold 
more damage to the mtDNA than to the nuclear gene. These 
data suggest that mtDNA damage is an early biomarker for 
HD-associated neurodegeneration, and they support the 
hypothesis that mtDNA lesions may contribute to the 
pathogenesis observed in HD. [120]

It has been reported that pathological changes in HD brains 
may also be present in peripheral tissues. [121] They further 
reported that Leukocyte 8-hydroxydeoxyguanosine and 
plasma malondialdehyde were elevated, and activities of 
erythrocyte Cu/Zn-superoxide dismutase and glutathione 
peroxidase were reduced in 16 HD patients when compared 
to 36 age- and gender-matched controls. Deleted and total 
mtDNA copy numbers were increased, whereas the mRNA 
expression levels of mtDNA-encoded mitochondrial enzymes 
were not elevated in the HD leukocytes compared to the 
leukocytes from normal controls. Plasma malondialdehyde 
levels also significantly correlated with HD disease severity. 
These results indicated that means to suppress oxidative 
damage may be beneficial in restoring mitochondrial 
function in HD patients.
4 mtDNA deletions based on the size of deletion: 9 kb, 7.5 
kb, 7 kb, and 5 kb in the mitochondrial DNA of HD patients 
have also been investigated. [122] Studying a group of 60 
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Iranian patients clinically diagnosed with HD and 70 healthy 
age-matched Controls, they found that 41 of the 60 HD 
patients exhibited polyglutamine expansion. [122] The 19 HD 
patients who did not show expansion exhibited clinical 
symptoms of HD. One of the four mtDNA deletions was in at 
least 90% of the samples from HD patients. Multiple 
deletions were also observed in 63% of the HD patients. 
None of the normal controls showed mtDNA deletions. The 
sizes and locations of the deletions did not correlate with 
expanded polyglutamine repeats or subject age. The study 
presented evidence that HD patients had higher frequencies 
of mtDNA deletions in lymphocytes compared to the 
controls. Overall, this study suggests that mutant Htt and 
instability in polyglutamine repeats may cause mtDNA 
damage in neurons affected by HD.
Findings from these studies suggest that mutant Htt cause 
mitochondrial DNA defects in HD brains and peripheral 
tissues from HD patients.
Current and future therapeutic strategies
Considering role of mitochondrial defects found in HD 
patients and HD models lead to neuronal dysfunction and 
eventually death, correcting these defects may provide 
beneficial effects. Whereas gene transfer-based experiments 
recently led to the discovery of potential therapeutic targets 
that could improve mitochondria in HD (such as PGC-1alpha 
or the mitochondrial complex II), preclinical studies are yet 
required to precisely determine whether it is possible to 
modulate these systems in vivo. From a practical perspective, 
the targeting of these complex systems will require important 
and long-term developments. However, a few strategies 
which were suggested many years ago have shown great
promise in preclinical and even clinical studies. [151] In cells 
expressing mutant Htt, accumulation of p53 has been showed 
to induce neuronal death. Reducing accumulation of p53 
using RNA interference and the p53 inhibitor pifithrin-α 
suppresses mutant Htt-induced mitochondrial depolarisation. 
Intraperitoneal injection of pifithrin-α in 171-82Q HD 
transgenic mice restores levels of complex IV activity to 
normal levels. [123] It can be suggested that pifithrin-like 
drugs could be neuroprotective in patients. 
The loss of mitochondrial Ca2+ handling observed in cell 
lines derived from knock-in mouse model can be corrected 
by treatment with the HDAC inhibitors trichostatin A or 
sodium butyrate, suggesting that acting on transcription 
defects could correct some of mitochondrial defects produced 
by mutant Htt. [101] Treatment with HDAC inhibitors in 
mouse models of HD reduces striatal atrophy and motor 
deficits. [124-125] These beneficial effects in mice could at least 
in part involve amelioration of mitochondrial physiology. 
Brain fuel supplementation may be considered as another 
approach. The most promising compound that could be 
efficacious in increasing brain energy metabolism is creatine, 
a compound produced endogenously and acquired 
exogenously through diet. [126] Diet supplementation with 
creatine (in the range of 600 mg/kg) in mice expressing the 
N-terminal part of mutant huntingtin is neuroprotective. It 
extends life span in transgenic mice, and reduces motor 
dysfunction and striatal atrophy. [126-128] Creatine is well 
tolerated in patients. [129] It seems that creatine produces an 
actual biological effect in HD patients since blood levels of 
8-hydroxy-2′-deoxyguanosine (8OH2′dG), a biomarker of 
oxidative stress that is elevated in untreated HD patients are 
near control levels in patients with creatine treatment. 

Ongoing clinical trials may determine within few years 
whether creatine treatment can slow the progression of the 
disease. 
Production of ROS is likely increased in HD patients and HD 
mouse models. [130, 54, 131, 21, 152, 169] Reducing ROS production 
using compounds with antioxidant properties has been tested 
in HD models. [132, 168, 170] For example, ascorbate treatment in 
R6/2 mice ameliorates behavioural deterioration. [133] The 
newly developed antioxidant BN82451 protects and extends 
survival in R6/2 mice. [134] The most debated but still very 
promising compound is coenzyme Q10, which has 
antioxidant properties and plays an important role in the 
transfer of electrons in the respiratory chain. [135] Transgenic 
R6/2 mice treated with coenzyme Q10 alone or in association 
with the NMDA receptor antagonist remacemide show 
increased survival, attenuated weight loss, improved motor 
performances, and reduced striatal atrophy when compared 
with untreated transgenic mice. [136-137] Clinical trials with 
relatively low dose showed no major protective effects, 
suggesting that higher doses may be necessary. 
Dimebon or Dimebolin hydrochloride an antihistamine drug 
that has been used clinically in Russia to reduce cognitive 
deficits in Alzheimer’s disease (AD) patients. Its molecular 
formula is C21H25N3, and its molecular weight is 319.433. It 
has been proposed that Dimebon may inhibit mitochondrial 
permeability transition pore and protect neuronal 
mitochondria from mutant proteins such as Aβ, mutant Htt 
and other mitochondrial toxic insults. [138] Recent studies 
suggest that Dimebon may have cognition-enhancing effects 
in healthy individuals. [139]

In a recent study of clinical trials of AD patients from Russia, 
Dimebon was found to be safe, well tolerated, and 
significantly improved the clinical course of patients with 
mild-to-moderate AD. [140] Recently, Medivation, Inc., has 
completed phase II clinical trial of Dimebon in HD patients, 
and the outcome of this initial clinical trial will be useful to 
the families of HD patients, and also to the researchers of 
mitochondrial and HD fields.
Recently, to determine the neuroprotective effects of 
Dimebon the effects of Dimebon in primary striatal neuronal 
cultures from wild type mice and YAC128 HD transgenic 
mice were investigated. [141] It has been found that Dimebon 
acts as an inhibitor of NMDA receptors and voltage-gated 
calcium channels in neurons from wild-type mice and 
YAC128 mice. It was also found that the application of 50 
μM Dimebon stabilized glutamate-induced Ca2+ signals in 
YAC128 medium spiny neurons and protected cultured 
YAC128 medium spiny neurons from glutamate-induced 
apoptosis. Lower concentrations of Dimebon (5 μM and 10 
μM) did not stabilize glutamate-induced Ca2+ signals and did 
not exert neuroprotective effects in experiments with 
YAC128 medium spiny neurons. Evaluation of Dimebon 
against a set of biochemical targets indicated that Dimebon 
inhibits alpha-Adrenergic receptors, Histamine H1 and H2 
receptors, and Serotonin 5-HT2c, 5-HT5A, 5-HT6 receptors 
with high affinity. Dimebon also had significant effects on a 
number of additional receptors. Findings of this study 
suggest that Dimebon may have beneficial effects in HD 
neurons through its capacity to neurons by altering NMDA 
receptors and voltage-gated calcium channels.
Several laboratories across the world are actively involved to 
investigate the mode of neuroprotective action of Dimebon in 
neurodegenerative diseases by investigating cell and mouse 
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models of neurodegenerative diseases, including 
Huntington’s and Alzheimer’s. However, further research is 
still needed to test the efficacy of Dimebon and other 
molecules that reduce the induction of intracellular Ca2+ and 
entry of excessive Ca2+to the mitochondria, and ultimately 
inhibit mitochondrial pore opening and in transgenic mouse 
models of neurodegenerative diseases, including HD
It has been suggested that the neuroprotective properties of 
cyclosporine A (CsA) are due in part to its ability to prevent 
mPTP opening in response to high levels of calcium or 
oxidative stress. [142-143] Exposure to high levels of calcium or 
oxidative stress results in the mPTP opening of the inner 
mitochondrial membrane, causing disruption of ∆�m, and 
swelling of mitochondria. [143-145] In-vitro CsA attenuates 
apoptosis induced by the mitochondrial complex1 inhibitor 
rotenone, [146] and also the calcium ionophore A23187. [143]

CsA also prevents ∆�m loss resulting from exposure to 
NMDA in cortical neurons. [142] Additionally, CsA and 
bongkrekic acid significantly attenuated NMDA-induced 
calcium   peak and ∆�m loss in YAC128 medium-size spiny 
neurons (MSNs). [17] The YAC128 mouse model express full-
length human huntingtin with 128 glutamine repeats and 
exhibits selective striatal neurodegeneration and large 
increases in apoptosis after NMDA receptor activation. [147-

148] Also, CsA has been demonstrated to be neuroprotective 
in-vivo. Using procedures which facilitate molecule 
penetration of blood brain barrier, CsA has reduced neuronal 
death in ischemia reperfusionm, [149] hypoglycemia, [153] and 
traumatic brain injury. [154] In addition, Leventhal and 
colleges demonstrated that treatment with CsA protected 
striatal neurons toxicity induced by 3-NP in vitro and in vivo. 
[144] Interestingly, CsA prevented ultrastructural 
mitochondrial alterations and decreased apoptosis in 
myoblasts obtained from Ullrich congenital muscular 
dystrophy patients. [145] Therefore, CsA or new mPTP 
opening inhibitors may be of potential therapeutic benefit by 
protecting vulnerable neurons populations affected in HD. 
3-Nitropropionic acid (3-NP) is an irreversible inhibitor of 
mitochondrial succinate dehydrogenase that has been used to 
explore the molecular mechanisms of cell death associated 
with mitochondrial dysfunction and neurodegeneration for 
Huntington's disease (HD). Brain-derived neurotrophic factor 
(BDNF) is a neurotrophin that may regulate neuronal 
survival and differentiation. Experimental evidence derived 
from both clinical as well as basic research suggests a close 
association between BDNF deficiency and HD pathogenesis. 
Delineation of BDNF-mediated neuroprotective actions 
against 3-NP toxicity may add in the development of 
therapeutic intervention for HD where mitochondrial 
dysfunction is known to play a crucial role in pathogenesis of 
this devastating disease. [155-156,171]

PGC-1α plays a central role in regulating the expression of 
mitochondrial genes and recent findings have implicated this 
coactivator in neurodegenerative processes. Several studies 
have also suggested the possibility that agents that enhance 
PGC-1alpha function will exert therapeutic benefits in HD 
patients. [172-173] Another key regulator of PGC-1α function is 
the NAD+ dependent deacetylase SIRT1. [157-158] SIRTs 
catalyze both deacetylation and ADP-ribosylation reactions 
which are coupled to the cleavage of NAD+ and result in 
deacetylated lysine, O-acetyl-ADP-ribose and nicotinamide. 
[158] PGC-1α is a substrate of a SIRT1 and deacetylation of 
PGC-1α results in the upregulation of mitochondrial 

metabolic genes. [157] Treatment with resveratrol (a well-
known antioxidant and sirtuin activator) specifically rescued 
early neuronal dysfunction phenotypes induced by mutant 
polyglutamines expression in Caenorhabditis elegans. [159] In 
others studies, treatment of mice with resveratrol 
significantly increased their aerobic capacity, as evidenced 
by their increased running time and consumption of oxygen 
in muscle fibers. These effects were explained by the fact 
that in addition to being an antioxidant, resveratrol activates 
SIRT1 resulting in subsequent deacetylation and activation of 
PGC-1α, and thus induction of OX/PHOS and mitochondrial 
biogenesis genes which improved mitochondrial function. 
[160, 174] These and other findings suggest that an increase in 
SIRT1 activity in HD could facilitate activation of the PGC-
1α-PPARγ signaling pathway and thus improve 
mitochondrial function. PGC-1α is a potent co-activator of 
the type II nuclear receptor PPARγ. A variety of endogenous 
compounds activate PPARγ including 15-deoxy-∆12, 14-
prostaglandin J2 (15∆-PGJ2) and nitrolinoleic acid (LNO2). 
[161] Further, there are numerous exogenous agents including 
the thiazolidinediones (TZDs) (rosiglitazone, pioglitazone, 
troglitazone) that are PPARγ agonists. [162-163] PPARγ 
agonists have been shown to be neuroprotective and improve 
mitochondrial function. [164-166, 102] It was also demonstrated 
that when rosiglitazone was administered orally to mice 
substantial amounts were found in the brain and after 7 days 
of treatment there was clear evidence of mitochondrial 
biogenesis in the brain. [167] In our studies pretreatment of 
mutant striatal cells with the PPARγ agonist rosiglitazone 
prevented the loss of ∆�m, mitochondrial calcium 
deregulation, and oxidative stress overproduction in response 
to thapsigargin. Additionally, the PPARγ signaling pathway 
was significantly impaired in the mutant huntingtin striatal 
cells with decreases in PPARγ expression and reduced 
PPARγ transcriptional activity. Also, treatment with 
rosiglitazone increased mitochondrial mass levels, further 
suggesting a role for the PPARγ pathway in mitochondrial 
function in striatal cells. [102] These findings suggest that 
activation of the PPARγ signaling pathway could ameliorate 
the mitochondrial deficits in HD. Therefore PPARγ agonists 
could represent a potential tool to consider in the treatment of 
neurodegenerative disorders, including HD.
Mitochondria likely play a key role in HD, although the exact 
mechanisms by which mutant Htt causes damage selectively 
to medium spiny neurons and cortical neurons in patients 
with HD are still under debate. Of interest, the striatum might 
be particularly vulnerable to mitochondrial defects through 
multiple mechanisms involving molecular factors which are 
selectively present in this brain region. As discussed above, 
recent studies suggest that transcriptional dysregulation and 
calcium dyshomeostasis are keys players in HD progression 
and pathogenesis However, studies have also suggested that 
mutant Htt cause mitochondrial DNA defects in HD brains 
and peripheral tissues from HD patients. Mutant Htt 
interferes with the formation of the CREB/TAF4 complex 
that regulates transcription of the gene encoding PGC-1α. 
PGC-1α may play a significant role in protecting neurons 
against mitochondrial toxicity and oxidative damage by 
increasing PGC-1α transcription and interaction with several 
transcription factors in HD neurons. PGC-1α is a potent co-
activator of the type II nuclear receptor PPARγ. PPARγ 
agonists have been shown to be neuroprotective and improve 
mitochondrial function. Neuroprotective properties of 
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cyclosporine A (CsA) are due in part to its ability to prevent 
mPTP opening in response to high levels of calcium or 
oxidative stress. Therefore, CsA or new mPTP opening 
inhibitors may be of potential therapeutic benefit by 
protecting vulnerable neurons populations affected in HD. 
Dimebon inhibits alpha-Adrenergic receptors, Histamine H1 
and H2 receptors, and Serotonin 5-HT2c, 5-HT5A, 5-HT6 
receptors with high affinity. Dimebon also had significant 
effects on a number of additional receptors. Findings of this 
study suggests that Dimebon may have beneficial effects in 
HD neurons through its capacity to neurons by altering 
NMDA receptors and voltage-gated calcium channels
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