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Visible Light Promoted Catalyst Free, the Sustainable Synthesis of 
Dihydropyrano [2,3-C] Pyrazoles and Docking Studies with  
COVID-19 Mpro 
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Introduction
In recent times, safe, simple, high eff iciency, high 
selectivity, green, and sustainable synthetic procedures 
have been developed in moderrn drug discovery. Green 
technologies, which were developed in modern chemistry, 
in which reduced hazardous substance, energy uses, 
cost, waste, toxicity and improvement in selectivity, 
efficiency of reactant, milder condition.[1] Worldwide, 
green methodologies, which are progressing day by day on 
the basis of environmentally benign transformation.[2-10] 
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A highly efficient, simple, cost-effective, and environmentally benign method has been described for the 
synthesis of dihydropyrano[2,3-c]pyrazoles via one-pot, three-component condensation of 3-methyl-1-
phenyl-2-pyrazoline-5-one, malononitrile, substituted aromatic aldehydes under visible light irradiation 
in catalyst-free condition at room temperature. This methodology's main advantage is good to excellent 
yield, simple work-up procedure, mild and clean reaction conditions, no chromatographic separation, and 
catalyst-free condition. All synthesized compounds are screened in silico with 6LU7, which is a COVID-19 
Mpro. These computational studies were performed on AutoDock Vina, BIOVIA Discovery Studio 2017 
R2, Auto Dock Tools-1.5.6 software. From screening results, we found that compound 4i and nitro group 
compounds 4d, 4e, 4f are showing a strong correlation at the active center of 6LU7. So, it is predicted that 
these compounds may be useful for COVID-19 patients.   
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A B S T R A C TA R T I C L E  I N F O

Green solvent combined with light, which is used to create 
one-pot (MCRs) i.e multicomponent reactions, has high 
potential for environmental approaches.[11-12] Visible light 
has a source of energy for performing green reactions in 
field of organic chemistry.[13] This methodology is non-
toxic, cleaner, safer, nonpolluting, sustainable, eco-friendly, 
and have renewable characteristics.[14-16] The MCRs are 
an amazing tool for developing complex molecules with 
maximum simplicity in modern synthetic chemistry in 
which more than three available components react to 
form a single product. Worldwide, MCR methodology is a 
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short-time reaction, easy, efficient, and plays a vital role 
in synthesizing many biologically active drugs.[17-24] In 
heterocycles chemistry, several synthetic and natural drugs 
were designed successfully through MCRs.[25-27] N-Phenyl-
3-substituted 5-pyrazolone  derivatives are an important 
class of oxygen-containing heterocyclic moieties. N-Phenyl-
3-substituted 5-pyrazolone  derivatives play a key role in 
the building block of many natural compounds[28-30] and 
show various biological activities such as anti-cancer[31-32], 
anti-allergic,[33] anti-microbial [34], anti-inflammatory,[35] 
and inhibitors of human Chk1 kinase.[36] Pyrano[2,3-c]
pyrazole ring in their core structure were exhibited a 
different kind of biological activities in Fig. 1.

Several methodologies have been used for improved 
of  dihydropyrano[2,3-c]pyrazoles via three-component 
reaction of 3-methyl-1-phenyl-2-pyrazoline-5-one, 
malononitrile, and aldehyde by using different conditions 
and catalysts such as ultrasound irradiation [44], ionic 
liquid[45], DABCO[46], nanosized magnesium oxide [47], basic 
catalysts,[48]

 CuO/ZrO2,[49] brovine serum albumin[50], 
imidazole[51], H14[NaP5W30O110][52], trichloroacetic acid 
[53], D,L-proline,[54] and cupreine.[55] This activiry of these 
compounds are predicted with COVID-19 Mpro. This study's 
prediction will give more detail that these compounds can 
be utilized in vitro, in vivo, and clinical trials.

Materials and Methods

General Experimental Procedures
3-methyl-1-phenyl-5-pyrazolone, all the aldehydes along 
with malononitrile were procured from Sigma-Aldrich and 
all solvents were purchased from Otto Chemie and Merck. 
Stuart digital melting point apparatus (SPM 10) was used 
to measure melting points and are uncorrected. Silica gel 

(GF254) plates were used for TLC analysis. Infrared spectra 
analysis was measured using KBr pellets on a Perkin-Elmer 
10.4.00 IR spectrophotometer. NMR spectra (500 MHz 
for 1H-NMR, 125 MHz for 13C-NMR, 1H-1H COSY, HSQC, 
and HMBC) of products were recorded on Bruker Avance 
Neo spectrometer using DMSO as a solvent and TMS as an 
internal reference. Mass spectra of synthesized compounds 
were analyzed on XEVO G2-XS QTOF instrument.

Synthesis of Dihydropyrano[2,3-c]pyrazoles 
derivatives (4a-l)
A combination of substituted aldehyde (aromatic) (1 mmol) 
and malononitrile (1 mmol) were added in 5 ml ethanol 
with a magnetic stirrer in a 50 ml round-bottom flask 
under visible light irradiation using 48W blue LED strip 
at room temperature. 3-methyl-1-phenyl-2-pyrazoline-5-
one was added to the reaction mixture when intermediate 
was formed and monitored by TLC. The monitoring of the 
stirring reaction mixture was done by TLC for 6h at room 
temperature. After completion of the reaction, white solid 
mass was precipitated, which filtered and washed with 
cold EtOH. Finally, the product was further purified by 
recrystallization using a solvent mixture of CH3CN and 
chloroform.

Spectral Data of Synthesized Compounds
6-amino-4-(2,4-dichlorophenyl)-3-methyl-1-phenyl-1,4-
dihydropyrano[2,3-c]pyrazole-5-carbonitrile (4a): Obtained 
as white solid; yield: 88%; mp 190 oC; IR (KBr, cm-1): 3457, 
3324, 2197, 1659, 1589, 1519, 1393, 1268, 1126, 1068, 
1029, 815, 757, 690; 1H-NMR (500 MHz, DMSO-d6) δ 1.78 
(s, 3H, CH3), 5.15 (s, 1H, CH), 7.33 (m, 3H, ArH + NH2), 7.38 
(m, 1H, ArH), 7.43 (dd, J = 8.4, 2.1 Hz, 1H, ArH), 7.49 (m, 2H, 
ArH), 7.62 (d, J = 2.15 Hz, 1H, Ar), 7.79 (d, J = 7.6, 2H, ArH); 
13C-NMR (125 MHz, DMSO-d6) δ 12.21, 33.47, 56.10, 97.17, 
119.37, 119.92, 126.15, 127.98, 128.81, 129.20, 132.37, 
132.40, 132.97, 137.33, 139.14, 144.16, 144.70, 1259.82. 
EI-MS: Anal. Calcd for [C20H15Cl2N4O + H+]: 397.07; found, 
397.06.

6-Amino-4-(3,4,5-trimethoxy-phenyl)-3-methyl-1-phenyl-
1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (4i): 
Isolated as white solid; yield: 91%; mp 190 oC; IR (KBr, 
cm-1): 3461, 3323, 2197, 1662, 1592, 1521, 1459, 1425, 1390, 
1325, 1235, 1128, 1069, 766; 1H-NMR (500 MHz, DMSO-d6) 
δ 1.87 (s, 3H, CH3), 3.65 (s, 3H, OCH3), 3.74 (s, 3H, 2 × OCH3), 
4.66 (s, 1H, CH), 6.56 (s, 2H, ArH), 7.21 (s, 2H, NH2), 7.31 (t, 
J = 7.4 Hz, 1H, ArH), 7.48 (t, J = 7.6 Hz, 2H, ArH), 7.80 (d, J 
= 7.7 Hz, 2H, ArH); 13C-NMR (125 MHz, DMSO-d6) δ 12.70, 
36.91, 55.78, 57.73, 59.87, 98.25, 104.87, 119.75, 119.99, 
125.98, 129.20, 136.27, 137.48, 139.13, 143.70, 145.26, 
152.76, 159.45.

6-Amino-4-(thiophen-2-yl)-3-methyl-1-phenyl-1,4-
dihydropyrano[2,3-c]pyrazole-5-carbonitrile (4k): Isolated 
as white solid in colour; yield: 86%; mp 180 oC; IR (KBr, 
cm-1): 3453, 3319, 2198, 1659, 1592, 1516, 1389, 1125, 
1066, 753, 705; 1H-NMR (500 MHz, DMSO-d6) δ 1.92 (s, 

Fig. 1: Some biologically active molecules containing pyrano[2,3-c]
pyrazole moiety.  
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3H, CH3), 5.09 (s, 1H, CH), 6.98 (m, 1H, ArH), 7.0 (d, J = 3.4 
Hz, 1H, ArH), 7.29 (s, 2H, NH2), 7.34 (t, J = 7.45 Hz, 1H, ArH), 
7.43 (d, J = 5.05 Hz, 1H, ArH), 7.49 (t, J = 8.5 Hz, 2H, ArH), 
7.78 (d, J = 7.65 Hz, 2H, ArH); 13C-NMR (125 MHz, DMSO-
d6) δ 12.40, 31.82, 58.43, 98.53, 119.68, 119.82, 124.89, 
125.33, 126.16, 126.59, 129.28, 137.31, 143.32, 145.31, 
148.68, 159.12. EI-MS: Anal. Calcd for [C18H14N4OS + H+]: 
335.11; found, 335.09.  

Molecular Docking Studies
Crystal structure of ligands (N-Phenyl-3-substituted 
5-pyrazolone  derivatives) were carried out using 
software Chem 3D Pro 12.0. The energy minimization 
of all synthesized derivatives were done. The computer 
gasteiger charge was added and non-polar hydrogen 
was merged in all ligands by Auto Dock Tool software. At 
last, ligands were saved as in pdbqt file. The structure of 
COVID-19 Mpro was used for the target, which was retrieved 
from the RCSB website. PDB ID of this protein is 6LU7 and 
resolution 2.16 Ao. Downloaded protein was opened on 
BIOVIA Discovery Studio software and water molecules, 
ligand from protein was removed. Next, the protein was 
loaded on Auto Dock Tools software, and polar hydrogen, 
gasteiger charge was added. The grid was generated 
with dimensions and center at the active center of the 
protein with ligand interaction point. Finally, docking of 
all synthesized products was completed by Auto Vina.   

Results and Discussion
Initially, we studied a series of the three-component 
reactions of 3-methyl-1-phenyl-2-pyrazoline-5-one, 
malononitrile, and aromatic aldehyde in 5 mL ethanol 
using 48 W blue LED strips under catalyst-free condition 
at room temperature. TLC monitored progress of reaction 
and consumption of starting materials. Reaction was 

successfully completed and give 88% yield of product 4a 
in 6 hours. Structure of product 4a, was confirmed by 
melting point and spectroscopic studies, like IR, 1H-NMR, 
13C-NMR, and MASS (Table 3, entry 1). Next, we performed 
the reaction in different solvents such as dichloromethane, 
ethyl acetate, water, acetonitrile, ethanol, DMF, glycerol, 
methanol and ethanol/water 1:1 (Table 1, entries 1-9). In 
the case of dichloromethane, ethyl acetate, water, giving 
yield in trace in 12 h at room temperature. The yield of 
product was improved when the reaction was performed in 
acetonitrile (48%), DMF (65%), glycerol (68%), methanol 
(82%), respectively. It was found that a better yield (88%) 
was offered in ethanol solvent (Table 1, entry 5). 

Next, we investigated reaction using blue LED of 
different intensities such as 12 W, 24 W, 36 W, and 48 W. 
When we used 12 W blue LED for this reaction, it provides 
desired product 4a in lower yields (Table 2, entry 4). Yields 
of products were increased in same when used blue LED of 
24 W and 36 W (Table 2, entries 2-3). Better yields 88% of 
product 4a was offered when 48 W blue LED was used for 
6 hours at room temperature (Table 2, entry 1).

After determining the optimized conditions, we 
started our reactions with benzaldehyde, malononitrile, 
and 3-methyl-1-phenyl-2-pyrazoline-5-one under 
optimized reaction conditions and obtained the desired 
dihydropyrano[2,3-c]pyrazoles derivative 4b in 87% yield 
within 6 hours (Table 3, entry 2). Next, we performed of 
reactions with substituted aromatic aldehydes such as 
4-NO2, 3-NO2, 2-NO2, 4-OMe, 4-Cl, 3,4-di-OMe, 3,4,5-tri-
OMe, 4-Et with 3-methyl-1-phenyl-2-pyrazoline-5-one, 
and malononitrile under optimized reaction conditions, 
affording the corresponding dihydropyrano[2,3-c]
pyrazoles derivatives (4c-4j) in good to excellent yields 
(Table 3, entries 3-10). Similarly, this reaction was also 
performed under the same reaction condition with 
hetero-aldehydes such as thiophene-2-carboxaldehyde and 
pyridine-3-carboxaldehyde, afforded products (4k-4l) in 
86-87% yields (Table 3, entries 11-12). Excitingly, It has 
been observed that aromatic substituted benzaldehyde 
afforded products smoothly with electron-withdrawing 
groups as well as electron-donating groups. 

Table 1: Optimization of the Reaction Conditions for the synthesis 
of compound 4aa

N
N

CH3

O

+
CN

CN

CHO

+
N
N

CH3

O CN

NH2

Blue 
LEDs 

(48W)
Ethanol

 
/
 rt

1 2 3 4a

Cl

Cl

Cl
Cl

Entry Solvent Time (h) 1:2:3 (mmol) Yield of 4b (%)

1
2
3
4
5
6
7
8
9

CH2Cl2
EtOAc
H2O
CH3CN
EtOH
DMF
Glycerol
Methanol
EtOH/H2O (1:1)

12
12
12
10
6
10
10
6
8

1:1:1
1:1:1
1:1:1
1:1:1
1:1:1
1:1:1
1:1:1
1:1:1
1:1:1

Trace
Trace
Trace
48
88
65
68
82
72

aReaction conditions: 3-methyl-1-phenyl-2-pyrazoline-5-one (1 
mmol), malononitrile (1 mmol), 2,4-dichloro benzaldehyde, under 
blue LED (48 W) at room temperature. bIsolated yields.

Table 2: Optimization of visible light intensity for synthesis of 
compound 4aa

N
N

CH3

O

+
CN

CN

CHO

+
N
N

CH3

O CN

NH2

Blue 
LEDs 

(48W)

Ethanol
 
/
 rt

1 2 3 4a

Cl

Cl

Cl
Cl

Entry Visible light intensity Time (h) Yield %

1
2
3
4

48 W (Blue LED)
36 W (Blue LED)
24 W (Blue LED)
12 W (Blue LED)

6
7
7
8

88
82
80
74

aAll reactions were carried out using visible light at room 
temperature. bIsolated yields.
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Table 3: Substrate scope for the synthesis of 
dihydropyrano[2,3-c]pyrazoles derivativesa

N
N

CH3

O

+
CN

CN

CHO

R

+ N
N

CH3

O CN

NH2

R
Blue 

LEDs 
(48W)

Ethanol
 
/
 rt

1a 2a 3a
4a

En-
try

R1 Producta Time 
(h)

Yieldb 

(%)
MP 
(°C)

Reported 
MP (°C)

1

CHO
Cl

Cl

N
N

CH3

O CN

NH2

4a

Cl

Cl

6 88 190 184-
185[56]

2

CHO
N
N

CH3

O CN

NH2

4b

6 87 174 170-
172[56]

3

CHO

NO2

N
N

CH3

O CN

NH2

4c

NO2

5 92 197 195-
196[56]

4

CHO

NO2

N
N

CH3

O CN

NH2

4d

NO2

5 85 190 188-
190[56]

5

CHO
NO2

N
N

CH3

O CN

NH2

4e

NO2

6 82 175 174-
177[60]

6

CHO

OMe

N
N

CH3

O CN

NH2

4f

OMe

6 88 178 176-
178[56]

7

CHO

Cl

N
N

CH3

O CN

NH2

4g

Cl

6 87 174 175-
177[61]

8

CHO

OMe
OMe

N
N

CH3

O CN

NH2

4h

OMe

OMe

5 89 194 193-
195[57]

9

CHO

OMe
OMe

MeO

N
N

CH3

O CN

NH2

4i

OMe

OMe

MeO

5 91 190 194-
196[58]

10
CHO

Et

N
N

CH3

O CN

NH2

4j

Et
7 83 181 ----

11 S CHO N
N

CH3

O CN

NH2

4k

S 8 86 180 172-
174[56]

12
N

CHO

N
N

CH3

O

N

CN

NH2

4l

6 87 216 213-
215[59]

aReactions were performed with 3-methyl-1-phenyl-2-pyrazoline-
5-one (1 mmol), malononitrile (1 mmol), and substituted 
aromatic aldehydes (1 mmol) under visible light irradiation (48 
W) at room temperature.

All the synthesized products were characterized by 
melting point and spectroscopic techniques such as IR, 
1H-NMR, 13C-NMR, COSY, HSQC, HMBC and MASS. From 
the IR spectrum of compound 4k (Table 3, entry 11), 
frequencies of strong absorption bands appeared at 
3453, 3319, and 2198 cm-1 due to NH2 and CN. 1H-NMR 
spectrum of 4k showed the singlet peaks at δH 1.92 (s, 3H), 
5.09 (s, 1H), and 7.29 (broad s, 2H) which corresponds to 
the –CH3, -CH, and -NH2 groups, respectively. The 1H-NMR 
decoupled 13C-NMR experiments showed the presence 
of 16 distinct signals with characteristic peaks at δC = 
12.4, 31.82, 119.68, 159.12, 145.31 ppm due to –CH3, 
CH-thiophene, -CN, CH-NH2, C=N-N carbons, respectively. 
COSY data of compound 4k showed a correlation between 
δH 7.77 (H-2") and δH 7.49 (H-3") as well as δH 7.49 (H-3") 
and 7.32 (H-4") in N-phenyl ring. COSY correlation in the 
4-thiophene ring were observed between δH 7.0 (H-3') and 
δH 6.97 (H-4') as well as δH 6.97 (H-4') and δH 7.43 (H-5'). 
In HMBC experiment, H-4 (δH 5.09) correlated to C-5 (δc 
58.43), C-8 (δc 148.68), C-9 (δc 98.53), C-2’ (δc 143.32), 
C-3’ (δc 124.89), CN (δc 119.68). Similarly, methyl proton 
(δH 1.92) showed connectivity to C-3 (δc 145.31), C-9 (δc 
98.53). HMBC correlation of NH2 proton (δH 7.29) was 
observed from C-6 (δc 159.12). The structure of 4k, COSY 
correlation, and HMBC correlation were summarized in 
Fig. 2 and 3.

Fig. 2: (A) Structure (B) COSY (c) HMBC correlation of product (4r).
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Finally, a plausible mechanistic pathway was proposed 
for dihydropyrano[2,3-c]pyrazoles derivatives synthesis 
in blue LED is illustrated in Fig. 4. We consider that 
the initial step involves the condensation reaction 
of malononitrile with aromatic aldehydes through 
mechanochemical activation under irradiation with visible 
light to produce intermediate A. Photochemical activation 
seems in the second step, which has a definite role. Then, 
visible light activates the benzylidene malononitrile 
intermediate B to form free radical intermediate C . 
Then,  Intermediate C play a role in abstract a methylenic 
hydrogen from malononitrile, generating malononitrile 
radical, which in turn abstracting hydrogen from 
3-methyl-1-phenyl-2-pyrazoline-5-one, generating 
intermediate E. Then, E further reacts with intermediate 
D, which generating intermediate F. Then, intramolecular 

cyclization of intermediate F provides the desired  
product 4b.

Docking Prediction With COVID-19 Mpro

Prediction of binding energy between all synthesized 
ligands and COVID-19 Mpro are calculated (in silico). The 
binding energy of all ligands is compared with chloroquine 
(-5.6 Kcal/mole) and hydroxychloroquine (-4.6 Kcal/mole). 
At present, these drugs are highly effective in clinical 
practice for COVID-19 patients and after ethical approval 
as a trial as stated by the WHO.[62] These are used as a 
standard.

6LU7 is the main protease (Mpro), which is present in 
COVID-19. These proteases were demonstrated by Chinese 
researchers, which is a potential drug target. Screening 
of all synthesized compounds are performed with these 
Mpro. Compound 4i shows high binding energy -7.6 Kcal/
mole with 6LU7 protein, as summarized in Figs 5-7. 
The conventional hydrogen binding, pi-donar hydrogen 
binding, and alkyl/pi-alkyl hydrophobic binding are 
displayed with amino acid Leu, Tyr, Met, at the active site of 
6LU7. Interaction of compound 4i is completed with 6LU7 
by the formation of classical hydrogen binding interaction 
of –NH2 group with amino acid Leu-272 at a distance 3.02, 
pi-donar hydrogen binding interaction of benzene ring 
with amino acid Tyr-239 at a distance 3.44, and alkyl and 
pi-alkyl hydrophobic interaction with amino acid Leu-287 
at a distance 4.63, 4.76, 5.16, and Met-276 at a distance 
3.59. Compound 4d shows binding energy -7.5 Kcal/mole 

Fig.3: 1H-NMR and 13C-NMR assignment of product 4r.

Fig. 4: Synthesis of the dihydropyrano[2,3-c]pyrazoles showing 
plausible reaction mechanism. 

Fig. 5: Visulization of molecular docking of 6LU7 with compounds 
(ball and stick) 
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(Figs 5-7). Conventional hydrogen bond, pi-donar hydrogen 
bond, and alkyl/pi-alkyl hydrophobic bond are found 
with amino acid Leu, Tyr at active center of 6LU7. Binding 
interaction of compound 4d is successfully completed 
with 6LU7 by hydrogen binding interaction of NH2 group 
with amino acid Leu-272 at a distance 2.88, benzene ring 
with amino acid Tyr-239 at distance 3.48, and hydrophobic 
interaction with amino acid Leu-287 at distance 4.75, 
4.79, 5.16 and Met-276 at a distance 3.54. Compound 4e 
has interacted with binding energy -7.3 Kcal/mole (Fig. 
5,6,7). Compound 4e is interacted with 6LU7 protein by 
conventional hydrogen binding of NH2 with amino acid 
Glu-288 at a distance 2.08, pi-cation binding of benzene 
ring with amino acid Phe-291 at a distance 3.49, pi-pi 
T-shaped binding of hetero ring with amino acid Lys-5 
4.72, and alkyl/pi-alkyl hydrophobic binding with amino 
acid Lys-5 at a distance 4.37, 4.50, 5.22. Binding energies 
of compounds 4a, 4b, 4c, 4f, 4g, 4h, 4j, 4k, 4l are showed in 
renge from -6.2 Kcal/mole to -7.1 Kcal/mole. Structures of 
these compounds are visualized (Fig. 5).

The structure activity relationship (SAR) of all 
compounds are shown in Fig. 7. Compound 4i is more active 
because strong correlation with binding energies 7.6 Kcal/
mole. Nitro group compounds such as 4d-f are showed high 
activity with binding energies 7.1 Kcal/mole, 7.5 Kcal/
mole, and 7.3 Kcal/mole, in which a strong correlation 
is found of compound 4e. 4-ethyl and 3-methoxy group 
compounds 4j and 4g are showed moderate activity with 
binding energy -7.1 Kcal/mole and -7.0 Kcal/mole. Hetero 
compounds 4k and 4l are showed weak activity because 

of weak correlation with binding energies -6.5 Kcal/mole 
and -6.9 Kcal/mole. From SAR, it is predicted that nitro 
group compounds 4d, 4e, 4f are high active and maybe 
useful in the treatment of COVID-19.

Conclusion
In summary, we have successfully developed a highly 
efficient, cost-effective, visible light activated one pot 
multicomponent component reaction of 3-methyl-1-phenyl-
2-pyrazoline-5-one, malononitrile, substituted aromatic 
aldehydes for the synthesis of dihydropyrano[2,3-c]
pyrazoles derivatives under catalyst-free conditions at 
room temperature. The noteworthy point of these protocol 
are environmentally benign reaction conditions, high atom 
economy, good to fantastic yields, easy workup procedure. 
The synthesized compounds are tested in silico with 
COVID-19 Mpro. All compounds (4a–l) are successfully 
docked with 6LU7 protein, in which 4i compound shows 
high inhibitory activity with strong correlation. This 
prediction may be useful for experimental work in vitro, 
and in vivo.
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