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INTRODUCTION anti-viral, anti-malarial fungicidal, anthelmintic, and
anti-tubercular.”]

Life-threatening, invasive fungal infections especially
caused by Candida species, are the main cause of morbidity

The s-triazine derivatives have been attracting the
interest of researchers on account of wide biological
activity viz. anti-bacterial, anti-cancer, anti-inflammatory,
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mortality and, thus, causing universal health problems
and economic burden.[®1% Large arsenals of available
antifungal drugs are not effective due to the issues like
drug resistance, narrow antifungal spectrum, poor
efficacy, and toxicity. In this framework, the scientific
community has been functioning hard to search for novel
drug candidate(s) and target.''7]

It has been evidence from biochemical and genetic
studies that enzyme myristoyl CoA: protein N-myristoyl
transferase (NMT) plays key responsibility to preserve
the viability of Candida albicans;*® the principal cause
of systematic fungal infections in immune-compromised
persons. In this context, NMT has been recognized as a
promising target for current investigation.[19'21]

Computer-aided drug design (CADD); especially QSAR
and molecular docking, has been gaining researchers’
attraction to combat the problems associated with
traditional methods of drug design and discovery.[?2-23]

A combination of QSAR and molecular docking
studies have been pursued linking chemical structure
and pharmacological activities (physical, chemical,
and biological properties) quantitatively, along with
forecasting the preferred binding orientation of a ligand
within the active site of the target protein NMT.[2#-3%]
Presentresearch investigation deals with the combination
of GA- MLR based QSAR modeling and molecular docking
as relevant to triazine analogs in an effort to investigate
their role as novel NMT inhibitors of Candida albicans.
Consequently, this study may be useful for the development
and optimization of prevailing antifungal activity of
compounds under investigation.

MATERIALS AND METHODS

The activity data minimum inhibitory concentration (MIC)
ofthe antifungal compounds were taken from the published
work!® and converted to-log MIC in a micromolar level. The
2D structures of all the analogues under investigation were
first sketched in Chemdraw Ultra version 8.0 softwarel3%
then transformed into 3D structures using Chem3D
Ultra version 8.0.12] Energy minimization of stated
structures was carried out through molecular mechanics
(MM2) force field followed by geometry optimized via
semi-empirical Austin model (AM1) method workable
through MOPAC module. Initially, A vast pool of 2D and
3D descriptors (autocorrelation, topological, gateway,
RDF, MoRSE, geometrical, constitutional, edge adjacency
descriptors subsets) were calculated for the optimized
compounds using Parameter Client software.333* The
descriptors possessing constant numerical values along
with those showing high correlation with others were
eliminated by using the V-WSP algorithm proposed
by Davide and Todeschinil®**! using NanoBRIDGES"
software based on cut-off values of variance (0.0001) and
correlation coefficient (0.99).13°-37] The hybrid GA-MLR
approach linked with error-based fitness function has
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been used as the feature selection and model generation
tool.138-39

The robustness of generated models was ensured by
applying various validation techniques.!***3] A research
report by Roy et al. has come out to be worth mentioning
in the aforementioned context.l*¥] Therefore, the metrics
proposed by Roy et al. were also evaluated to check the
stability of the QSAR models. Additionally, VIF index,
tolerance and Y scrambling analysis were performed to
make sure non-existence of the multicollinearity issue
in the proposed QSAR model.*>**¢! Furthermore, to gain
insight into ligand-protein interaction, QSAR analysis
has been amalgamated with docking studied data under
investigation. Molegro virtual docker (MVD) software!*’]
with default parameters were used to perform molecular
docking simulation. Proceeding to docking simulation,
validation of the software protocol has been performed by
RMSD value calculation. The 3D Crystal structure of the
target; NMT (11YL) was retrieved in the MVD from RCSB
protein data bank (https://www.rcsb.org/). The hydrogen
bonds interactions, scoring functions, steric data were
investigated for a better understanding of NMT- triazine
binding interaction.!*4€l

RESULT AND DISCUSSION

In the current research, a combination of QSAR analysis
followed by docking simulation has been carried out with
a view to work out the important structural attributes
of s-triazine analogs needed for antifungal activity
against Candida albicans. The structures of 35 triazine
derivatives are listed in Fig. 1. Initially, approximately
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For 1-20
R=H, 2-Cl1, 3-CL, 4-CL, 2-CHs. 3-CHs_ 4-CH3, 2-F_3-F_4-F

For 21-27
R=H. 2-Cl, 3-Cl, 2-CH:, 4-NO3, 4-Br.
4 -OCH3

For 28-35
X=N-CH3, N-CH:-CH3, N-COCH3;, N-CH(CHs)z, N-CsHs, -CHa, -O-,
N-CH:-CsHa-CH3

Fig. 1: Structure of thirty five triazine derivatives under
investigation
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3000 descriptors were calculated using Parameter Client
software.33 The descriptors holding constant numeric
values, more than 90% zero values and highly mutually
correlated were eliminated as described in the aforesaid
section "Materials and Methods". Subsequently, various
mono, bi, tri, tetra, and penta-metric QSAR models were
generated using genetic algorithm as descriptor screening
approach followed by MLR analysis MLR from a large pool
of descriptors.[3¢-37] Few best QSAR models among various
generated models are presented below, and the statistical
parameters to check the quality of these QSAR models are
compiled in Table 1.

1. pMIC (C.albicans) =-1.032(x0.868)E1s +5.282(+ 1.473)
-0.246(+ 0.1734) EEig03x +1.066(+ 0.365) EEig08d...
Equation 1

2. pMIC (C. albicans) = 0.849(+ 0.641) -11.946(+ 5.584)
HATS7v +0.396(+ 0.105) RDF155m +14.513(+ 2.249)
Ds... Equation 2

3. pMIC (C.albicans) =-0.203( 1.222) +0.408(+ 0.0999)
RDF155m +11.987(+ 2.014) Ds -0.003(* 0.499) ]J3D
+0.897(% 0.306) GATS8p... Equation 3

4. pMIC (C.albicans) =-0.721(* 0.836) +0.911(+ 0.302)
GATS8p +11.017(+ 2.268) Ds +0.074(+ 0.087) RTp
+0.417(x 0.099) RDF155m... Equation 4

5. pMIC (C. albicans) =-1.845( 0.820) +0.342(% 0.064)
RDF040v +14.471(* 2.238) Ds-0.373(+ 0.123) Mor04m
-0.831(% 0.261) X4v +0.993(* 0.424) MATS2p...
Equation 5

6. pMIC (C. albicans) = -2.557(* 0.592) +15.655(% 2.151)
Ds +2.941(+ 0.498) RDF155v -0.353( 0.220)Mor05v
-0.795(+ 0.222) RDF145v +1.1823(* 0.541) MATS2v...

The regression results (Table 1) show that the tri-
parametric (Model I) does not meet the statistical
parameters' threshold value. Similarly, Models II-IV seem
to be sound as per statistical validation parameters (R?
and R%adj > 0.5 along with Y-randomization parameter
¢ >0.6) but not considered as good one due to a lower Q2
value than 0.5. It is worthy of mentioning that a report
published in 2009 by Kunal Roy and co-workers [49]
has evidently highlighted the task of validation as a vital
aspect of the QSAR model building approach. They have
advocated the need to integrate two new parameters =2
and R} for a stricter parameter of QSAR model validation
(particularly when a regulatory discussion is concerned)
rather than considering just the conventional validation
parameters,. Accordingly, conventionally used statistic
validation parameters have been add-on with various
metrics *= and ‘% validation parameters in the present
investigation.

Additionally, Models I-1V are not convincing as per the
acceptable QSAR model criteria of Roy et al. as the Average
Tmzo0) is less than 0.5.

Penta-variant Models V and VI represented in
Equations 5 and 6 respectively satisfied all the aforesaid
validation criteria along with various ' metrics and ‘R
generated by Roy and Mitra**! (Table 1).

Thus, these two models appear to be statically robust
subjected to the green signal from multicollinearity
criteria pointed out by Bolboac and Lorentz.[*®] In
this context, to check the multicollinearity among the
modeled descriptors, the corresponding statistical
finding of VIF and tolerance data are listed in Table 2.
High VIF values 7.119 (VIF > 5, and low tolerance value

Table 1: Statistical parameters to check the quality of these QSAR models

Equation 6

Model No. R? R?adj SEE g
Threshold value >0.6 >0.6 Low >0.5
Model I 0.548 0.504 0.399 0.382
Model II 0.648 0.614 0.352 0.459
Model IIT 0.686 0.644 0.337 0.469
Model IV 0.694 0.652 0.334 0.483
Model V 0.754 0.712 0.304 0.671
Model VI 0.792 0.756 0.280 0.679

SDEP Average delta “Rp
High >0.5 <0.2 €>0.6
0.439 0.273 0.158 508
0.411 0.394 0.068 610
0.407 0.412 0.045 638
0.402 0.426 0.040 626
0.321 0.576 0.122 0.689
0.317 0.603 0.052 0.708

R?: coefficient of determination, R? adj: Square of adjusted regression coefficient: SEE: Standard error of estimate, Q?:Leave-one-out cross-
validated coefficient of determination, SDEP: standard deviation error of prediction, Average delta and “are various metrics for validation

developed by Roy and Mitra (2012)

Table 2: Collinearity statistical output to check multicollinearity among descriptors (as per models V and VI)

Collinearity statistics (Model V)

Descriptor Tolerance VIF

RDF040v 0.221 4.523

Ds 0.630 1.586

Mor04m 0.571 1.751

X4v 0.237 4.225

MATS2p 0.453 2.206
142
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Collinearity statistics (Model VI)

Descriptor Tolerance VIF

Ds 0.579 1.727
RDF155v 0.189 5.299
Mor05v 0.510 1.959
RDF145v 0.140 7.119
MATS2v 0.569 1.758
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Table 3: Observed activity, predicted biological activity, and residual ~ (0.140 (Tolerance < 0.3) indicate collinearity amongst
error data of triazine derivatives as per the proposed QSAR model. modeled descriptors (Ds, RDF155v, Mor05v, RDF145y,
Observed Predicted

Compound pMIC

1 3.526
2 3.869
3 5.074
4 4471
5 4.145
6 3.543
7 3.242
8 3.849
9 4.150
10 4.451
11 3.203
12 3.824
13 3.523
14 4.125
15 3.528
16 4431
17 3.829
18 3.248
19 4.452
20 4.753
21 3.202
22 3.849
23 4.752
24 3.522
25 4.165
26 3.298
27 4.445
28 3.512
29 3.531
30 5.054
31 4.150
32 4.792
33 3.191
34 3.194
35 3.922
"
DesEriptor
RDEO40v g
Ds - &
Mor04m .
Xav " )
MATS2p

C. albicans pMIC

pMIC
3.308
4.123
4.751
4.431
4.349
3.532
3.479
3.757
4.329
4.448
3.511
3.584
3.800
3.604
3.395
4.316
4.234
3.889
4.762
4.566
3.486
3.765
4.507
3.485
4.127
3.042
4.037
3.506
3.845
4.315
4.144
4.853
3.109
3.354
4.073

Residuals
0.217
-0.254
0.323
0.041
-0.204
0.011
-0.237
0.093
-0.179
0.003
-0.308
0.240
-0.277
0.521
0.133
0.115
-0.404
-0.642
-0.310
0.187
-0.284
0.084
0.245
0.036
0.038
0.256
0.408
0.007
-0.314
0.739
0.007
-0.061
0.082
-0.161
-0.151

Standard and MATS2v) in Model VI, whereas the non-existence of
residuals multicollinearity in generated model V as revealed from
0.774 statistical parameters of Table 2, i.e., VIF has been found
-0.905 to beless than five and tolerance is greater than 0.3 for all
1150 the modeled descriptors. Itis apparent from a comparison
of various statistical parameters that model V is more
0.144 robust than other models achieved and discussed above
-0.725 in the present QSAR studies.
0.041 Further, In order to ascertain the predictive ability of
-0.844 the developed Model V, pMIC values of all the training set
0330 compounds under investigation were calculated through
equation 5 and have been compared with the experimental
-0.637 . .
values. As shown in Table 3 the experimental pMIC values
0.010 are in good agreement with predicted pMIC values as
-1.097 indicated by the low value of standard residual. Further,
0.854 the plot between predicted and observed pMIC values
-0.985 (Fig. 2) and correlation matrix (Table 4) confirms that the
1.856 proposed QSAR Model V has fantastic prediction ability.
A combined examination of statistic validation
0473 parameters, = and °R; metrics validation parameters as
0409 per Roy and Mitra,*#*%1 (R?=0.792,Q%=0.679 and =0.603.
-1.440 VIF and tolerance data analysis enable us to conclude
.2.285 a reasonable agreement of the wide range of validation
1104 criteria. Thereby signaling the robustness of the proposed
0.665 penta-variant QSAR Model V. Therefore, penta-variant
-1.012 5.0
0.299
0.871 45
0.129 >
0.136 2
0.912 3 40
1.454 3
S35
0.024 g >
-1.118 &
2.633 3.0
0.024
0217 3.0 3.5 4.0 45 5.0
0.291 Observed Activity
-0.573
0538 Fig. 2: Plot of experimental versus predicted pMIC values of triazine

derivates as generated by the QSAR model V

Table 4: Correlation matrix showing mutual correlations among the variables used in model V

RDF040v Ds Mor04m X4v MATS2p C. albicans pMIC

1
. 0422 1
" 0.583 0.285 1

0.870 0.426 0.539 1
" 0976 -0.587 -0.564 -0.560 1
) 0.440 0.642 " -0.051 0.249 -0.177 1

H
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expression (Equation V) which assures all validation
criteria up to considerable echelon, was considered as the
best QSAR model for further study.

The developed QSAR model V shows the association
between experimental activities considered asa dependent
variable and five descriptors, namely RDF040v, Ds,
Mor04m, X4v and MATS2p as independent variables in
pursuance to modulate antifungal activities of triazine
analogs under study. Descriptors inculcated in the
best-projected QSAR model encoded the important
properties of the molecules pertinent to the antifungal
activity. Density descriptor weighted by atomic electro-
topological charges (Ds) isa Whim descriptor and provides
information regarding the electronic and topological state
of the atom in a molecule. A low value of Ds is required
in order to increase antifungal activity as it is negatively
correlated with activity.[>¥) X4V (connectivity descriptor)
is a valence connectivity index chi-4. Tetra-valence
Connectivity Index of Electronic Density gives a sign of the
nature of bond connectivity between atoms. Connectivity
is directly linked with the flexibility of molecules. The
higher the connectivity, the more rigid the molecule
is, leading to low activity.®!) Moran autocorrelation
lag 1/weighted by atomic polarizability (MATS2P) is a
2D-autocorrelation descriptor. The positive sign of the
regression coefficient of this descriptor indicates elevated
activity with a higher value of MATS2P descriptor, and the
polarizability plays a vital role in enhancing the activity.
The Mor04m (3D-MoRSE-signal04/weighted by atomic
masses) belongs to the 3D-MoRSE descriptors family.
3D-MoRSE descriptors provide information regarding
the association of activity with mass. The negative sign
of Mor04m descriptor illustrates that antifungal activity
decreases with increasing molecular mass.>2>3!

As shown in equation 5 the descriptor Ds was the
most significant descriptor, as indicated by the highest
regression coefficient of +14.471. The positive regression
coefficient point towards the high value of Ds is vital for
elevated antifungal activity. Likewise, negative regression
coefficients of another descriptor, i.e., Mor04m, and X4v
indicate a lowering in activity with increased numerical
values of these descriptors. Correspondingly, the elevated
value of the descriptors with a positive regression
coefficient,i.e.,, RDF040vand MATS2p favor the antifungal
activity.

The descriptor Ds was found to be the most influential
descriptor, as indicated by the highest regression

coefficient of +14.471. Accordingly, topology, atomic van
der Waals volume, mass, and polarizability execute a
significant role in modulating the antifungal activity
of compounds under investigation. Therefore, the
substituents that impart the above-mentioned changes
in physico-chemical properties included in the proposed
model should be attached or removed to the molecules to
increase the biological activity.[>0-53]

With a view to search for better ligand-protein
interaction, QSAR analysis has been followed by molecular
docking studies using MVD tool. Validation of software
protocol has been ensuring by calculating root mean
square deviation (RMSD) value. An RMSD value of 1.04 of
all the atoms between co-crystallized and docked poses
of R64A confirms software reproducibility.

Consequently, all the 35 triazine derivatives were
docked into the binding pocket of NMT. The docked
energies, hydrogen bond values of the three most active
compounds from the thirty-five dataset are provided in
Table 5. It was observed (Ref. Table 5) that compound
number 5, 32, and 35, in particular, showed a superior
binding affinity with a re-rank score of -142.594,
-138.972, -137.540 kcal/mol, respectively in comparison
to the co-crystallized ligand R64 with a re-rank score of
-135.887 kcal/mol. Hydrogen bond interactions of the
most active triazole analogs with NMT are illustrated in
Figs. 3-5 It was concluded from the docking simulation
that three triazine derivatives were strongly bonded
through electrostatic, hydrophobic, and hydrogen bond

-

of compound 5 with active amino acids Leu355, and Leu451 of

NMT [PDB: 11YL]

Table 5: Molecular docking interactions of triazine derivatives inside the binding pocket of NMT generated by MVD[*7],

Amino Acid involved in Hydrogen Hydrogen bond

Compound No. Rank score kcal/mol No of Hydrogen bonds Bonding Interaction (A)
5 -137.540 03 Leu355, and Leu451 -2.081
32 -138.972 04 Asn110, Asp112 and Asn392 -3.746
35 -142.594 05 Thr211, Cys393, and Tyr107 -1.225
R64A 135.887 03 Asn392, Tyr354, -4.641
144 Int. J. Pharm. Sci. Drug Res. March-April, 2021, Vol 13, Issue 2, 140-146
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Fig. 4: Hydrogen bond interactions (as shown by blue dotted line)
of compound 35 with active amino acids Thr211, Cys393, and
Tyr107 of NMT [PDB: 1IYL]

Fig. 5: Hydrogen bond interactions (as shown by blue dotted line)
of compound 32 with active amino acids Asn110, Asp112 and
Asn392 of NMT [PDB: 1IYL].

interactions and stabilized into the active site of target
protein NMT.

CONCLUSION

Presentresearch findingsare associated witha combination
of the GA-MLR based QSAR analysis and docking studies,
which may help understand the structural necessities for
finding novel and selective antifungal drug candidate(s).
Consequently, this study may turn out to be useful towards
the development and optimization of prevailing antifungal
activity of compounds under investigation.

The descriptors RDF040v, Ds, Mor04m, X4v, and
MATS2p in the projected QSAR model have quantified
the task of atomic properties such as topology, atomic
van der Waals volume, mass and polarizability execute
vital part to altered the antifungal activity of compounds
under investigation. VIF and Tolerance data indicate the
non-existence of multicollinearity among the modeled
descriptor, and the model is not by chance correlation.
Furthermore, molecular docking analysis signifies that
compound numbers 5, 32, and 35, in particular, showed a
superior binding affinity with a re-rank score of -142.594,
-138.972, -137.540 kcal/mol. Combining the GA-MLR
based QSAR analysis in association with molecular
docking simulation is valuable in understanding the
structural requirements for designing novel antifungal
drug candidates (s). Accordingly, this research finding
may become valuable towards the development of potent
antifungals of these congeners.
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