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Introduction
The s-triazine derivatives have been attracting the 
interest of researchers on account of wide biological 
activity viz. anti-bacterial, anti-cancer, anti-inflammatory, 
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The s-triazine derivatives have been attracting the attention of researchers due to a broad range of 
biological applications. Present research deals with a combination of genetic algorithm-multiple linear 
regression (GA-MLR) based quantitative structure–activity relationships (QSAR) modeling and molecular 
docking as relevant to triazine analogs in an attempt to investigate their role as novel NMT inhibitors of 
Candida albicans. A penta-varient model which assure all validation criteria up to considerable echelon 
(R2 = 0.792, Q2 = 0.679 and  = 0.603) supplemented by multicollinearity diagnosis by VIF and tolerance 
data analysis, signaling the robustness of the QSAR model. The descriptors RDF040v, Ds, Mor04m, X4v, 
and MATS2p in the projected QSAR model have quantified the role of atomic properties such as topology; 
atomic van der Waals volume, mass, and polarizability execute vital part to modify the antifungal activity 
of compounds under investigation. Further, a molecular docking simulation study revealed that three 
compounds, in particular, showed a superior binding affinity with a re-rank score of -142.594, -138.972, 
-137.540  kcal/mol. Consequently, this study may turn out to be helpful towards the development and 
optimization of existing antifungal activity of compounds under investigation. 
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A B S T R A C TA R T I C L E  I N F O

anti-viral, anti-malarial fungicidal, anthelmintic, and 
anti-tubercular.[1-7] 

Life-threatening, invasive fungal infections especially 
caused by Candida species, are the main cause of morbidity 
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mortality and, thus, causing universal health problems 
and economic burden.[8-10] Large arsenals of available 
antifungal drugs are not effective due to the issues like 
drug resistance, narrow antifungal spectrum, poor 
efficacy, and toxicity. In this framework, the scientific 
community has been functioning hard to search for novel 
drug candidate(s) and target.[11-17] 

It has been evidence from biochemical and genetic 
studies that enzyme myristoyl CoA: protein N-myristoyl 
transferase (NMT) plays key responsibility to preserve 
the viability of Candida albicans;[18] the principal cause 
of systematic fungal infections in immune-compromised 
persons.  In this context, NMT has been recognized as a 
promising target for current investigation.[19-21]

Computer-aided drug design (CADD); especially QSAR 
and molecular docking, has been gaining researchers' 
attraction to combat the problems associated with 
traditional methods of drug design and discovery.[22-23]  

A combination of QSAR and molecular docking 
studies have been pursued linking chemical structure 
and pharmacological activities (physical, chemical, 
and biological properties) quantitatively, along with 
forecasting the preferred binding orientation of a ligand 
within the active site of the target protein NMT.[24-30] 
Present research investigation deals with the combination 
of GA- MLR based QSAR modeling and molecular docking 
as relevant to triazine analogs in an effort to investigate 
their role as novel NMT inhibitors of Candida albicans. 
Consequently, this study may be useful for the development 
and optimization of prevailing antifungal activity of 
compounds under investigation. 

Materials and Methods
The activity data minimum inhibitory concentration (MIC) 
of the antifungal compounds were taken from the published 
work[3] and converted to-log MIC in a micromolar level. The 
2D structures of all the analogues under investigation were 
first sketched in Chemdraw Ultra version 8.0 software[31] 
then transformed into 3D structures using Chem3D 
Ultra version 8.0.[32] Energy minimization of stated 
structures was carried out through molecular mechanics 
(MM2) force field followed by geometry optimized via 
semi-empirical Austin model (AM1) method workable 
through MOPAC module. Initially, A vast pool of 2D and 
3D descriptors (autocorrelation, topological, gateway, 
RDF, MoRSE, geometrical, constitutional, edge adjacency 
descriptors subsets) were calculated for the optimized 
compounds using Parameter Client software.[33,34] The 
descriptors possessing constant numerical values along 
with those showing high correlation with others were 
eliminated by using the V-WSP algorithm proposed 
by Davide and Todeschini[35] using NanoBRIDGES" 
software based on cut-off values of variance (0.0001) and 
correlation coefficient (0.99).[35-37] The hybrid GA-MLR 
approach linked with error-based fitness function has 

been used as the feature selection and model generation  
tool.[38-39]

The robustness of generated models was ensured by 
applying various validation techniques.[40-43] A research 
report by Roy et al. has come out to be worth mentioning 
in the aforementioned context.[44] Therefore, the  metrics 
proposed by Roy et al. were also evaluated to check the 
stability of the QSAR models. Additionally, VIF index, 
tolerance and Y scrambling analysis were performed to 
make sure non-existence of the multicollinearity issue 
in the proposed QSAR model.[45-46] Furthermore, to gain 
insight into ligand-protein interaction, QSAR analysis 
has been amalgamated with docking studied data under 
investigation.  Molegro virtual docker (MVD) software[47] 
with default parameters were used to perform molecular 
docking simulation. Proceeding to docking simulation, 
validation of the software protocol has been performed by 
RMSD value calculation. The 3D Crystal structure of the 
target; NMT (1IYL) was retrieved in the MVD from RCSB 
protein data bank (https://www.rcsb.org/). The hydrogen 
bonds interactions, scoring functions, steric data were 
investigated for a better understanding of NMT- triazine 
binding interaction.[47-48]   

Result and Discussion
In the current research, a combination of QSAR analysis 
followed by docking simulation has been carried out with 
a view to work out the important structural attributes 
of s-triazine analogs needed for antifungal activity 
against Candida albicans. The structures of 35 triazine 
derivatives are listed in Fig. 1. Initially, approximately 

Fig. 1: Structure of thirty five triazine derivatives under 
investigation
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Table 1: Statistical parameters to check the quality of these QSAR models

Model No. R2 R2adj SEE Q2 SDEP Average delta 

Threshold value >0.6 >0.6 Low >0.5 High >0.5 < 0.2 c >0.6

Model I 0.548 0.504 0.399 0.382 0.439 0.273 0.158 508

Model II 0.648 0.614 0.352 0.459 0.411 0.394 0.068 610

Model III 0.686 0.644 0.337 0.469 0.407 0.412 0.045 638

Model IV 0.694 0.652 0.334 0.483 0.402 0.426 0.040 626

Model V 0.754 0.712 0.304 0.671 0.321 0.576 0.122 0.689

Model VI 0.792 0.756 0.280 0.679 0.317 0.603 0.052 0.708
R2:  coefficient of determination,  R2 adj: Square of adjusted regression coefficient: SEE: Standard error of estimate,  Q2:Leave-one-out cross-
validated coefficient of determination,  SDEP: standard deviation error of prediction, Average delta and care various metrics for validation 
developed by Roy and Mitra (2012)

Table 2: Collinearity statistical output to check multicollinearity among descriptors (as per models V and VI)

Collinearity statistics (Model V) Collinearity statistics (Model VI)

Descriptor Tolerance VIF Descriptor Tolerance VIF

 RDF040v 0.221 4.523 Ds 0.579 1.727

Ds 0.630 1.586 RDF155v 0.189 5.299

Mor04m 0.571 1.751 Mor05v 0.510 1.959

X4v 0.237 4.225 RDF145v 0.140 7.119

MATS2p 0.453 2.206 MATS2v 0.569 1.758

3000 descriptors were calculated using Parameter Client 
software.[33] The descriptors holding constant numeric 
values, more than 90% zero values and highly mutually 
correlated were eliminated as described in the aforesaid 
section "Materials and Methods". Subsequently, various 
mono, bi, tri, tetra, and penta-metric QSAR models were 
generated using genetic algorithm as descriptor screening 
approach followed by MLR analysis MLR from a large pool 
of descriptors.[36-37] Few best QSAR models among various 
generated models are presented below, and the statistical 
parameters to check the quality of these QSAR models are 
compiled in Table 1. 
1.	 pMIC (C. albicans) = -1.032(±0.868)E1s  +5.282(± 1.473)  

-0.246(± 0.1734) EEig03x +1.066(± 0.365) EEig08d… 
Equation 1

2.	 pMIC (C. albicans) = 0.849(± 0.641)  -11.946(± 5.584) 
HATS7v +0.396(± 0.105) RDF155m +14.513(± 2.249) 
Ds… Equation 2

3.	 pMIC (C. albicans)   = -0.203(± 1.222)  + 0.408(± 0.0999) 
RDF155m +11.987(± 2.014) Ds -0.003(± 0.499) J3D 
+0.897(± 0.306) GATS8p… Equation 3

4.	 pMIC (C. albicans)   = -0.721(± 0.836)  +0.911(± 0.302) 
GATS8p +11.017(± 2.268) Ds +0.074(± 0.087) RTp 
+0.417(± 0.099) RDF155m… Equation 4

5.	 pMIC (C. albicans)  = -1.845(± 0.820)  +0.342(± 0.064) 
RDF040v +14.471(± 2.238) Ds -0.373(± 0.123) Mor04m 
-0.831(± 0.261) X4v +0.993(± 0.424) MATS2p… 
Equation 5

6.	 pMIC (C. albicans) = -2.557(± 0.592)  +15.655(± 2.151) 
Ds +2.941(± 0.498) RDF155v -0.353(± 0.220)Mor05v 
-0.795(± 0.222) RDF145v +1.1823(± 0.541) MATS2v…
Equation 6

The regression results (Table 1) show that the tri-
parametric (Model I) does not meet the statistical 
parameters' threshold value.  Similarly, Models II-IV seem 
to be sound as per statistical validation parameters (R2 
and R2adj > 0.5 along with Y-randomization parameter 
c  >0.6) but not considered as good one due to a lower Q2 
value than 0.5. It is worthy of mentioning that a report 
published in 2009 by Kunal Roy and co-workers [49] 
has evidently highlighted the task of validation as a vital 
aspect of the QSAR model building approach. They have 
advocated the need to integrate two new parameters  
and   for a stricter parameter of QSAR model validation 
(particularly when a regulatory discussion is concerned) 
rather than considering just the conventional validation 
parameters,. Accordingly, conventionally used statistic 
validation parameters have been add-on with various 
metrics  and  validation parameters in the present 
investigation.  

Additionally, Models I-IV are not convincing as per the 
acceptable QSAR model criteria of Roy et al. as the Average  

 is less than 0.5. 
Penta-variant Models V and VI represented in 

Equations 5 and 6 respectively satisfied all the aforesaid 
validation criteria along with various  metrics and  

generated by Roy and Mitra[44] (Table 1). 
Thus, these two models appear to be statically robust 

subjected to the green signal from multicollinearity 
criteria pointed out by Bolboac and Lorentz.[46] In 
this context, to check the multicollinearity among the 
modeled descriptors, the corresponding statistical 
finding of VIF and tolerance data are listed in Table 2. 
High VIF values 7.119 (VIF > 5, and low tolerance value 
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0.140 (Tolerance  < 0.3) indicate collinearity amongst 
modeled descriptors (Ds, RDF155v, Mor05v, RDF145v, 
and MATS2v) in Model VI, whereas the non-existence of 
multicollinearity in generated model V as revealed from 
statistical parameters of Table 2, i.e., VIF has been found 
to be less than five and tolerance is greater than 0.3 for all 
the modeled descriptors. It is apparent from a comparison 
of various statistical parameters that model V is more 
robust than other models achieved and discussed above 
in the present QSAR studies.

Further, In order to ascertain the predictive ability of 
the developed Model V, pMIC values of all the training set 
compounds under investigation were calculated through 
equation 5 and have been compared with the experimental 
values. As shown in Table 3 the experimental pMIC values 
are in good agreement with predicted pMIC values as 
indicated by the low value of standard residual. Further, 
the plot between predicted and observed pMIC values 
(Fig. 2) and correlation matrix (Table 4) confirms that the 
proposed QSAR Model V has fantastic prediction ability. 

A combined examination of statistic validation 
parameters,  and  metrics validation parameters as 
per Roy and Mitra,[44,49] (R2 = 0.792, Q2 = 0.679 and  = 0.603. 

VIF and tolerance data analysis enable us to conclude 
a reasonable agreement of the wide range of validation 
criteria. Thereby signaling the robustness of the proposed 
penta-variant QSAR Model V. Therefore, penta-variant 

Table 4: Correlation matrix showing mutual correlations among the variables used in model V

Descriptor  RDF040v Ds Mor04m X4v MATS2p C. albicans pMIC

RDF040v 1

Ds 0.422 1

Mor04m 0.583 0.285 1

X4v 0.870 0.426 0.539 1

MATS2p 0.576 -0.587 -0.564 -0.560 1

C. albicans pMIC 0.440 0.642 -0.051 0.249 -0.177 1

Fig. 2: Plot of experimental versus predicted pMIC values of triazine 
derivates as generated by the QSAR model V
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Table 3: Observed activity, predicted biological activity, and residual 
error data of triazine derivatives as per the proposed QSAR model.

Compound
Observed 
pMIC

Predicted 
pMIC Residuals

Standard 
residuals

1 3.526 3.308 0.217 0.774

2 3.869 4.123 -0.254 -0.905

3 5.074 4.751 0.323 1.150

4 4.471 4.431 0.041 0.144

5 4.145 4.349 -0.204 -0.725

6 3.543 3.532 0.011 0.041

7 3.242 3.479 -0.237 -0.844

8 3.849 3.757 0.093 0.330

9 4.150 4.329 -0.179 -0.637

10 4.451 4.448 0.003 0.010

11 3.203 3.511 -0.308 -1.097

12 3.824 3.584 0.240 0.854

13 3.523 3.800 -0.277 -0.985

14 4.125 3.604 0.521 1.856

15 3.528 3.395 0.133 0.473

16 4.431 4.316 0.115 0.409

17 3.829 4.234 -0.404 -1.440

18 3.248 3.889 -0.642 -2.285

19 4.452 4.762 -0.310 -1.104

20 4.753 4.566 0.187 0.665

21 3.202 3.486 -0.284 -1.012

22 3.849 3.765 0.084 0.299

23 4.752 4.507 0.245 0.871

24 3.522 3.485 0.036 0.129

25 4.165 4.127 0.038 0.136

26 3.298 3.042 0.256 0.912

27 4.445 4.037 0.408 1.454

28 3.512 3.506 0.007 0.024

29 3.531 3.845 -0.314 -1.118

30 5.054 4.315 0.739 2.633

31 4.150 4.144 0.007 0.024

32 4.792 4.853 -0.061 -0.217

33 3.191 3.109 0.082 0.291

34 3.194 3.354 -0.161 -0.573

35 3.922 4.073 -0.151 -0.538
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expression (Equation V) which assures all validation 
criteria up to considerable echelon, was considered as the 
best QSAR model for further study. 

The developed QSAR model V shows the association 
between experimental activities considered as a dependent 
variable and five descriptors, namely RDF040v, Ds, 
Mor04m, X4v and MATS2p as independent variables in 
pursuance to modulate antifungal activities of triazine 
analogs under study. Descriptors inculcated in the 
best-projected QSAR model encoded the important 
properties of the molecules pertinent to the antifungal 
activity. Density descriptor weighted by atomic electro-
topological charges (Ds) is a Whim descriptor and provides 
information regarding the electronic and topological state 
of the atom in a molecule. A low value of Ds is required 
in order to increase antifungal activity as it is negatively 
correlated with activity.[50] X4V (connectivity descriptor) 
is a valence connectivity index chi-4. Tetra-valence 
Connectivity Index of Electronic Density gives a sign of the 
nature of bond connectivity between atoms.  Connectivity 
is directly linked with the flexibility of molecules. The 
higher the connectivity, the more rigid the molecule 
is, leading to low activity.[51] Moran autocorrelation 
lag 1/weighted by atomic polarizability (MATS2P)  is a 
2D-autocorrelation descriptor. The positive sign of the 
regression coefficient of this descriptor indicates elevated 
activity with a higher value of MATS2P descriptor, and the 
polarizability plays a vital role in enhancing the activity. 
The Mor04m (3D-MoRSE-signal04/weighted by atomic 
masses) belongs to the 3D-MoRSE descriptors family. 
3D-MoRSE descriptors provide information regarding 
the association of activity with mass. The negative sign 
of Mor04m descriptor illustrates that antifungal activity 
decreases with increasing molecular mass.[52-53]

As shown in equation 5 the descriptor Ds was the 
most significant descriptor, as indicated by the highest 
regression coefficient of +14.471.  The positive regression 
coefficient point towards the high value of Ds is vital for 
elevated antifungal activity. Likewise, negative regression 
coefficients of another descriptor, i.e., Mor04m, and X4v 
indicate a lowering in activity with increased numerical 
values of these descriptors. Correspondingly, the elevated 
value of the descriptors with a positive regression 
coefficient, i.e., RDF040v and MATS2p  favor the antifungal 
activity.

The descriptor Ds was found to be the most influential 
descriptor, as indicated by the highest regression 

coefficient of +14.471. Accordingly, topology, atomic van 
der Waals volume, mass, and polarizability execute a 
significant role in modulating the antifungal activity 
of compounds under investigation. Therefore, the 
substituents that impart the above-mentioned changes 
in physico-chemical properties included in the proposed 
model should be attached or removed to the molecules to 
increase the biological activity.[50-53]

With a view to search for better ligand-protein 
interaction, QSAR analysis has been followed by molecular 
docking studies using MVD tool. Validation of software 
protocol has been ensuring by calculating root mean 
square deviation (RMSD) value. An RMSD value of 1.04 of 
all the atoms between co-crystallized and docked poses 
of R64A confirms software reproducibility.

Consequently, all the 35 triazine derivatives were 
docked into the binding pocket of NMT. The docked 
energies, hydrogen bond values of the three most active 
compounds from the thirty-five dataset are provided in 
Table 5. It was observed (Ref. Table 5) that compound 
number 5, 32, and 35, in particular, showed a superior 
binding aff inity with a re-rank score of -142.594, 
-138.972, -137.540 kcal/mol, respectively in comparison 
to the co-crystallized ligand R64 with a re-rank score of 
-135.887 kcal/mol. Hydrogen bond interactions of the 
most active triazole analogs with NMT are illustrated in 
Figs. 3-5 It was concluded from the docking simulation 
that three triazine derivatives were strongly bonded 
through electrostatic, hydrophobic, and hydrogen bond 

Table 5: Molecular docking interactions of triazine derivatives inside the binding pocket of NMT generated by MVD[47].

Compound No. Rank score kcal/mol No of Hydrogen bonds
Amino Acid involved in Hydrogen 
Bonding

Hydrogen bond 
Interaction (Å)

5 -137.540 03 Leu355, and Leu451 -2.081

32 -138.972 04 Asn110, Asp112 and Asn392 -3.746

35 -142.594 05 Thr211, Cys393, and Tyr107 -1.225

R64A 135.887 03 Asn392, Tyr354, -4.641

Fig. 3: Hydrogen bond interactions (as shown by blue dotted line) 
of compound 5  with  active amino acids Leu355, and Leu451 of  

NMT  [PDB: 1IYL]
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interactions and stabilized into the active site of target 
protein NMT.  

Conclusion 
Present research findings are associated with a combination 
of the GA-MLR based QSAR analysis and docking studies, 
which may help understand the structural necessities for 
finding novel and selective antifungal drug candidate(s). 
Consequently, this study may turn out to be useful towards 
the development and optimization of prevailing antifungal 
activity of compounds under investigation. 

The descriptors RDF040v, Ds, Mor04m, X4v, and 
MATS2p in the projected QSAR model have quantified 
the task of atomic properties such as topology, atomic 
van der Waals volume, mass and polarizability execute 
vital part to altered the antifungal activity of compounds 
under investigation. VIF and Tolerance data indicate the 
non-existence of multicollinearity among the modeled 
descriptor, and the model is not by chance correlation.  
Furthermore, molecular docking analysis signifies that 
compound numbers 5,  32, and 35, in particular, showed a 
superior binding affinity with a re-rank score of -142.594, 
-138.972, -137.540  kcal/mol. Combining the GA-MLR 
based QSAR analysis in association with molecular 
docking simulation is valuable in understanding the 
structural requirements for designing novel antifungal 
drug candidates (s). Accordingly, this research finding 
may become valuable towards the development of potent 
antifungals of these congeners. 
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