

Contents lists available at UGC-CARE

International Journal of Pharmaceutical Sciences and Drug Research

[ISSN: 0975-248X; CODEN (USA): IJPSPP]

Available online at www.ijpsdronline.com

Research Article

Hepatoprotective Activity of Ethanolic Extract of *Cissus quadrangularis linn* Fruits in Alcohol-induced Liver Damage in Rats

Deepthi Jasti, Bhikshapathi Darna*,

Career Point University, Kota-325003, Rajasthan, India

ARTICLE INFO

Article history:

Received: 20 March, 2021 Revised: 13 April, 2021 Accepted: 27 April, 2021 Published: 30 May, 2021

Keywords:

Alcohol-induced hepatotoxicity, Anti-oxidant studies, Cissus Quadrangularis, Hepatoprotective activity,

Wistar rats,

DOI:

10.25004/IJPSDR.2021.130306

ABSTRACT

Reactive oxygen species are one of the major reasons for liver damage. The study investigates the hepatoprotective activity of ethanolic extract of *Cissus Quadrangularis* (EECQ) *Linn* of fruits against ethanolinduced hepatotoxicity. Fruit Powder of *Cissus Quadrangularis* was successively extracted with ethanol. Preliminary phytochemical tests were done. The hepatoprotective activity of the AST, ALT, ALP, ALB, BIT and BID were assessed in alcohol-induced hepatotoxicity rats. The EECQ showed the presence of alkaloids, carbohydrates, steroids, saponins and triterpenes, while alkaloids, carbohydrates and saponins were present Ethanol produced significant changes in physical (increased liver weight and volume), biochemical (increase in serum alanine transaminase, aspartate transaminase, alkaline phosphatase, direct bilirubin, total bilirubin, cholesterol, triglycerides and decrease in total protein and albumin level) Pre-treatment with EECQ extract significantly prevented the physical, biochemical, histological and functional changes induced by alcohol in the liver. The present study indicates that EECQ extract possessed potential hepatoprotective activity. This activity may be attributed due to the rich phytoconstituents of the plant extract.

INTRODUCTION

Reactive oxygen species (ROS) are continuously generated during metabolic processes to regulate several physiological functions essential to the body. [1] ROS are prone to withdraw electrons from biological macromolecules such as proteins, lipids, nucleic acids to gain stability in the biological system. When the production of ROS exceeds the capability of the body to detoxify these reactive intermediates, oxidative stress would be generated. [2] This may lead to drastic harm to the body such as membrane damage, mutations due to attenuation of deoxyribonucleic acid (DNA) molecules, and disruption to various enzymatic activities in the metabolism of the body. [3-5]

Alcohol, a natural product that has been available for human consumption for thousands of years, is a

common cause of ROS insult in the liver.^[6] Despite the claim that a small amount of alcohol consumption may be beneficial for preventing and reducing the mortality rate of coronary heart diseases and ischemic stroke, it should also be noted that alcohol is toxic to almost every organ of the body.^[7] Metabolism of alcohol in the liver generates excessive free radicals and increased peroxisomal oxidation of fatty acid, which would ultimately affect the functionality of the antioxidant systems to eliminate ROS in the body.^[6] Therefore, the mechanism to restore hepatic injuries caused by alcoholic oxidative stress is tightly regulated by the antioxidant status of a living system.

Many plants that portrayed good antioxidant activity are also associated with hepatoprotection potential. Some good examples include *Myristica malabarica* L., [8] *Calotropis*

*Corresponding Author: Dr. Bhikshapathi Darna

Address: Career Point University, Kota-325003, Rajasthan, India

Email ⊠: dbpathi71@gmail.com

Tel.: +91-9848514228

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Deepthi Jasti *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

gigantea,^[9] Acanthus ilicifolius,^[10] Momordica dioica,^[11] and Phyllanthus niruri.[12]. Members from the Elephantopus family, including Elephantopus scaber Linn, Elephantopus mollis Kunth., and Elephantopus tomentosus have also been shown to possess hepatoprotective activities in rats. [13-15] Additionally, the use of *E. scaber* liver protective purposes was also observed in folk medicinal practices. Back in Brazil, the root juice of E. scaber had already been consumed for years to heal liver troubles and hepatitis. [16] In China, a traditional herbal drink, which is made up of a few herbal products including *E. scaber*, had been claimed to protect the liver against cancer, hemangioma, fatty accumulation, and cirrhosis as well as for anti-hepatitis B.[17] This formulation was also named "Yi-Gan-Yin," which means "drink that is beneficial to the liver" to relate to its function.

Cissus quadrangularis is an evergreen climber growing to 5 m (16 ft) by .5 m (1.6 ft) at a fast rate. It is hardy to zone (UK) 10. Suitable for: light (sandy), medium (loamy) and heavy (clay) soils, prefers well-drained soil and can grow in nutritionally poor soil. Suitable pH: acid, neutral and basic (alkaline) soils and can grow in very acid and very alkaline soils. It cannot grow in the shade. It prefers dry or moist soil and can tolerate drought.

From the literature, it is evident that C. quadrangularis is used in the herbal formulation for the management liver health along with other herbs. $^{[18-19]}$ The stems are reported to possess potent hepatoprotective activity against toxic chemicals and antibiotics, especially Rifampicin $^{[20]}$ and Isoniazide. $^{[21]}$ The stems are also proven to protect against heavy metals such as lead. $^{[22]}$

The liver plays a pivotal role in the biological system that is responsible for the metabolism and clearance of drugs and xenobiotics, including ROS. The liver has become the central organ for detoxification as the liver cells (hepatocytes), the main components that make up the organ, contain a majority of enzymes responsible for the drug metabolism of the entire body. However, when the amount of drugs or xenobiotics encountered has exceeded the liver's maximum metabolic capability, the damaging effect of the toxins may lead to various liver ailments. Overconsumption of alcohol had been associated with a spectrum of liver injuries with varying degrees of severity, with some common pathology including steatosis, foamy degeneration, steatonecrosis, venous lesion, and cirrhosis. [23-25]

Since the liver is the first targeted organ for any drug molecules, there is a need to develop novel hepatoprotective agents and formulations to revert the normal physiology and functioning of the liver affected by xenobiotics, pollution, and alcohol consumption. The current investigation is taken up to evaluate the hepatoprotective potential of the fruits of *C. quadrangularis* in an alcohol-induced hepatotoxicity model in rats.

MATERIAL AND METHODS

MATERIALS

Experimental Animals

Adult Wistar albino rats of either sex, weighing 150-200g, inbred in the institutional animal house were used for the study. Animals were housed in polypropylene cages in a controlled environmental condition (22 \pm 3°C, 55 \pm 5% humidity, and a 12 hours light/dark cycle). The animals were fed with a standard rodent diet and water ad libitum. They were allowed to acclimatize to these conditions for one week.

METHODS

Plant Collection and Authentication

C. Quadrangularis Linn Fruits and Michelia Champaea Leaves were obtained from the local places of Tirupati, AP. C. Quadrangularis Linn Fruits was authenticated by Dr. K. Madhava Chetty, M.Sc., M.Ed., M.Phil., Ph.D., PG DPD., Assistant Professor, Department of Botany, Sri Venkateswara University, Tirupati, Andhra Pradesh.

Extraction by Maceration

Fresh leaves of M. Champaea and fruits of C. Quadrangularis Linn were washed with water to get rid of contaminants like dirt and other impurities and were shade-dried. These dried leaves and fruits were ground and sieved to get a uniform, coarse powder. Powdered plant material was weighed (1Kg) and is immersed in 95% ethanol and kept for maceration for 7 days with occasional stirring. On the 8^{th} day, the solvent was filtered by pressing with a muslin cloth and was evaporated in a rotary evaporator at 40° C. The resultant extract was put in a desiccator to remove any ethanol left in it. The dried ethanolic extract of M. Champaea (EEMC) and EECQ were packed in an air-tight bottle and put in a dry place for further studies.

Qualitative Evaluation of Phytoconstituents

The EECQ was screened for the presence of various phytoconstituents like carbohydrates, flavonoids, polyphenolic compounds, saponins, tannins, triterpenoids, etc.

Hepatoprotective Activity

Evaluation of Hepatoprotective Activity in Alcohol-induced Hepatotoxicity

Albino rats (Wistar Strain) of either sex weighing 150-200 g were selected and divided into five groups of six animals each.

Group I: Vehicle-treated rats were kept on a normal diet and controlled for 15 days.

Group II: Rats orally received 30% alcohol (1.5 mL/rat/twice a day) for 15 days.

Group III: Rats orally received Silymarin (25 mg/kg b.w/day) and alcohol as group II, for 15 days.

Group IV: Rats orally received *EECQ* (100 mg/kg b.w/day) and alcohol as group II, for 15 days.

Group V: Rats orally received *EECQ* (200 mg/kg b.w/day) and alcohol as group II, for 15 days.

During this period of treatment, the rats were maintained under normal diet and water. The blood was collected from the retro-orbital plexus of the rats of all groups 24 hours after the last dose administration, under light anesthetic ether. The blood samples are centrifuged at 3000 rpm for 30 minutes to separate the serum. The serum was analyzed for various biochemical parameters such as AST, ALT, ALP, ALB, BIT and BID. [26-27]

Their percentage protection was calculated using Auto analyzer. The liver was dissected out and subjected for morphological studies such as liver weight and liver volume of each animal. Further, the liver was placed in a 10% formalin solution for histopathological study.

In vivo Anti-oxidant Studies

Under *In vivo* anti-oxidant studies, Lipid peroxidase (LPO) activity, Reduced Glutathione

Catalase (CAT) activity was estimated.

Table 1: Results of Phytochemical screening of EECQ

	-	-
S. No	Name of the Phytochemical	EECQ
1.	Carbohydrates	+
2.	Amino acids	+
3.	Proteins	+
	Alkaloids	+
	Cardiac glycosides	+
6.	Triterpenoids	+
7.	Saponins	+
8.	Flavonoids	+
	Phenolic compounds	+
10.	Tannins	+
11.	Steroids	-
12.	Gums	-

Where, + means positive and - means negative.

Table 2: Effect of EECQ on Liver weight and liver volume in alcohol induced hepatotoxicity in rats

Group	Liver weight gm/100gm	Liver Volume ml/100gm
Control	3.68±0.08	6.92±0.15
Toxic control	4.82±0.10	8.92±0.05
Silymarin	3.81±0.08**	7.22±0.12**
EECQ (100mg/kg)	4.21±0.13*	7.58±0.11**
EECQ (200mg/kg)	4.11±0.13**	7.48±0.10**

Values are expressed as mean ± SEM; n=6

RESULTS

Preliminary Phytochemical Screening

Results of phytochemical screening were elucidated in Table 1.

The preliminary phytochemical screening showed various phytoconstituents like flavonoids, phenolic compounds, triterpenoids, tannins, saponins, amino acids, proteins, and carbohydrates in EECO.

Alcohol-induced Hepatotoxicity

Liver Weight and Liver Volume

Alcohol treatment in rats resulted in enlargement of the liver, which was evident by increased liver weight and volume. The groups treated with Silymarin showed good restoration of liver weight and liver volume, whereas test groups treated with EECQ and EEMC significantly affected liver weight and liver volume compared to the toxic control group. Results were shown in Table 2 and Figs. 1 & 2.

Effect of EECQ on SGOT, SGPT and ALP levels in Alcoholinduced Hepatotoxicity in Rats

Rats treated with alcohol developed significant hepatic damage observed as elevated serum levels of hepatospecific enzymes like serum glutamic pyruvic transaminase (SGPT), serum glutamic oxaloacetic transaminase (SGOT), and ALP compared to normal control. Treatment with

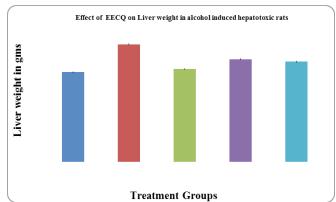
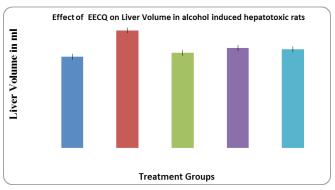



Fig. 1: Effect of EECQ on Liver weight in alcohol induced hepatotoxicity in rats

Fig. 2: Effect of EECQ on Liver Volume in alcohol induced hepatotoxicity in rats Bio chemical parameters:

^{*} $p \le 0.05$, ** $p \le 0.01$ and ***P < 0.001. Comparison with toxic control

Silymarin had shown good protection against alcoholinduced toxicity to the liver. Groups treated with EECQ and EEMC showed a significant effect which can be comparable with toxic control. Dunnet's test indicates a significant reduction in elevated serum enzyme levels with extract treated animals compared to toxic control animals. The results are shown in Table 3 and Fig. 3.

Effect on Total Bilirubin

The total bilirubin concentration was found to increase in animals with liver damage by alcohol. In the standard group, Silymarin administration reduced total bilirubin and animals treated with EECQ have exhibited dosedependent significant reduction in total bilirubin compared to the toxic control group.

Effect on Direct Bilirubin

Alcohol-treated groups significantly elevated direct bilirubin concentration in animals by inducing hepatic damage compared to normal animals. But treatment with standard drug Silymarin showed a good reduction in bilirubin level in respective groups. The results are shown in Table 4.

Effect on Albumin

Induction of liver damage by administration of alcohol significantly reduced serum albumin level in positive control group animals when compared to normal animals. But the treatment with Silymarin has shown a significant increase while EECQ has shown dose-dependent increase in serum albumin level compared to the toxic control group. Table 4 and Fig. 4.

In vivo Antioxidant Studies of EECQ

Values are represented as Mean ± SEM. Statistical analysis was done by one-way ANOVA followed by post

hoc Dunnett's multiple comparison tests. ***p < 0.0001, **p < 0.001, and *p < 0.05 vs Disease control

Antioxidant parameters like LPO, GSH, and CAT were also evaluated. Reduced activity of CAT and levels of GSH after treatment with Gentamicin suppresses endogenous enzymatic antioxidant machinery. Treatment with

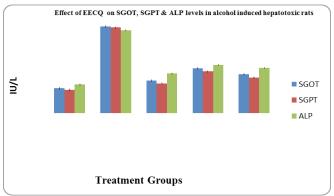


Fig. 3: Effect of EECQ on SGOT, SGPT and ALP levels in alcohol induced Hepatotoxicity in rats

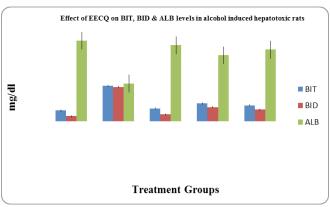


Fig. 4: Effect of EECQ on BIT, BID and ALB levels in alcohol induced hepatotoxicity in rats

 $\textbf{Table 3:} \ Effect \ of \ EECQ \ on \ SGOT, SGPT \ \& \ ALP \ levels \ in \ alcohol \ induced \ hepatotoxicity \ in \ rats$

Group	SGOT (IU/L)	SGPT (IU/L)	ALP (IU/L)
Control	113.15 ± 5.05	106.11 ± 4.13	130.75 ± 3.97
Toxic control	396.93 ± 0.93	391.77 ± 7.87	378.62 ± 3.59
Silymarin	148.22 ± 1.79**	135.39 ± 6.88**	181.04 ± 11.49**
EECQ(100 mg/kg)	205.24 ± 3.56**	190.47 ± 8.11**	220.35 ± 10.05**
EECQ (200 mg/kg)	177.30 ± 9.56**	162.25 ± 3.67**	206.69 ± 2.18**

Values are expressed as Mean ± SEM; n=6

Table 4: Effect of EECQ on LPO, GSH, and CAT

S.No	Treatment groups	Lipid peroxidation (in μM/mg tissue)	Reduced glutathione (in μM of GSH/mg tissue)	Catalase (in units/mg protein)
1.	Normal control	2.853 ± 0.087	4.227 ± 0.104	0.720 ± 0.049
2.	Disease control	5.233 ± 0.214	2.907 ± 0.136	0.450 ± 0.031
3.	Standard control	$2.965 \pm 0.1^{64***}$	$3.610 \pm 0.083^{***}$	$0.637 \pm 0.022^{**}$
4.	EECQ 100mg/Kg	$3.303 \pm 0.0^{82***}$	$3.550 \pm 0.109^{***}$	$0.598 \pm 0.032^*$
5.	EECQ 200mg/Kg	$3.590 \pm 0.08^{5**}$	$3.410 \pm 0.083^{**}$	$0.603 \pm 0.052^*$

^{*} $p \le 0.05$, ** $p \le 0.01$ and ***P < 0.001. Comparison with toxic control

EECQ increased the activity of CAT and levels of GSH significantly compared to the disease control animals. It was also observed that an increase in LPO in the disease group is due to altered antioxidant machinery and higher susceptibility towards oxidative damage. However, EECQ lowered LPO levels in EECQ treated groups. As per the findings, the secondary metabolites, flavonoids and phenolic compounds are present in the antioxidant plants.

DISCUSSION

Alcohol treatment in rats resulted in enlargement of the liver, which increased the liver weight (4.82 \pm 0.1) and volume (8.92 \pm 0.05). The groups treated with Silymarin showed good restoration of liver weight (3.81 \pm 0.08) and liver volume (7.22 \pm 0.12) whereas test groups treated with EECQ showed statistically significant (**p \leq 0.01) effect on liver weight and (4.11 \pm 0.13) and liver volume (7.48 \pm 0.10).

Rats treated with alcohol and paracetamol developed significant hepatic damage observed as elevated serum levels of hepatic specific enzymes like SGPT, SGOT and ALP when compared to normal control. Treatment with Silymarin had shown good protection against alcohol and paracetamol-induced toxicity to the liver. Groups treated with EECQ showed significant (** $p \le 0.01$) effects.

The total bilirubin and direct bilirubin concentration were found to increase whereas serum albumin levels were decreased in disease control. Silymarin and EECQ administration reduced bilirubin and direct bilirubin concentration in a dose-dependent manner and significantly increased serum albumin levels.

From the above results, it can be drawn that the fruits of *C. Quadrangularis* are good enough to restore the disrupted liver functions caused by environmental or drug induced liver damage.

CONCLUSION

The phytochemical tests indicated the presence of alkaloids, glycosides, tannins, and flavonoids in the crude methanolic extract. Several of such compounds are known to possess potent antioxidant activity. Some of these constituents have already been isolated from this plant. Hence, the observed antioxidant activity may be due to the presence of any of these constituents. Reactive oxygen species are an important cause for liver damage, ethanolic extraction of *C. Quadrangularis* with potent antioxidant properties, showing good hepatoprotective action. The chemical constituents present in the extract, which are responsible for this activity, need to be investigated, and it is obvious that the constituents like tannins, reducing sugars and proteins present in the extract, may be responsible for such activity.

REFERENCES

 Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and

- human disease. International Journal of Biochemistry and Cell Biology. 2007; 39(1):44-84.
- 2. Mena S, Ortega A, Estrela JM. Oxidative stress in environmental-induced carcinogenesis. Mutation Research. 2009; 674(1-2):36-44.
- 3. Chanda S, Dave R. In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: an overview. African Journal of Microbiology Research. 2009; 3(13):981-996.
- McGrath LT, McGleenon BM, Brennan S, McColl D, McIlroy S, Passmore AP. Increased oxidative stress in Alzheimer's disease as assessed with 4-hydroxynonenal but not malondialdehyde. QJM. 2001;94(9): 485–490.
- 5. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions. 2006; 160(1):1-40.
- Das SK, Vasudevan DM. Alcohol-induced oxidative stress. Life Sciences. 2007; 81(3): 177–187.
- Dancygier H, Seitz HK, Mueller S. Alcoholic Liver Disease, Springer, Berlin, Germany, 2010.
- Manjunatha BK, Mankani KL, Mukunda SK, Divakara R, Sridar BK, Paul K. "Antioxidant and hepato protective effect of Myristica malabarica seed aril extracts on carbon tetrachloride induced hepatic damage. Global Journal of Biotechnology & Biochemistry. 2011; 6(1):25–30.
- Kshirsagar A, Purnima A, Ingawale D, Vyawahare N, Ingale K, Hadambar A. Antioxidant and Hepatoprotective activity of ethanolic extract of *Calotropis gigantea* against paracetamol induced liver damage in mice. Journal of Cell and Tissue Research. 2009; 9(2):1859–1864.
- 10. Babu BH, Shylesh BS, Padikkala J. Antioxidant and hepatoprotective effect of Acanthus ilicifolius. Fitoterapia. 2001; 72(3):272–277.
- 11. Jain A, Soni M, Deb L. Antioxidant and hepatoprotective activity of ethanolic and aqueous extracts of Momordica dioica Roxb. leaves. Journal of Ethnopharmacology. 2008; 115(1):61–66.
- 12. Harish R, Shivanandappa T. Antioxidant activity and hepatoprotective potential of Phyllanthus niruri. Food Chemistry. 2006; 95(2):180–185.
- Yam MF, Basir R, Asmawi MZ, Rosidah, Ahmad M, Akowuah GA. Antioxidant and hepatoprotective activities of Elephantopus tomentosus ethanol extract. Pharmaceutical Biology. 2008; 46(3):199-206.
- 14. Lin CC, Tsai CC, Yen MH. The evaluation of hepatoprotective effects of Taiwan folk medicine "Teng-Khia-U". Journal of Ethnopharmacology. 1995; 45(2):113–123.
- 15. Tsai CC, Lin CC. Anti-inflammatory effects of Taiwan folk medicine "Teng-Khia-U" on carrageenan- and adjuvant-induced paw edema in rats. Journal of Ethnopharmacology. 1998; 64(1):85–89.
- 16. Hammer MLA, Johns EA. Tapping an Amazonian plethora: four medicinal plants of Marajo Island, Para (Brazil). Journal of Ethnopharmacology. 1993; 40(1):53–75.
- Li YY. 321 cases clinical observation of chronic hepatitis B and liver cirrhosis treated with "Yi Gan Yin". The Medicine Magazine of China. 2006; 3: 92–93.
- 18. Mukherjee Tanmoy, Saha Nabarun, Palbag Satadru. Ethnopharmacology, phytochemistry and pharmacology of ayurvedic plant hadjod - Cissus quadrangularis (L.) International Journal of Research in Ayurveda & Pharmacy. 2016; 7(4):78-83.
- Parasuraman S, Kumar EP, Kumar Anil, Emerson SF. Antihyperlipidemic effect of Triglize, a polyherbal formulation. International Journal of Pharmacy and Pharmaceutical Sciences. 2010; 2(3): 118-122.
- 20. Swamy AHM, Viswanatha, Kulkarni Rucha V, Koti BC, Gadad PC, Thippeswamy AHM, Gore Aparna. Hepatoprotective Effect of Cissus quadrangularis Stem Extract Against Rifampicin-induced Hepatotoxicity in Rats. Indian journal of pharmaceutical sciences. 2012; 74(2): 183-187.
- 21. Swamy AHM, Viswanatha, Kulkarni Rucha V, Thippeswamy AHM, Koti BC, Gore Aparna. Evaluation of hepatoprotective activity of *Cissus quadrangularis* stem extract against isoniazid-induced

- liver damage in rats. Indian Journal of Pharmacology. 2010; 42(6): 397-400.
- 22. Jayan Neethu, Susmita Das, Kumar R, Santhosh, Sabina Ep, Devi S, Asha. Hepatoprotective role of Cissus quadrangularis on lead acetate-induced liver injury in female wistar rats. Asian Journal of Pharmaceutical and Clinical Research. 2017; 10(11): 182-185.
- 23. Singh D, Gupta RS. Hepatoprotective Activity of Methanol Extract of *Tecomella undulata* against Alcohol and Paracetamol induced Hepatotoxicity in rats. Life Sciences and Medicine Research. 2011:26.
- 24. Auddy B, Ferreira M, Blasina F, Lafon L, Arredondo F, Dajas F, Tripathi PC, Seal T, Mukherjee B. Screening of Antioxidant Activity of Three Indian Medicinal Plants Traditionally used for the Management of Neurodegenerative Diseases. J Ethnopharmacol. 84:131-138.
- 25. Walker R, Cate W. Liver diseases. Clinical Pharmacy and Therapeutics. Churchill Living Stone: 4th edition; London, 2007, pp. 221-222.
- 26. Satyanarayana U, Chalrapani. Liver Function Tests. Fundamentals of Biochemistry Kolkata. 2006:453-458.
- 27. Deb AC. Liver Function Tests. Fundamentals of Biochemistry. 8th edition; Kolkata 2008; 6:581.

HOW TO CITE THIS ARTICLE: Jasti D, Darna B. Hepatoprotective Activity of Ethanolic Extract of Cissus quadrangularis linn Fruits in Alcohol-induced Liver Damage in Rats. Int. J. Pharm. Sci. Drug Res. 2021;13(3):275-280. DOI: 10.25004/IJPSDR.2021.130306

