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ABSTRACT
The aggregation of Amyloid beta peptides is considered as one of the causative events in the pathogenesis of Alzheimer’s 
disease (AD). Polyphenols present in different plant sources, which have acclaimed therapeutic values, are known to inhibit 
the formation of Amyloid fibrils. Hence, docking studies with different polyphenols were carried out to appreciate their 
binding modes and plausible molecular interactions. The results reveal a consensus pattern of association, exhibiting that all 
the ligands preferentially dock to the metal coordinating residues in the peptide fragments. In fact, the metal interacting 
geometries in the Aβ segments are known to be implicated in aggregation events. Further, due to non-specific binding, these 
polyphenols are expected to have a competitive inhibitory efficacy over a range of amyloid peptide fragments. Thus, these 
findings suggest that the polyphenolic compounds could become promising lead molecules that aid in the development of 
inhibitors and neuroprotectors towards prevention of amyloid fibril formations and AD.
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INTRODUCTION
Alzheimer’s disease (AD) is a brain disorder that is 
categorized by deterioration of neurons, and formation of 
amyloid plaques, neurofibrillary tangles, synaptic and 
memory loss and cognitive dysfunctions. [1] Amyloid Beta
(Aβ) peptide deposition is the major pathological feature of 
AD. Approximately 35 Million individuals worldwide are 
likely to be affected by AD growing propensity which is 
projected to double each 20 years and would touch 66 million 
by 2030. [2] Till date, the exact cause and cure are blurred and 
the increasing number of AD cases would thus prioritize the 
search for a proper diagnosis and precise cure. Despite 
deciphering the neuropathological events taking place during 
AD, the progression and initial trigger for the disease is 
unclear. Hence, effective prognosis and defined treatments 
are need of the hour. 
The neurotoxic effects of Aβ were first shown by Yankner et 
al [3] in rat hippocampal neurons in culture. Aβ when in 
solution exists in equilibrium between random coil and β-
sheet structures and enhances neurotoxicity. Studies indicate. 
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that Aβ peptides exhibit a transition from random coil to β-
sheet during fibrillation. [4-5] The β-sheet structure self 
assembles into fibrils [6] which can form soluble and insoluble 
aggregates. Experiments with Circular Dichroism (CD) 
spectroscopy, Electron Microscopy and Nuclear Magnetic 
Resonance [7] have been carried out so far for characterizing 
the structural conformations of Aβ. A hypothesis also 
suggests that aromatic stacking may play a role in 
acceleration of the assembly process in many cases of 
amyloid fibril formation. [8-9] Current drugs for AD aim 
across cholinergic and glutamatergic neurotransmission, 
showing developing indications but, their neuroprotective 
action is less understood. [10-11] Hence, there is a dire need to 
explore and screen compounds that could act as desirable 
neuroprotective agents.

Table 1: Details of Aβ Fragments with their sequence
Aβ 

Fragments 
(number of 
residues)

Molecular 
Weight in 

kilo 
Daltons

PDB ID Sequence Details

1-42 (42) 4.5 1IYT
DAEFRHDSGYEVHHQKL
VFFAEDVGSNKGAIIGLM

YGGVVIA

1-28 (28) 3.2 1AMC
DAEFRHDSGYEVHHQKL

VFFAEDVGSNK

1-16 (16) 1.9
Unpublis

hed
DAEFRHDSGYEVHHQK

1-12 (12) 1.4
Unpublis

hed
DAEFRHDSGYEV
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Phytochemicals are class of molecules found at high 
concentrations in tea, wine, berries, cocoa, and a wide variety 
of other plants, with diverse pharmacological properties. [12-

13] More than 8000 polyphenolic compounds have already 
been identified, and well characterized for their natural 
properties i.e. to protect plants from diseases and ultraviolet 
radiations, and protect the seeds till they germinate. [14]

MATERIALS AND METHODS
The protocol followed in the project is as illustrated in Fig. 1.
It is found that, some of the polyphenols present in plant 
sources have a promising role in the treatment of 
Neurodegenerative disorders and crosses the Blood brain 
barrier. [15-37]

        

Networking patterns were analyzed to derive the determinants of binding and suggest 
probable molecules as therapeutic leads and inhibitors

Docking of the 10 ligands with all the four peptide fragments were performed to appreciate 
various interactions

NMR structures for Four Aβ peptide fragments namely 1-42, 1-28, 1-16 and 1-12 were 
retrieved from PDB and unpublished sources

3D Structures of these 10 compounds were retrieved from NCBI-PubChem

10 Natural Polyphenolic compounds investigated for AD in in vitro studies were selected based 
on their passage across BBB

Fig. 1: Protocol of the Project

Fig. 2: Conformations of different Aβ Fragments:   (a) Amyloid beta 1-12 fragment   (b) Amyloid beta 1-16 fragment (c) Amyloid beta 1-28 fragment-
1AMC      (d) Amyloid beta 1-42 fragment -1IYT

Based on these illustrations in literature, 10 
pharmacologically relevant compounds were retrieved from 
NCBI (PubChem database) and selected for docking studies 
with the Aβ structural segments 1-42, 1-28, 1-16 and 1-12. 
The 3D coordinates for 1-42 and 1-28 peptide fragments 
were retrieved from NMR structures deposited in the Protein 

Data Bank (PDB), whose IDs are 1IYT and 1AMC 
respectively. Similarly, the 3D coordinates of 1-16 and 1-12 
segments were taken from the NMR structures solved by 
Narayan et al. [38] The amino acid compositions of the four 
peptides are provided in Table.1 and the conformations of the 
four Aβ peptide fragments are illustrated in (Fig. 2) 
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Naturally, the bigger fragment (1-42) exhibits regular 
secondary structural geometries. However, as the peptide 
length decreases, its structure diffuses into random coil folds. 
The properties and structures of the 10 polyphenols are 
tabulated in Table 2. Similarities in their geometries were 
analyzed using SPDBV tool via the RMSD calculations, and 
are tabulated in Table 3. The RMSD values between the 
various ligands indicated that the structures are three-
dimensionally similar, as their range lie in between 0.25 to 
1.04Å. All the polyphenols were converted into appropriate 
formats, suitable for docking exercises with                     
FlexX. [39] To determine all possible determinants of the 

peptide fragments, which would probably network with the 
ligands, non-covalent interactions like hydrogen bonds were 
analyzed around 5Å distances from the ligand/peptide atoms. 
The overall picture indicating the strengths of interactions are 
consolidated in Table 4. The set of residues in the peptide 
fragments 1-42, 1-28, 1-16 and 1-12 interacting with the 
polyphenols, are detailed in Table 5. These set of 
pharmacophoric interactions for different Aβ fragments 
would not only help in understanding as to why these 
selective polyphenols have similar binding patterns but also, 
aid in providing probable clues for designing a drug like 
molecule to inhibit AD.

Table 2: Structures and Properties of different ligands used in the study

Ligand Name 3D structure
Source                  

(common Name)
PubChem ID

Molecular 
Formula

Molecular 
weight 
(g/mol)

IC50 values 
(Aβ1-42 

Fragment)
References

Rosmarinic acid
Salvia officinalis

(Sage)
5281792 C14H12O3 360.31

1.1 [15,16,17]

Resveratrol
Vitis vinifera                            
( Red Grapes)

445154
C14H12O3 228.24

5.6 [17,18,19,20]

Myricetin Vitis vinifera                             
( Red Grapes)

5281672
C15H10O8 318.24

0.40 [17,21]

Quercetin
Vitis vinifera                             
( Red Grapes)

5280343
C15H10O7 302.24

0.72 [17,22]

Epigallocatechin 
gallate
(EGCG)

Camellia sinensis
(Green Tea)

65064
C22H18O11 458.37

0.18 [17, 23,24]

Nordihydroguaiaretic 
acid (NDGA)

Larrea tridentata
(Creosote  bush)

4534 C18H22O4 302.36
0.86 [17,25]

Kaempferol
Camellia sinensis

(GreenTea)
5280863 C15H10O6 286.24 3.2 [17,26]

Oleocanthal
Olea europea

(Olive Oil)
11652416

C17H20O5 304.34 N.A [27,28]

α-Mangostin
Garcinia 

mangostana
(mangosteen)

5281650
C24H26O6 410.46

N.A [29,30]

Curcumin
Curcuma longa

(turmeric)
969516 C21H20O6 368.38

0.63 [17,31,32]

Table 3: RMSD values between the Ligands
Polyphenolic 
Compounds 

(Ligands)

Rosmarinic 
acid             

(42 atoms)

Curcumin
(32 toms)

Oleocanthal
(42 atoms)

Mangostin
(53 atoms)

NDGA
(44 atoms)

Resveratrol
(29 atoms)

EGCG
(51 atoms)

Myricetin
(33 atoms)

Kaempferol
(31 atoms)

Curcumin 0.69 - - - - - - - -
Oleocanthal 0.71 0.65 - - - - - - -
Mangostin 0.75 0.59 0.85 - - - - - -

NDGA 0.86 0.83 0.94 0.54 - - - - -
Resveratrol 0.54 0.52 0.55 0.68 0.46 - - - -

EGCG 0.77 0.72 0.89 0.75 1.04 0.63 - - -
Myricetin 0.67 0.67 0.65 0.59 0.65 0.53 0.79 - -

Kaempferol 0.41 0.43 0.49 0.53 0.25 0.54 0.71 0.54 -
Quercetin 0.63 0.52 0.73 0.67 0.44 0.54 0.60 0.58 0.25
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Table 4: Strength of interactions of Aβ fragments with different ligands
# of  H-bonds 

within  5 Å
Rosmarinic 

acid
Quercetin Kaempferol Oleocanthal Mangostin Myricetin NDGA EGCG Curcumin Resveratrol

For 1-42 6 5 4 4 6 6 5 6 6 3
Strength of 
interaction

Very
Strong

Very
Strong

Strong Strong
Very

Strong
Very

Strong
Very 

Strong
Very 

Strong
Very

Strong
Less

Strong
For 1-28 5 9 7 7 5 5 5 10 9 9

Strength of 
interaction

Less
Strong

Very
Strong

Strong Strong
Less

Strong
Less

Strong
Less

Strong
Very 

Strong
Very

Strong
Very

Strong
For 1-16 7 7 5 6 4 8 5 7 6 8

Strength of 
interaction

Very
Strong

Very
Strong

Strong Strong
Less

Strong
Very 

Strong
Strong

Very
Strong

Strong
Very

Strong

For 1-12 7 6 5 7 5 5 5 6 8 6
Strength of 
interaction

Very
Strong

Very
Strong

Strong
Very

Strong
Strong Strong Strong

Very 
Strong

Very
Strong

Very
Strong

Table 5: Residues belonging to 1-42, 1-28, 1-16 and 1-12 fragments interacting with the ligands within 5Å
Residues Involved in 
ligand interactions 

(within 5Å)

Rosmarini
c- acid

Quercetin Kaempferol Oleocanthal Mangostin Myricetin
NDG

A
EGC

G
Curcu

min
Resveratr

ol

For 1-
42

S8 2.77 - - - 2.79 4.07 - - 5.00 -
G9 4.72 3.05 2.82 - 4.50 - 2.49 - - 2.70
Y10 - 2.57 3.77 - - - 2.76 - - 3.94
E11 4.13 4.35 - - 4.96 2.65 4.99 2.91 4.25 -
V12 3.00 - - 4.31 3.69 2.90 - 2.40 3.00 -
H13 - 2.51 2.51 3.65 - 5.00 3.19 4.30 5.00 2.70
H14 - 2.80 2.80 - - - 3.83 4.24 - -
Q15 2.68 - - 2.66 2.29 2.75 - 2.73 2.77 -
K16 3.18 - - 2.71 4.24 3.12 - 3.78 3.08 -

For 1 -
28

D1 - 2.62 - 4.23 - - - 2.79 3.27 2.76
A2 - 2.94 4.32 4.25 - - - 3.84 3.96 3.04
E3 - 4.25 - 4.73 - - - 4.53 4.02 4.83
F4 - 4.71 - - - - - 4.61 4.19 4.73
R5 3.14 - 2.48 - 2.72 2.98 2.51 3.31 3.17 3.72
H6 2.84 3.54 2.75 3.36 4.57 2.44 2.46 2.66 3.24 4.19
G9 2.74 2.68 2.74 2.74 2.85 2.70 3.09 2.64 2.73 2.76
Y10 3.44 3.60 4.27 4.07 4.59 3.53 4.29 3.80 3.71 4.43
E11 - 5.00 3.96 - - - - 4.77 - -
H13 3.21 3.16 3.14 3.08 2.78 2.71 4.79 3.26 3.33 2.71

For 1-
16

D1 - - 4.14 - 2.96 2.81 - 3.77 4.95 4.00
D7 2.96 4.53 - - - 2.79 3.01 2.52 - 2.81
G9 5.00 4.85 - 2.94 - 3.65 - - - 3.50
Y10 3.81 3.32 3.57 2.70 - 2.87 3.96 2.78 2.61 2.75
E11 5.00 5.00 3.06 2.98 - 4.78 - 4.97 4.73 5.00
H13 3.79 2.76 2.81 3.58 4.90 4.74 2.80 2.78 3.13 5.00
H14 2.73 2.66 3.77 2.76 3.13 2.90 3.30 2.58 2.68 2.85
Q15 3.59 2.74 - 3.04 2.95 3.59 2.62 2.46 4.07 3.31

For 1-
12

F4 3.13 - - 3.53 - - 2.95 - 4.83 4.75
R5 2.55 - - 2.79 - - 2.74 4.49 3.12 2.63
H6 4.55 3.00 2.20 4.84 2.85 2.63 4.68 2.71 4.71 4.54
D7 4.71 4.17 4.04 - 5.00 4.60 - 2.88 4.66 5.00
S8 4.99 3.05 3.04 4.04 4.31 2.68 - 3.35 4.78 4.51
G9 2.79 3.08 2.59 2.61 3.16 2.88 3.22 2.69 2.66 -

Y10 3.02 2.75 2.79 2.89 3.85 3.04 2.64 3.15 2.94 3.00

E11 - 5.00 - 4.79 - - - - 5.00 -

RESULTS AND DISCUSSIONS
The docking studies of various polyphenols to the fragments 
of Aβ reveal that the stretch of residues from Asp1 to Lys16 
in the various peptide segments, broadly interact with all the 
ligands and interestingly coincide with the key metal 
coordinating residues that are proposed to be responsible for 
initiation of aggregation events. As illustrated in the Tables 4 
& 5, the set of residues (S8, G9, Y10, E11, V12, H13, H14, 
Q15, K16) in Aβ1-42, the amino acids (D1, A2, E3, F4, R5, 
H6, G9, Y10, E11, H13) in Aβ1-28, the atoms in the peptide 
units belonging to (D1, A2, E3, F4, R5, H6, G9, Y10, E11, 
H13, H14, Q15) in Aβ1-16, and the molecular moieties (F4, 
R5, H6, D7, S8, G9, Y10, E11) of Aβ1-12, exhibit 
preferential binding to various polyphenols. All the 9 ligands, 
except Resveratrol, exhibits favored binding to 1-42 segment. 
Similarly, polyphenolic compounds Quercetin, Kaempferol, 

Oleocanthal, EGCG, Curcumin, Resveratrol display strong 
interactions with 1-28 peptide.  Likewise, for the fragment 1-
16 all the 9 ligands except Mangostin demonstrate good 
binding. Interestingly, the smallest fragments of the lot 
namely 1-12, indicate concerted binding for all the 10 
ligands. The results emphasize that, key residues namely G9, 
Y10, E11 are essential to bind to the polyphenolic ligands in 
all these peptide fragments. The study further signify that, the 
binding set of determinants common to all diverse ligands, 
could be exploited towards exploring these polyphenols as 
competitive inhibitors to facilitate prevention of aggregation 
events and AD. 
In conclusion, it is known that amyloid peptide fragments 
(Aβ1-12, Aβ1-16, Aβ1-28, Aβ1-42) are important for 
initiation of aggregation events in AD. Docking studies with 
the plant polyphenols demonstrate clear interactions with 
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metal binding moieties in the peptides, thereby offering 
promising leads towards development of therapeutics for 
Alzheimer’s disease.
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