

Contents lists available at UGC-CARE

International Journal of Pharmaceutical Sciences and Drug Research

[ISSN: 0975-248X; CODEN (USA): IJPSPP]

Available online at www.ijpsdronline.com

Research Article

A Stability Indicating Reverse Phase High Performance Liquid Chromatography Method for Simultaneous Estimation of Allantoin, Hydroquinone and Tretenoin in Cream Formulation

Raksha Shilu*, Pankaj Kapupara

School of Pharmacy, RK University, Tramba, 360020, Rajkot, Gujarat, India

ARTICLE INFO

Article history:

Received: 08 September, 2021 Revised: 06 February, 2022 Accepted: 19 February, 2022 Published: 30 March, 2022

Keywords:

Allantoin, Hydroquinone, RP-HPLC, Stability Indicating Method, Tretenoin.

DOI:

10.25004/IJPSDR.2022.140206

ABSTRACT

The present investigation deals with simple, sensitive, rapid, precise and accurate reverse phase high performance liquid chromatography (RP-HPLC) method developed and validated for simultaneous estimation of Hydroquinone, Allantoin and Tretenoin in a cream formulation. The chromatographic separation was achieved on a reversed-phase InertsilC $_{18}$ (4.6mm I.D. \times 250mm, 5µm) column using a mobile phase consisting of Buffer (pH 3.5) 0.05M Potassium dihydrogen ortho phosphate-Methanol (70:30% V/V) at a flow rate of 1-mL/min and UV detection at $\lambda_{\rm max}$ 223 nm. The method showed linearity with correlation coefficient of Hydroquinone, Allantoin and Tretenoin was 0.999, 0.999 and 0.999 over the range of 100–300 µg/mL, 50 to 150 µg/mL and 0.625 to 1.875 µg/mL, respectively. The mean recoveries were found to be 99.00 to 101.00% for all the components. The method was validated as per the ICH guidelines. The developed protocol was most accurate, repeatable, and detectable towards hydroquinone, allantoin and tretenoin in combination without any unwanted interference. When evaluated on various parameters like system suitability, precision, accuracy, linearity, robustness, stablity study, the method is efficient in separating the API from its degradants and can be utilized for analyzing the samples of hydroquinone, allantoin and tretenoin.

Introduction

A combine cream formulation of hydroquinone (2%), allantoin (1%) and tretenoin (0.012%) is available as cream formulation used in the treatment of Melasma disease. [1] Melasma is a common skin problem. The condition causes dark, discoloured patches on your skin.

Hydroquinone chemically benzene-1, 4-diol or quinol is an phenol type aromatic organic compound derived from benzene, having the chemical formula C_6H_4 (OH)₂ (Fig. 1). Hydroquinone is a topical *depigmenting agents* agent used in hyper pigmentation conditions. ^[2] It produces lightening of your skin by decreasing the number of melanocytes present or produced in your skin. ^[3] Allantoin is 2, 5-dioxo-4-imidazolidinyl-urea Allantoin is a skin protectant which works as a moisturizer and relieves minor skin irritations. ^[4] Allantoin is also known as

kerolytic molecules that remove warts, corns and horny layer of the skin. Tretenoin is a form of vitamin A that helps the skin to renew itself more quickly. It is used to treat Acne or skin disease such as wrinkles, dark spot and rough skin.

Hydroquinone and Allantoin is an official drug in USP while Tretenoin are official in both USP and BP. Literature revealed some analytical methods for the analysis of HQ either alone or in various combination^[6,7] including spectrophotometry^[8] and high performance liquid chromatography (HPLC).^[9-14] Literature study reveals that no stability indicating reversed phase-high

Fig. 1: Structure of Hydroquinone

Address: Department of Pharmaceutical Sciences, Saurashtra University, 360005, Rajkot, Gujarat, India

Email ⊠: raksha.shilu@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Raksha Shilu *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

^{*}Corresponding Author: Raksha Shilu

performance liquid chromatographic (RP-HPLC) methods are available for the estimation of hydroquinone, allantoin and Tretenoin combine formulation.

The aim of this present study was to develop and validate a stability indicating RP-HPLC method for simultaneous estimation of allantoin, hydroquinone and tretenoin in cream formulation. The stability studies of pharmaceutical products are one of the very important parameter for development of new drugs as well as new formulations. The shelf-life prediction is a major role for the pharmaceutical product development of all the dosage forms and also it is utilized to determine the particular storage conditions and to suggest label instructions. Stability studies of pharmaceutical products ensuring the maintenance of product quality, safety and efficacy throughout the shelf life are considered as pre-requisite for the acceptance and approval of any pharmaceutical products. [5]

MATERIAL AND METHOD

Chemicals and Reagents

Pharmaceutically pure samples of hydroquinone, allantoin and tretenoin were obtained as a gift sample from R.K. School of Pharmacy, Loba Chemical Private limited, Mumbai, and Abbott Pharmaceutical, Mumbai respectively. Acetonitrile and Methanol were obtained from Merck Specialties Private Limited, Mumbai and Molychem, Mumbai, respectively. HPLC grade water was obtained from Loba Chemie Pvt. Ltd., Mumbai and Astron Chemicals, Ahmadabad respectively.

Instrumentation

HPLC instrument having UV-Visible detector, Shimadzu: the separation was performed on InertsilC₁₈ (4.6 mm I.D. \times 250 mm, 5 μ m).

Buffer Preparation (0.05M potassium dihydrogen ortho phosphate, pH-3.5)

6.8 gm potassium dihydrogen ortho phosphate reagent was taken into 1000 mL volumetric flask. Then 800 mL water was added to dissolve and pH 3.5 was adjusted with

Fig. 2: Structure of Allantoin

Fig. 3: Structure of Tretenoin

1% Orthophosphoric acid. Finally, volume was made up to $1000\ mL$ with water.

Preparation of Standard Solution

Accurately weighted quantity of hydroquinone 200 mg, allantoin 100 mg and tretenoin 12.5 mg was transferred into different 100 ml volumetric flask to get concentration of hydroquinone 2000 μ g/mL, allantoin 1000 μ g/mL, tretenoin 125 μ g/mL.

Preparation of Combined Working Standard Solution

1-mL from hydroquinone, allantoin and tretenoin standard stock solution were taken in 10 mL volumetric flask and finally volume made up to 10 mL with mobile phase to get concentration hydroquinone 200 μ g/mL, allantoin 100 μ g/mL, tretenoin 1.25 μ g/mL.

RESULT AND DISCUSSION

Chromatographic Condition

The Chromatographic Separation was achieved on reverse phase inertsilc $_{18}$ (4.6 mm I.D. × 250 mm, 5 µm) column was used for Chromatographic Separation. Standard solutions of hydroquinone, allantoin and Tretenoin were injected in column with 20 µL micro-syringe. The chromatogram was run for appropriate minutes with mobile phase Buffer 0.05M potassium dihydrogen ortho phosphate (pH 3.5) Methanol in the ratio of 70:30 %V/V at a flow rate of 1-mL/min and UV detection at $\lambda_{\rm max}$ 223 nm. The chromatogram was stopped after separation achieved completely. Optimized Chromatographic Condition is shown in Table 1 and Fig. 4.

METHOD VALIDATION

Method was validated as per ICH guidelines. 15

System Suitability

The system suitability was assessed by triplicate analyses of the drugs at a concentration of 200, 100, 1.25 μ g/mL of hydroquinone, allantoin and tretinoin, respectively. System suitability parameters were shown in Table 2.

Table 1: Optimised chromatographic conditions

Parameter	Result
Mobile Phase	Buffer 0.05M potassium dihydrogen ortho phosphate (pH 3.5) Methanol in the ratio of 70:30 $\% V/V$
Column	Inertsilc ₁₈
Flow Rate	1-mL/min
Wave length	223 nm
Injection Volume	$20~\mu L$
Retention Time	Hydroquinone: 3.9 min Allantoin: 6.3 min Tretenoin: 8.6 min
Run Time	10 minutes

Table 2: System suitability parameter

Retention Time	Area	Height	Asymmetry	Efficiency	Resolution	
3.960	4129.144	593.185	1.346	7180	-	
6.330	5678.481	470.835	1.419	6371	9.402	
8.627	2138.884	140.765	1.382	7158	6.335	

Table 3: Linearity data

Hydroquinone (2%)		Allantoin (1%)		Tretenoin (0.0125%)	
Conc. (µg/mL)	Area	Conc. (μg/mL)	Area	Conc. (μg/mL)	Area
100	2052.146	50	2822.120	0.625	1061.556
150	3089.538	75	4248.805	0.937	1600.348
200	4132.373	100	5682.945	1.250	2140.578
250	5148.993	125	7089.343	1.562	2667.745
300	6128.679	150	8438.344	1.875	3175.369

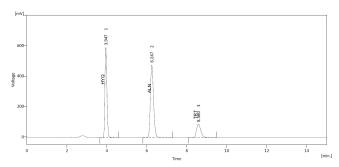


Fig. 4: Chromatogram of sample solution

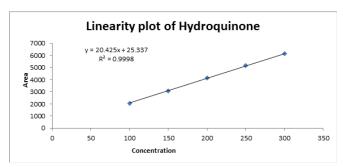


Fig. 5: Calibration curve hydroquinone X-axis: Concentration Y-axis:

Area

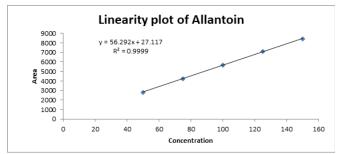


Fig. 6: Calibration curve allantoin X-axis: Concentration Y-axis: Area

Specificity

At the retention time of 3.9, 6.3 and 8.6 min, the proposed method was specific for the detection of hydroquinone, allantoin, tretinoin, respectively. There were no peaks

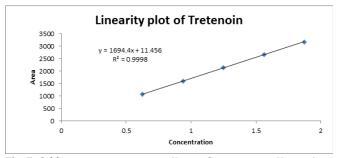


Fig. 7: Calibration curve tretenoin X-axis: Concentration Y-axis: Area

at the retention time of hydroquinone, hydrocortisone, tretnoin.

Linearity

Linearity was tested in the concentration range $\mu g/mL$ for 100, 150, 200, 250, 300 for hydroquinone 50, 75, 100, 125, 150 for allantoin 0.62, 0.93, 1.25, 1.56, and 1.87 for tretinoin. All the solutions were measured six times in accordance with the ICH. The typical table of linearity are shown in Table 3 and calibration curve shown in Figs. 5 to 6.

Precision

For repeatability standard solution containing hydroquinone (200 μ g/mL), allantoin (100 μ g/mL) and tretinoin (1.25 μ g/mL) were injected six times and area of peak were measured. For intraday precision, the solutions were analyzed six times on the same day and for interday precision, the solutions were analyzed six times on the different day and % RSD was calculated. Precision condition was shown in Table 4.

Accuracy

Recovery studies were carried out by applying the method to drug sample present in topical dosage form to which known amount of hydroquinone, allantoin and tretenoin corresponding to 80, 100, and 120% of label claim was added by standard addition method. Accuracy condition was shown in Tables 5 to 7.

	Drug	Concentration	Peak Area ± SD		%RSI)
Repeatability	Hydroquinone	200	4165.95 ± 0.773	3	0.769)
	Allantoin	100	5691.95 ± 0.670)	0.670)
	Tretenoin	1.25	2095.78 ± 0.547	7	0.556	ó
Intraday Precision	Hydroquinone	200	4127.63 ± 0.731	L	0.726	5
	Allantoin	100	5690.33 ± 0.601	L	0.600)
	Tretenoin	1.25	2108.37 ± 0.560)	0.560)
Interday Precision	Hydroquinone	200	4161.66 ± 0.810)	0.810)
	Allantoin	100	5670.71 ± 0.660)	0.660)
	Tretenoin	1.25	2078.52 ± 0.560)	0.510)
	Table 5:	Accuracy data for Hyd	roquinone			
Amt of hydroquinone present in sample (µg/mL)	Amt of std hydroquinone) added (µg/mL)	Total amount found (μg/mL)	%Recovery	Mean % recovery	SD	% RSD
100	80	79.398	99.247	99.351	0.763	0.768
100	80	78.917	98.646			
100	80	80.129	100.161			
100	100	99.662	99.662	99.375	0.975	0.981
100	100	100.170	100.170			
100	100	98.286	98.286			
100	120	119.446	99.539	99.087	1.132	1.143
100	120	117.358	97.798			
100	120	119.907	99.923			

Table 6: Accuracy data for Allantoin

Amt of Allantoin present in sample (µg/mL)	Amt of std allantoin added (μg/mL)	Total amount found (μg/mL)	% recovery	Mean % recovery	SD	% RSD
50	40	39.710	99.275	99.322	0.901	0.908
50	40	39.378	98.445			
50	40	40.099	100.247			
50	50	49.839	99.678	99.585	0.722	0.725
50	50	50.128	100.256			
50	50	49.410	98.820			
50	60	59.748	99.581	99.230	0.942	0.949
50	60	58.898	98.163			
50	60	59.968	99.946			

Table 7: Accuracy data for tretenoin

Table 7: Accuracy data for tretenoin						
Amt of tretenoin present in sample (μg/mL)	Amt of std tretenoin added (μg/mL)	Total amount found (mean) (μg/mL)	% recovery	Mean % recovery	SD	% RSD
0.625	0.5	0.498	99.543	99.452	1.096	1.102
0.625	0.5	0.492	98.313			
0.625	0.5	0.503	100.500			
0.625	0.625	0.624	99.919	99.563	1.132	1.136
0.625	0.625	0.628	100.474			
0.625	0.625	0.614	98.297			
0.625	0.75	0.748	99.794	99.511	0.832	0.836
0.625	0.75	0.739	98.574			
0.625	0.75	0.751	100.164			
0.625	0.75	0.751	100.164			

Limits of Detection and Quantification (LoD and LoQ)

The LoD values were found to be 3.75, 1.80, 0.02 for hydroquinone, allantoin and tretinoin, respectively. The LoQ values were found to be 11.37, 5.44 and 0.07 for hydroquinone, allantoin and tretinoin, respectively. LoD and LoQ condition are shown in Table 8.

Robustness

It was measured by changing pH, Ratio of mobile phase and flow rate. The pH of mobile phase was set at \pm 0.2, Ratio of Mobile phase was set \pm 5 mL and flow rate was set at \pm 0.2 mL/min. Solution of both the drugs was injected three times. Robustness condition was shown in Table 9.

Analysis of Marketed Formulation

Weight about 10 gm topical cream into a 100 mL volumetric flask. Add 60 mL methanol and put this volumetric on water

bath at 60°C for 15 minutes then allow cooling at room temperature. Shake for 15 minutes. Make up volume with methanol up to 100 mL. Filter this solution with what man filter paper no-1. So finally became hydroquinone-2000 $\mu\text{g/mL}$, allantoin-1000 $\mu\text{g/mL}$, and tretenoin-12.5 $\mu\text{g/mL}$. The results are shown in Table 10.

Force Degradation Studies

The drugs were intentionally degraded by treating with Acid, Base, Thermal, Oxidation and exposing to Sunlight condition. Degradation condition shown in Table 11 and Figs. 9–13.

Acid Degradation

For Acid Degradation for Blank, 2 mL 0.1N HCl and 2 mL 0.1N NaOH was taken and volume made up the volume 10 mL with mobile phase. For hydroquinone, allantoin

Table 8: LOD and LOO

1. Parameters	2. Allantoin	3. Hydroquinone	4. Tretenoin
Linearity range (μg/mL)	6. $100-300 \mu g/mL$	7. $50-150 \mu g/mL$	8. $0.6-1.8 \mu g/mL$
9. Correlation Co-efficient	10.0.999	11. 0.999	12.0.999
13. Slope Mean	14. 20.43	15.56.29	16.1694.41
17. SD of Intercept	18.23.23	19. 30.64	20.12.26
21. LOD	22.3.75	23.1.80	24.0.02
25. LOQ	26.11.37	27. 5.44	28.0.07

Table 9: Robustness Data

Change i	n flow rate	Buffer(pH	4) Methanol /80:20		pH 4	
Hydroqu	inone					
Level	Avg. Area ± SD	% RSD	Avg. Area ± SD	% RSD	Avg. Area ± SD	% RSD
+0.2	3920.75 ± 34.90	0.890	3908.60 ± 40.01	1.024	4107.04 ± 30.65	0.746
-0.2	4299.36 ± 37.19	0.865	4299.47 ± 43.93	1.022	4112.39 ± 42.16	1.025
Allantoin	1					
+0.2	5398.35 ± 40.79	0.756	5383.82 ± 40.41	0.751	5653.99 ± 51.17	0.905
-0.2	5901.31 ± 64.18	1.088	5924.16 ± 43.01	0.726	5653.44 ± 61.02	1.079
Tretenoi	n					
+0.2	2025.37 ± 20.79	1.026	2025.02 ± 20.18	0.997	2125.92 ± 25.72	1.210
-0.2	2221.20 ± 26.30	1.184	2225.33 ± 25.58	1.150	2128.26 ± 24.70	1.161

 Table 10: Analysis of marketed formulation

Drug	Label claim (%w/w))	Result (% w/w)	%Assay	Mean %Assay	%RSD
Hydroquinone	2	2.029	101.437	100.639	0.872
	2	1.994	99.698		
	2	2.016	100.780		
Allantoin	1	1.008	100.768	99.959	0.991
	1	0.989	98.854		
	1	1.003	100.254		
Tretenoin	0.0125	0.012	99.959	97.791	0.744
	0.0125	0.012	97.059		
	0.0125	0.012	97.798		

Table 11: Result of degradation study

		,	
	Hydroquinone	Allantoin	Tretenoin
Condition	% Drug degradation		
Acid	22.74	17.46	10.50
Base	14.17	11.91	20.45
Oxidation	12.28	25.57	18.66
Photo	16.36	20.25	8.82
Thermal	10.99	13.89	10.12

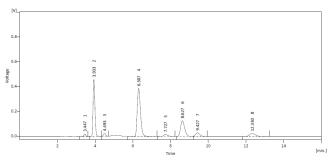


Fig. 8: Acid degradation study

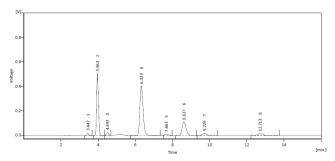


Fig. 9: Base degradation study

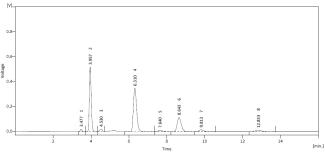


Fig. 10: Oxidative degradation study

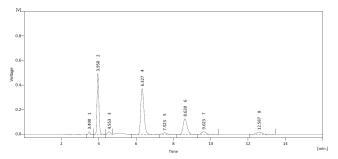


Fig. 11: Photo degradation study

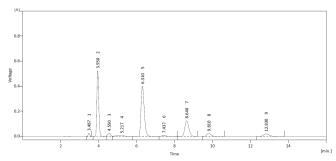


Fig. 12: Thermal degradation study

and tretenoin standard degradation, 1mL hydroquinone, allantoin and tretenoin stock solution was taken and 2 mL 0.1N HCl was added then kept for 5 hours and neutralize with 2 mL 0.1N NaOH to stop the degradation further. Finally, volume was made up to 10mL with mobile phase. For sample degradation also same procedure was followed.

Base Degradation

For Base Degradation blank preparation, 2 mL 0.1 N NaOH and 2 mL 0.1 N HCl was taken and volume makes up to 10 mL with mobile phase. For standard degradation, hydroquinone, allantoin and tretenoin were taken 1-mL from stock solution and 2 mL of 0.1N NaOH was added then kept for 3.5 hours and neutralize with 2 mL 0.1N HCl to stop the degradation further. Finally, volume was made up to 10 mL with mobile phase. For sample degradation also same procedure was followed.

Oxidation Degradation

For Oxidative Degradation blank preparation 2 mL of 3% $\rm H_2O_2$ was taken and volume made up to 10 mL with mobile Phase. For hydroquinone, allantoin and tretenoin, 1-mL stock solution was taken and 3% $\rm H_2O_2$ was added and kept for 3 hours. Finally volume was made up to 10mL with mobile phase. For sample degradation also same procedure was followed.

Thermal Degradation

For Thermal Degradation blank preparation, 2 mL mobile phase was kept at 105° C and then volume made up to 10 mL with mobile phase. For hydroquinone, allantoin and tretenoin, 1-mL stock solution were taken and kept at 105° C for 4.5 hours. Finally, volume was made up to 10mL with mobile phase. For sample degradation also same procedure was followed.

Sunlight Degradation

For Sunlight Degradation, 1-mL hydroquinone, allantoin and tretenoin were taken and kept at sunlight for 3.5 hours. Finally, volume was made up to 10 mL with mobile phase. For sample degradation also same procedure was followed.

CONCLUSION

The Results of our study indicate that the proposed stability indicating RP-HPLC Method is simple, rapid, precise and

accurate. This Method was developed and validated for the routine analysis of hydroquinone, allantoin and tretinoin in cream topical formulation. The result reveals that the proposed method could be successfully applied for the routine analysis and quality control of pharmaceutical dosage forms containing hydroquinone, allantoin and tretinoin. The mobile phase conditions were optimized so there was no interference from solvent and excipients. The mobile phase contains Buffer (pH 3.5) 0.05M Potassium Dihydrogen Ortho phosphate-Methanol in the ratio of 70:30% V/V at a flow rate of 1-mL/min was selected. To determine the appropriate wavelength for simultaneous estimation of hydroquinone, allantoin and tretenoin solution of these compounds in methanol were scanned in the range of 200 to 400 nm. From the overlay UV spectra it concluded that 223 nm was the most appropriate wavelength for analysis of all the drugs with suitable sensitivity. Statistical analysis proves that the method is repeatable and selective for the analysis of this cream formulation. The Method was found to be stable, as there was less degradation observed when the drug was stressed under accelerated conditions. It can therefore be concluded that use of the method can save much time and money and it can be used in small laboratories with very high accuracy and a wide linear range.

ACKNOWLEDGEMENT

We would like to express our gratitude to R. K. School of Pharmacy, Loba Chemical Private limited, Mumbai, Abbott Pharmaceutical, Mumbai for providing the gift samples. We would also like to acknowledge School of Pharmacy, RK University, Rajkot and Department of pharmaceutical sciences, Saurashtra University, Rajkot for providing the necessary infrastructure required to carry out the present research work.

REFERENCES

- Bandyopadhyay D. Topical treatment of melasma. Indian journal of dermatology. 2009; 54(4):303-9.
- 2. Godse KV. Triple combination of hydroquinone, tretinoin and

- mometasone furoate with glycolic acid peels in melasma. Indian journal of dermatology. 2009 Jan; 54(1):92.
- The United States Pharmacopoeia 35 and the National Formulary 30: The United States Pharmacopeia Convention. Rockville, MD, USA. 2007.
- 4. The British Pharmacopoeia. Her Magesty's Stationary Office, London, (2013); Electronic version.
- Aashigari S, Goud R, Sneha S, Vykuntam U, Potnuri NR. Stability studies of pharmaceutical products. World Journal of Pharmaceutical Research. 2018; 8(1):479-92.
- Poongothai G, Sripathi SK. Quantification Analysis of Allantoin in leaves, stem and roots of pisonia grandis R.Br by RP-HPLC.2013;5(8):2105-2108.
- 7. Shilu R, Kapupara P. A Stability Indicating Reverse Phase High Performance Liquid Chromatography Method for Simultaneous Estimation of Hydroquinone Hydrocortisone and Tretenoin in Cream Formulation. Journal of Pharmaceutical Research International.2021; 33(39B): 67-78.
- 8. Jogarami R, Jain P, Sharma S. Validated UV spectrophotometric method development for simultaneous estimation of tazarotene and hydroquinone in gel preparation. Journal of Pharmacy Research. 2012;5(4):2273-5.
- Kinjal S, Ketan S, Pankaj K.Development and Validation of Analytical Method for Simultaneous Estimation of Mometasone Furoate, Hydroquinone and Tretenoin in Topical Formulation by RP-HPLC. Journal Chem Pharma Res. 2014; 6(4):934-940.
- 10. Harikishor B, Suhail A. Devlopment of analytical method for simultaneous estimation of hydroquinone and Avobenzene in Pharmace-Utical Cream Formulation by RP-HPLC. International Journal of Pharmacy and Research.2017;10(1):320-332
- 11. Mustafa AM, Aziz ME. Determination of Hydroquinone in Skin Lightening Creams Sold in Sudan by Using High Performance Liquid Chromatography. The Journal of Middle East and North Africa Sciences. 2016 Jul;10(3924):1-5.
- 12. El Mubarak MA, Lamari FN, Kontoyannis C. Simultaneous determination of allantoin and glycolic acid in snail mucus and cosmetic creams with high performance liquid chromatography and ultraviolet detection. Journal of Chromatography A. 2013 Dec 27:1322:49-53.
- 13. George SK, Dipu MT, Mehra UR, Singh P, Verma AK, Ramgaokar JS. Improved HPLC method for the simultaneous determination of allantoin, uric acid and creatinine in cattle urine. Journal of Chromatography B. 2006 Feb 17;832(1):134-7.
- 14. Chinmoy R, Jitamanyu C, Stablity Indicating RP-HPLC Method Development And Validation for Determination of Potential Degradation Impurities of Tretenoin in topical Pharmaceutical Formulation. Pelagia Research Library, Der Pharmacia Sinica. 2013; 4(4):6-14.
- 15. ICH. Q2R₁, Guideline on Validation of Analytical Procedures, Text and Methodology.2005.

HOW TO CITE THIS ARTICLE: Shilu R, Kapupara P. A Stability indicating Reverse Phase High Performance Liquid Chromatography Method for Simultaneous Estimation of Allantoin, Hydroquinone and Tretenoin in Cream Formulation. Int. J. Pharm. Sci. Drug Res. 2022;14(2):195-201. DOI: 10.25004/IJPSDR.2022.140206