

Contents lists available at UGC-CARE

International Journal of Pharmaceutical Sciences and Drug Research

[ISSN: 0975-248X; CODEN (USA): IJPSPP]

Available online at www.ijpsdronline.com

Research Article

Clerodendrum infortunatum Attenuates Pancreatic Oxidative Stress and Dysregulated Carbohydrate Metabolism in Streptozotocininduced Experimental Diabetes

Jyothi S. Pillai¹, Padmakumaran Nair K G^{2*}, Nandakumar S³, Robin J Thomson⁴, Saumya S Pillai⁵

ARTICLE INFO

Article history:

Received: 16 June, 2022 Revised: 18 April, 2023 Accepted: 24 April, 2023 Published: 30 May, 2023

Keywords:

Diabetes mellitus, *Clerodendrum infortunatum*, Carbohydrate metabolism, Lipid peroxidation, Antioxidant enzymes.

DOI:

10.25004/IJPSDR.2023.150302

ABSTRACT

The prevalence of diabetes mellitus is increasing at an alarming rate and is gravely troubling human health and quality of life. Side effects of synthetic hypoglycemic agents have led to investigations on alternative sources such as herbal drugs in treating diabetes. Anti-diabetic properties of *Clerodendrum infortunatum* in streptozotocin-induced experimental diabetes were evaluated and compared with the standard anti-diabetic drug glibenclamide. Aqueous extract of *C. infortunatum* on carbohydrate metabolism revealed its hypoglycemic effect in diabetic conditions. Furthermore, it could significantly modulate insulin secretion, glycolysis, gluconeogenesis and glycogen metabolism for effective glucose homeostasis. Notably, the drug could accelerate the activities of major antioxidant enzymes and reduce the content of lipid peroxidation products in the pancreas. The study proves the efficacy of *C. infortunatum* as a potent source of phytochemicals in ameliorating diabetic complications and suggests the medicinal plant as a nutraceutical agent.

INTRODUCTION

Diabetes is one of the most widely occurring multifactorial human ailments characterized by disordered glucose metabolism and the worldwide prevalence has risen over the past two decades, leading to microvascular and macrovascular complications. [1] Obesity, change in food habits and physical inactivity are established as the risk factors for diabetes and comorbidities. According to World Health Organization (WHO) and the International Diabetes Federation, diabetes is the sixth leading cause of death worldwide and evidence suggest a predicted increase to 79.4 million diabetic patients in India by 2030. [2] Deficiency

of β -cells in the endocrine pancreas and sub-sensitivity of target cells to insulin lead to high concentrations of blood glucose and other biochemical abnormalities. Hyperglycaemia generates reactive oxygen species (ROS), causing cell damage and consequent secondary complications. [4,5]

Oxidative stress due to hyperglycemia causes tissue damage through multiple mechanisms such as increased flux of glucose and other sugars through the polyol pathway, increased intracellular formation of advanced glycation end products (AGEs), increased expression of the receptor for AGEs and its activating ligands,

*Corresponding Author: Dr. Padmakumaran Nair K G

Address: Department of Biochemistry, NSS College, Pandalam, Kerala, India.

Email ⊠: kgpknair@yahoo.com

Tel.: +91-9495461724

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2023 First Author *et al*. This is an open access article distributed under the terms of the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

¹Department of Physiology, Mannam Ayurveda Co-operative Medical College, Pandalam, Kerala, India.

²Department of Biochemistry, NSS College, Pandalam, Kerala, India.

³Department of Zoology, NSS College, Pandalam, Kerala, India.

⁴Department of Shalyatantra, Parul institute of Ayurveda, Vadodara, Gujarat, India.

⁵Department of Chemistry, NSS Hindu College, Changanassery, Kerala, India.

activation of protein kinase C isoforms, and over activity of the hexosamine pathway.^[6] The resulting abnormal carbohydrate metabolism will further contribute to pancreatic β cell dysfunction.^[7] Possibly due to low levels of antioxidant enzyme expressions, pancreatic β cells are more vulnerable to oxidative stress under diabetic conditions.^[8] Thus the development of type 2 diabetes is usually associated with the combination of pancreatic cell dysfunction and insulin resistance. [9] The available therapy for diabetics includes insulin and various oral anti-diabetic agents, such as sulfonylureas, biguanide, thiazolidinedione, and α glucosidase inhibitors. $^{[\bar{1}0]}$ These agents, however, have restricted usage due to several undesirable side effects. Therefore, finding alternative anti-diabetes agents, especially natural ones, is desired. [11] Traditional medicinal plants have lesser adverse effects with multiple therapeutic actions due to the presence of different bioactive compounds.^[12] Studies have proved that plants are exemplary sources of drugs in the treatment of diabetes. [13] Indian medicinal plants have always been a major component in the formulations of Ayurveda and Siddha medicines to successfully manage diabetes.

Clerodendrum infortunatum is a small shrub occurring throughout India's plains, traditionally used for medications. The plant is reported to have antihyperglycemic, antiinflammatory, antimicrobial, antioxidant, anticonvulsant, analgesic, hepatoprotective, wound healing, anticancer and nootropic properties.^[14] It is a common and widely used medicinal plant in Avurveda, Homeopathy, Siddha, Unani and other traditional systems of medicine. Tribes mainly use this plant for the treatment of colic, scorpion sting, snake bite, tumors and certain skin diseases. Numerous studies have reported the free radical scavenging and antioxidant activity of various parts of CI.[15-21] Evidence shows that leaf extract of CI possesses antidiabetic properties and the bioactive phytochemical was identified as pheophytin. [22] Furthermore, the methanolic leaf extract of CI has been reported to have remarkable preclinical antihyperglycemic activity in streptozotocin (STZ)-induced diabetic rats.^[23] The extract administration improved the antioxidant status and decreased lipid peroxidation in diabetic animals. CI was also reported to have the potential to reduce testicular damage in diabetic rats. [24] CI's hypoglycemic and hepatoprotective role has already been demonstrated in STZ-induced diabetic rats.[25] Numerous studies have demonstrated the effect of various plant extracts on carbohydrate metabolism and pancreatic oxidative stress to establish the anti-diabetic potentials of medicinal plants. [26-30] Even though previous studies have shown the anti-diabetic properties of CI, the effect of CI on defective carbohydrate metabolism and pancreatic oxidative damage during diabetes has not been elucidated well.

For centuries, plants have served as a natural source of phytochemicals that aid in treatments and therapies. Plantbased pharmaceuticals help to combat life-threatening

illnesses in a safe, efficient and cost-effective way. The popularity of herbal medicines is increasing day by day for pharmaceutical companies all over the world and they are constantly looking for potential bioactive compounds from medicinal plants for the development of novel antidiabetic drugs with minimum side effects. As discussed in the previous section, CI possesses remarkable medical properties that highlight the pharmaceutical importance of the plant. Of note, CI has been used as an active ingredient in various Ayurvedic formulations such as Rasnadi ghritam, Agastva rasavana, Vathapy capsule, Bala oil, etc. Hence, in light of the aforementioned previously published articles, the present study aims to evaluate the effect of aqueous extract of CI on glucose metabolism and pancreatic oxidative stress in STZ-induced experimental diabetes. The study should facilitate to reveal the pharmacological potency of CI in diabetic conditions and can be used as an alternative solution for drugs having adverse effects. Further confirmation in clinical trials will contribute to the development of novel pharmaceuticals from CI for therapeutic intervention of diabetes.

MATERIALS AND METHODS

Chemicals

Chemicals were of analytical grade and procured from Sigma Aldrich, USA and SRL Pvt. Ltd. Mumbai, India.

Plant Material and Extraction

CI whole plant was collected from Pandalam, Kerala. Its botanical identity was confirmed by Dr. Mathew Dan, Scientist E1, Plant Genetic Resource Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute. A voucher specimen (No.60694) has been deposited in JNTBGRI, Palode, Thiruvananthapuram. CI whole plant was washed, shade dried and coarse powdered. Both aqueous and hexane extract were prepared and phytochemical analysis was done. Phytochemical analysis revealed the rich composition of phytoconstituents in aqueous extract than hexane extract and hence aqueous extract of the plant (200 and 400 mg/body weight) was selected for further detailed study in experimental diabetic animal models.

Animals and Experimental Design

Male albino rats (Wistar) of body weight 200 to 250 g, were used for the study. They were provided with laboratory chow (Hindustan Lever Lab diet, India) and water *ad libitum* throughout the experimental period. The rats were housed in a room with a temperature maintained at $23 \pm 1^{\circ}\text{C}$ and 12 hours of light and dark cycles. The relative humidity of $50 \pm 10\%$ and ventilation frequency of 10 to 30 times per hour were maintained. The animals were acclimatized under laboratory conditions for two weeks before the experiments. Institutional guidelines were strictly followed throughout the study for animal experimentation and handling in conformity with the

directions given by the Government of India for the use and care of laboratory animals (Approved by Institutional Animal Ethics Committee CKL/TOX/IAEC/40-2014)

Rats were made diabetic by giving a single intraperitoneal injection of STZ (40 mg/kg body weight in 0.1M citrate buffer - pH 4.5). The animals were allowed to drink 5% glucose solution overnight to overcome the druginduced hypoglycemia. Animals with fasting blood glucose between 200 to 250 mg/dl, three days after streptozotocin administration were considered diabetic and were selected for the study. Animals were divided into 5 groups with 6 rats each. Group I -normal rats (Vehicle control); Group II - STZ-induced diabetic rats; group III -STZ-induced diabetic rats supplemented with glibenclamide (600 µg/kg body weight); Group IV and group V -STZ-induced diabetic rats supplemented with CI water extract at the doses 200 and 400 mg/kg body weight, respectively. The experimental duration was 40 days. At the end of the experimental period, animals were sacrificed and blood and tissues were collected for further analysis.

Biochemical Parameters

Blood glucose estimation was done by the method described by Hugget and Nixon. [31] Pyruvate kinase (PK) activity assay was done by following the method described by Malcovati and Valentini^[32] and hexokinase (HK) activity was estimated by the method of Crane and Sols.[33] The glycogen content was estimated by the method of Carroll et al.[34] phosphoglucomutase (PGM) enzyme activity was measured by the method of Najjar. [35] The method described by Sutherland estimated glycogen phosphorylase (GP) activity. [36] Catalase (CAT) activity was measured by the method of Maehly and Chance. [37] and superoxide dismutase (SOD) activity was measured by the method described by Kakkar et al., [38] glutathione peroxidase (GPx) activity was estimated by the method of Agerguard and Jence, [39] glutathione Reductase (GRd) activity by the procedure of David and Richard [40], and the glutathione content (GSH) by the procedure of Patterson and Lazarow.^[41] Thiobarbituric acid reactive substances (TBARS) were estimated by the method described by Okhawa et al.[42] Hydroperoxides (HP) and conjugated dienes (CD) were estimated by the method of John and Steven.[43] Oral glucose tolerance test (OGTT)was done according to the procedure of Nayak. [44] It was done using diabetic rats treated with 100, 200 and 400 mg of water extract of CI and it was done on the 45th day of treatment. After overnight fasting of 12 hours, the animals were administered glucose (2 g/kg body weight) and blood samples were collected from tail tip incision at 0, 30, 60, 120 and 240 minutes after glucose administration. Blood glucose was estimated by using a glucometer (Accu-check, Roche).

The pancreas was preserved in 10% buffered formalin. The sections were stained with hematoxylin and eosin. Normal micro technique procedure was followed for microscopic preparation as described by Disbrey and Rack.^[45]

Statistical Analysis

All analyses were subjected to statistical analysis using the statistical package SPSS/PC + Version 17 (SPSS Inc, Chicago, IL, USA). Data were analyzed by one-way analysis of variance (ANOVA). All the results were expressed as mean value ± SD. Duncan's multiple range test made pairfed comparison between the groups. *p-values* of 0.05 or less were considered significant.

RESULTS AND DISCUSSION

Diabetes mellitus (DM) is a heterogeneous metabolic disorder characterized by hyperglycemia with derangement of carbohydrate metabolism resulting from defective insulin secretion, insulin action, or both. Increased free radical generation and oxidative stress are hypothesized to play an important role in the pathogenesis of diabetes and its late complications. Pancreatic beta cells are among the most metabolically active tissues within the human body, and they are highly dependent on oxidative metabolism and elevated glucose concentrations. [46,47] Thus the altered metabolic function along with abnormal pancreatic oxidative stress, will further complicate diabetes-associated pathologies. Over the past decade, the use of complementary and alternative medicines for the management of diabetes has greatly increased around the world. Hence the present study evaluated the effect of an aqueous extract of CI on carbohydrate and oxidative metabolism in experimental diabetic animals.

Blood Glucose and Glycolytic Enzymes Level

In diabetes, tissue does not utilize blood glucose, resulting in hyperglycemia through pancreatic burnout and insulin resistance. [48] The decreased levels of PK and HK result in diminished utilization of glucose and increased amounts of blood glucose. [49] Increased activity of HK and PK results in the activation of glycolysis, leading to greater glucose uptake from the blood by the liver cells and an increase in the utilization of glucose for energy production. In agreement with these reports, STZ-induced diabetic rats in the present study also showed significantly high glucose levels. Likewise, the glycolytic enzyme activities decreased in diabetic rats when compared to normal rats. Administration of an aqueous extract of CI at a dose of 400 mg/kg body weight and glibenclamide significantly reduced the blood glucose level (Fig. 1) and increased the activity of glycolytic enzymes (Table 1). The observed beneficial effects of CI in modulating glucose levels and glycolytic enzyme activities clearly establish the hypoglycemic potential of CI in experimental diabetes.

Histopathological Studies

Table 1: Activity of pyruvate kinase and hexokinase

Groups	Pyruvate kinase (U/mg protein)	Hexo kinase(U/mg protein)
Group I	17.18 ± 1.67 ^a	1.93 ± 0.17 ^a
Group II	2.81 ± 0.26^{b}	0.93 ± 0.06^{b}
Group III	10.18 ± 0.93^{c}	1.52 ± 0.13^{c}
Group IV	4.52 ± 0.37^{d}	1.11 ± 0.09^d
Group V	8.57 ± 0.79^{e}	1.42 ± 0.12^{e}

Results are expressed as mean \pm SD Values with same superscript do not differ significantly. Significance accepted at p < 0.05

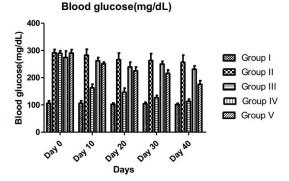


Fig. 1: Serum glucose level. Results are expressed as mean ± SD.

Glycogen Content and Glycogen Metabolism Enzyme Activities

Glycogen is mainly stored in the liver and muscles as stored form of glucose and provides the body with a readily available source of energy if blood glucose levels decrease.^[50] The rate of glycogen synthesis is impaired in type 2 diabetes and evidence shows that in diabetic conditions, the glycogen content is low in the liver and skeletal muscle, which can be due to the excessive breakdown of glycogen.^[51] Also, due to diminished insulin secretion, excess blood glucose can't be stored as glycogen by the liver and skeletal muscles. The activity of glycogen synthase (GS), the rate-limiting enzyme for glycogen synthesis, is reduced in type 2 diabetes. [52,53] Consistent with these reports, the results from present study also showed a dysregulated glycogen metabolism in diabetic rats. Administration of water extract of CI (400 mg/ kg body weight) and glibenclamide significantly increased the hepatic and muscle glycogen content compared to diabetic rats (Table 2). Glycogen phosphorylase (GP) and phosphoglucomutase (PGM) are important enzymes in glycogen metabolism. GP catalyzes the rate-limiting step in glycogenolysis in animals by releasing glucose-1phosphate from the terminal alpha-1,4-glycosidic bond. GP is regulated by both allosteric control and phosphorylation. [54] PGM is a highly polymorphic enzyme that plays a key role in glycogen metabolism. The decreased glycogen content with increased GP and decreased PGM results in diabetic conditions. The results of the present study are in line with these reports. Administration of CI and

Table 2: Glycogen content

Groups	Skeletal muscle (mg/g tissue)	Liver (mg/g tissue)
Group I	42.13 ± 3.91 ^a	9.53 ± 0.81 ^a
Group II	11.78 ± 1.31 ^b	1.88 ± 0.09^{b}
Group III	36.15 ± 3.32 ^c	7.13 ± 0.61^{c}
Group IV	20.56 ± 1.88 ^d	3.15 ± 0.26^d
Group V	29.17 ± 2.53 ^e	5.93 ± 0.52 ^e

Results are expressed as mean ± SD Values with same superscript do not differ significantly. Significance accepted at p < 0.05

glibenclamide significantly decreased the activity of GP and increased the activity of PGM in treated diabetic rats (Table 3). These results explore the role of aqueous extract of CI in the regulation of glycogen metabolism.

Oral Glucose Tolerance Test

Oral glucose loading raises blood glucose levels temporarily without damaging the pancreas. Hence, the therapeutic potential of the extract in the management of diabetes can be demonstrated by its blood glucose-lowering efficacy on orally glucose-loaded mice. In the present study oral glucose tolerance test was conducted, using diabetic rats treated with 100, 200 and 400 mg/body weight of water extract of CI, to confirm the hypoglycemic effect of CI. It was found that CI (400 mg/kg body weight) could significantly control the blood glucose level in GTT. The maximum reduction was observed in 240 min (Fig. 2).

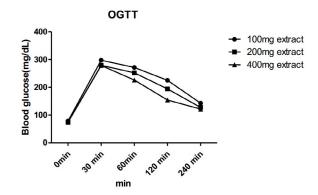


Fig. 2: Oral glucose tolerance test. Results are expressed as mean ± SD

Table 3: Activities of glycogen phosphorylase and phosphoglucomutase

Groups	Glycogenphosphorylase (U/mg protein)	Phosphoglucomutase (U/mg protein)
Group I	128.13 ± 11.92 ^a	9.95 ± 0.93 ^a
Group II	221.56 ± 19.91 ^b	1.12 ± 0.09^{b}
Group III	156.52 ± 14.88 ^c	7.91 ± 0.73 ^c
Group IV	195.69 ± 19.13 ^d	3.78 ± 0.33^d
Group V	175.77 ± 17.07 ^e	5.83 ± 0.54 ^e

Results are expressed as mean ± SD Values with same superscript do not differ significantly. Significance accepted at p<0.05

Insulin Levels

Insulin is a key player in the control of intermediary metabolism and it has profound effects on both carbohydrate and lipid metabolism. Consequently, derangements in insulin signalling have devastating effects on many organs and tissues that will ultimately result in various metabolic abnormalities.^[55] Glucose is the primary physiological stimulus for the regulation of insulin synthesis in the pancreatic β cells.^[56] In the present study, the level of insulin was significantly low in diabetic rats compared to normal rats. Supplementation of glibenclamide and aqueous extract of CI could significantly increase the level of insulin in the treated group when compared to the diabetic group. This shows the stimulatory effect of CI on insulin production by the pancreas and supports previous findings of the effect of CI on glucose and glycogen metabolism (Table 4). [57,58]

Activities of Gluconeogenic Enzymes

Fructose-1,6-bis phosphatase (F-1,6-BP) and glucose-6-phosphatase (G-6-P) are regulatory enzymes of the gluconeogenic pathway. G-6-P regulates the final step of glucose production in the liver and kidney by catalysing the dephosphorylation of glucose 6 phosphate to free glucose. [59] F-1,6-BP catalyses the dephosphorylation of fructose 1,6 bis phosphate to fructose-6-phosphate. [60] The activities of these enzymes increase in diabetic conditions resulting in a decrease in glycolytic flux. [61] The results from the present study are in agreement with this factor. While oral administration of aqueous extract of CI at a dose of 400 mg/kg body weight and glibenclamide significantly decreased the activity of F-1,6-BP and G-6-P in treated diabetics (Table 5). These results clearly highlight the effect of CI on the activities of gluconeogenic enzymes.

Pancreatic Antioxidant Enzyme Activities and Reduced Glutathione Content

Oxidative stress, caused by a relative overproduction of reactive oxygen species (ROS), plays a key role in the pathogenesis of late diabetic complications. ^[62] In addition to an increase in ROS, a decrease in antioxidant enzyme activities occurs in diabetes mellitus. The present results were in line with these reports. Activities of major antioxidant enzymes like CAT, SOD, GPx, GST and GRd were significantly decreased in the pancreas of diabetic

Table 4: Insulin level

Plasma insulin (μIU/ml)
3.37 ± 0.56 ^a
0.20 ± 0.08 b
2.95 ± 0.58 ^c
0.85 ± 0.24^{d}
2.15 ± 0.39 ^e

Results are expressed as mean \pm SD Values with same superscript do not differ significantly. Significance accepted at p<0.05

Table 5: Activities of gluconeogenic enzymes

Groups	Fructose-1,6-bisphosphatase (U/mg protein)	Glucose-6-phosphatase (U/mg protein)
Group I	17.12 ± 1.69 ^a	158.13 ± 15.12 ^a
Group II	28.17 ± 2.32 ^b	228.53 ± 21.53 ^b
Group III	20.15 ± 1.93 ^c	178.15 ± 17.15 ^c
Group IV	25.73 ± 2.48 ^d	203.56 ± 19.98 ^d
Group V	22.59 ± 2.11 ^e	188.72 ± 18.23 ^e

Results are expressed as mean \pm SD Values with same superscript do not differ significantly. Significance accepted at p < 0.05

rats when compared to normal. Administration of CI and glibenclamide significantly increased the activities of antioxidant enzymes (Table 6). GSH is a major endogenous antioxidant that counteracts free radical-mediated damage. In the present study, GSH level in the pancreas was decreased significantly in diabetic rats. However, the administration of 400 mg aqueous extract of CI and glibenclamide increased the GSH levels (Table 6). This indicates the antioxidant protection offered by CI in diabetic conditions which is in concordance with previous reports.^[63]

Pancreatic Lipid Peroxidation Products Concentration

Free radicals derived from oxygen have been implicated in the pathophysiology of various diseases including diabetes mellitus. Because of their highly unstable nature, free radicals are difficult to measure directly. So levels of various lipid peroxidation products have been used as an indicator of free radical activity. The dysregulation of antioxidant defences during diabetes may lead to disruption of cellular function, cause oxidative damage to membranes and enhance susceptibility to lipid peroxidation. Auto oxidation of glucose can also promote free radical formation in diabetes.^[64] Damage of enzymes and increased insulin resistance, resulting from the free radical formation in diabetes, may further lead to non-enzymatic glycation of proteins, glucose oxidation and increased lipid peroxidation. [65] The increased concentration of lipid peroxidation products and increase in oxygen free radicals could be due to their increased production or decreased destruction. [66] In line with these reports, in the present study, the concentration of lipid peroxidation products such as TBARS, HP and CD were significantly elevated in the pancreas of the diabetic group when compared to the normal group (Table 7). However, the treatment with CI (400 mg/kg body weight) and glibenclamide significantly reduced the concentration of lipid peroxidation products compared to the diabetic rats. Thus, CI could effectively protect the pancreas from oxidative damage induced by diabetic stress signalling.

Histopathological Analysis of the Pancreas

During diabetes, the pancreatic islets show various histology abnormalities that reflect their functional

Table 6: Activities of antioxidant enzymes in pancreas

Groups	CAT	SOD	GRd	GPx	GSH
Group I	13.15 ± 0.98 ^a	27.15 ± 1.92 ^a	22.53 ± 2.01 ^a	28.52 ± 2.23 ^a	310 ± 27 ^a
Group II	5.34 ± 0.47^{b}	8.23 ± 0.72^{b}	9.52 ± 0.85^{b}	11.43 ± 0.95 ^b	99 ± 8.7 ^b
Group III	7.11 ± 0.68^{c}	15.15 ± 1.10 ^c	12.73 ± 1.02 ^c	16.74 ± 1.32 ^c	143 ± 13.52 ^c
Group IV	8.07 ± 0.75^{d}	17.77 ± 1.30^{d}	15.77 ± 1.14 ^d	19.53 ± 1.59 ^d	175 ± 15.43 ^d
Group V	9.92 ± 0.93 ^e	22.16 ± 1.98 ^e	18.99 ± 1.29 ^e	23.43 ± 2.04 ^e	249 ± 19.72 ^e

Results are expressed as mean ± SD Values with same superscript do not differ significantly. Significance accepted at p < 0.05

Table 7: Activities of lipid peroxidation products in pancreas

Groups	TBARS (mM/100 g tissue)	HP (mM/100 g tissue)	CD (mM/100 g tissue)
Group I	0.72 ± 0.06^{a}	112.53 ± 10.77 ^a	27.52 ± 2.23 ^a
Group II	3.15 ± 0.22^{b}	215.00 ± 19.43 ^b	67.00 ± 5.99^{b}
Group III	2.42 ± 0.19^{c}	174.52 ± 15.92°	51.12 ± 5.11 ^c
Group IV	2.19 ± 0.17^{d}	161.74 ± 14.93 ^d	43.47 ± 3.98^{d}
Group V	1.98 ± 0.11 ^e	142.00 ± 13.74 ^e	37.19 ± 2.93 ^e

Results are expressed as mean ± SD Values with same superscript do not differ significantly. Significance accepted at p<0.05

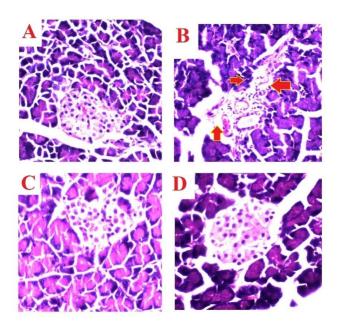


Fig. 3: Histopathological analysis of pancreas. Six experiments were performed and that the given pictures are a representative of these experiments. Photomicrograph of pancreas stained with hematoxylineosin. (A) Normal rats: Normal histology of pancreas. Healthy Islets of Langerhans with more number of β cells.(B). Streptozotocin induced diabetic rats: Islets of Langerhans lost it's normal architecture. Inflammatory and necrotic changes are observed in β cells. (C) Diabetic rats given glibenclamide (600 $\mu g/kg$): Near normal histology of pancreas with moderate number of β cells. Inflammatory and necrotic changes were significantly reduced in β cells. (D) Diabetic rats given 400 mg/ kg water extract of CI: Near normal histology of pancreas with moderate number of β cells. Inflammatory and necrotic changes were significantly reduced in β cells.

irregularities. Studies have shown that diabetes will cause the destruction of pancreatic islets that results in a reduction in the number of β cells. [67,68] In addition, evidence shows that STZ administration can induce pancreatic β-cell destruction in rats that leads to defective insulin secretion. [69,70] In accordance with these studies, in the present study, the pancreas of STZ-induced diabetic rats lost its normal architecture of islets of langerhans with less number of β cells. Inflammatory and necrotic changes were also observed in β cells of diabetic rats. In contrast, the pancreas of normal rats showed healthy islets of langerhans with more β cells. The pancreas of glibenclamide and CI-treated rats showed near-normal histology of the pancreas with a moderate number of β cells. The inflammatory and necrotic changes were significantly reduced in β cells of drug-treated rats. The results are shown in Fig. 3.

Hence, the present study's results demonstrate CI's antidiabetic properties and explore its effect on carbohydrate metabolism and pancreatic oxidative status. The overall effect was comparable with the glibenclamide-treated group. The observed beneficial effects can be due to the synergistic effect of various phytochemicals in the extract. Detailed studies are warranted to elucidate CI's detailed cellular and molecular mechanism of action on diabetic stress signaling pathways. The findings may help to develop potential pharmaceutical formulations that can prevent the progression of various diabetic complications.

ACKNOWLEDGMENT

The animal study facilities provided by Care Keralam Ltd, Koratty, Thrissur, Athmic Lab, Thiruvananthapuram and ManonmaniamSundaranar University, Thirunelveli, Tamil Nadu, are greatly acknowledged.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest to disclose.

REFERENCES

- Umar A, Ahmed QU, Muhammad BY, Dogarai BB, Soad SZ. Antihyperglycemic activity of the leaves of Tetracera scandens Linn. Merr.(Dilleniaceae) in alloxan induced diabetic rats. Journal of Ethnopharmacology. 2010 Aug 19; 131(1):140-5.
- 2. Firdous SM. Phytochemicals for treatment of diabetes. EXCLI journal.

- 2014:13:451
- Wu C, Li Y, Chen Y, Lao X, Sheng L, Dai R, Meng W, Deng Y. Hypoglycemic effect of Belamcanda chinensis leaf extract in normal and STZ-induced diabetic rats and its potential active faction. Phytomedicine. 2011 Feb 15;18(4):292-7.
- Hunt JV, Dean RT, Wolff SP. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochemical journal. 1988 Nov 15;256(1):205-12.
- Jaganjac M, Tirosh O, Cohen G, Sasson S, Zarkovic N. Reactive aldehydes–second messengers of free radicals in diabetes mellitus. Free Radical Research. 2013 Aug 1;47(sup1):39-48.
- Jaganjac M, Tirosh O, Cohen G, Sasson S, Zarkovic N. Reactive aldehydes–second messengers of free radicals in diabetes mellitus. Free Radical Research. 2013 Aug 1;47(sup1):39-48.
- Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera T. Oxidative damage to DNA in diabetes mellitus. The lancet. 1996 Feb 17;347(8999):444-5.
- Leinonen J, Lehtimäki T, Toyokuni S, Okada K, Tanaka T, Hiai H, Ochi H, Laippala P, Rantalaiho V, Wirta O, Pasternack A. New biomarker evidence of oxidative DNA damage in patients with non-insulindependent diabetes mellitus. FEBS letters. 1997 Nov 3;417(1):150-2.
- 9. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999 Jan 1;48(1):1-9.
- Kim SH, Hyun SH, Choung SY. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. Journal of ethnopharmacology. 2006 Mar 8;104(1-2):119-23.
- Vishwakarma SL, Rakesh DS, Rajani M, Goyal RK. Evaluation of effect of aqueous extract of Enicostemma littorale Blume in streptozotocininduced type 1 diabetic rats.
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care. 2005;28(1):S37.
- Kaushik G, Satya S, Khandelwal RK, Naik SN. Commonly consumed Indian plant food materials in the management of diabetes mellitus. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2010 Jan 1:4(1):21-40.
- Singhmura S. A Comprehensive overview of a traditional medicinal herb: Clerodendrum Infortunatum Linn. Journal of Pharmaceutical & Scientific Innovation. 2016 Jul 7;5(3):80-4.
- LalRaisa H, Jyothilakshmi M, Latha MS. Isolation and quantification of tannins from the root bark of Clerodendrum infortunatum Linn. And assessment of their antioxidant and antiproliferative effect on HCT-15 cells. Int J Pharm Res Sci. 2015;7:170-5.
- Devi RK, Kumar PS. Antimicrobial, antifungal and antidiabetic properties of Clerodendrum infortunatum. Int J Pharma Bio Sci. 2015;6(1):1281-91.
- Ghosh G, Sahoo S, Das D, Dubey D, Padhy RN. Antibacterial and antioxidant activities of methanol extract and fractions of Clerodendrum viscosum Vent. leaves. Indian J Nat Prod Resour 2014; 5(2):134-142
- 18. Bhatnagar S, Pattanaik SR. Comparative analysis of cytotoxic and antioxidant activities of leaf and bark extracts of Clerodenrum viscosum and Clerodendrum phlomidis. Int J Biomed Adv Res. 2012;3(5):285-90.
- 19. Gouthamchandra K, Mahmood R, Manjunatha H. Free radical scavenging, antioxidant enzymes and wound healing activities of leaves extracts from Clerodendrum infortunatum L. Environmental Toxicology and Pharmacology. 2010 Jul 1;30(1):11-8.
- 20. Modi AJ, Khadabadi SS, Deore SL, Kubde MS. Antioxidant effects of leaves of Clerodendrum infortunatum (Linn.). Int J Pharm Sci Res. 2010;1(4):67-72.
- Dey P, Chaudhuri D, Tamang S, Chaudhuri TK, Mandal N. In vitro antioxidant and free radical scavenging potential of Clerodendrum viscosum. Int J Pharm Bio Sci. 2012;3(3):454-71.
- Sarkar PK, Sarker UK, Farhana F, Ali MM, Islam MA, Haque MA, Ishigami K, Rokeya B, Roy B. Isolation and characterization of antidiabetic compound from Clerodendrum infortunatum L. leaves. South African Journal of Botany. 2021 Nov 1;142:380-90.
- Das S, Bhattacharya S, Prasanna A, Suresh Kumar RB, Pramanik G, Haldar PK. Preclinical evaluation of antihyperglycemic activity of

- Clerodendron infortunatum leaf against streptozotocin-induced diabetic rats. Diabetes Therapy. 2011 May;2:92-100.
- 24. Kalita P, Chakraborty A. Effect of Clerodendrum infortunatum on testicular tissue in streptozotocine induced diabetes rats. International Journal of Pharmaceutical Sciences and Research. 2015 Apr 1;6(4):1650.
- Pillai JS, Ratheesh R, Nair KP, Sanalkumar MG, Thomson RJ. Evaluation
 of the anti-diabetic potential of aqueous extract of Clerodendrum
 infortunatum L. in vivo in streptozotocin-induced diabetic Wistar rats.
 Plant Science Today. 2019 Jan 1;6(1):1-7.
- 26. Pillai SS, Mini S. Hibiscus rosasinensis Linn. petals modulates glycogen metabolism and glucose homeostasis signalling pathway in streptozotocin-induced experimental diabetes. Plant foods for human nutrition. 2016 Mar;71:42-8.
- Lekshmi RK, Sreekutty MS, Mini S. The regulatory effects of Cissus quadrangularis on some enzymes involved in carbohydrate metabolism in streptozotocin-induced diabetic rats. Pharmaceutical biology. 2015 Aug 3;53(8):1194-200.
- 28. Ramu R, Shirahatti PS, Nayakavadi S, Vadivelan R, Zameer F, Dhananjaya BL, Prasad N. The effect of a plant extract enriched in stigmasterol and β-sitosterol on glycaemic status and glucose metabolism in alloxan-induced diabetic rats. Food & Function. 2016;7(9):3999-4011.
- Duman KE, Dogan A, Kaptaner B. Ameliorative role of Cyanus depressus (M. Bieb.) Soják plant extract against diabetes-associated oxidative-stress-induced liver, kidney, and pancreas damage in rats. Journal of Food Biochemistry. 2022 Oct;46(10):e14314.
- Balasubramanian T, Chatterjee TK, Senthilkumar GP, Mani T. Effect
 of potent ethyl acetate fraction of Stereospermum suaveolens extract
 in streptozotocin-induced diabetic rats. The Scientific World Journal.
 2012 Jan 1;2012.
- 31. Huggett AS, Nixoh DA. Use of glucose oxidase, peroxidase, and O-dianisidine in determination of blood and urinary glucose. Lancet. 1957;273:368-70.
- Malcovati M, Valentini G. [27] AMP-and fructose 1, 6-bisphosphateactivated pyruvate kinases from Escherichia coli. In Methods in enzymology 1982 Jan 1; 90: 170-179 Academic Press.
- Crane RK, Sols A. The association of hexokinase with particulate fractions of brain and other tissue homogenates. Journal of Biological Chemistry. 1953 Jul 1;203(1):273-92.
- 34. Carroll NV, Longley RW, Roe JH. The determination of glycogen in liver and muscle by use of anthrone reagent. J biol Chem. 1956 Jun 1;220(2):583-93.
- Najjar VA, Golowich SP, Kaplan WO. Phosphoglucomutase from muscle. Methods in Enzymology Vol. I. In: 1955 (p. 298). Academic Press.
- 36. Sutherland EW, Wosilait WD. Inactivation and activation of liver phosphorylase. Nature. 1955 Jan 22;175:169-70.
- Maehly A, Chance B. Catalases and peroxidases. Methods Biochem Anal. 1954:1:357-424.
- 38. Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian journal of biochemistry & biophysics. 1984 Apr;21(2):130-2.
- Agergaard N, Jensen PT. Procedure for blood glutathione peroxidase determination in cattle and swine. Acta Veterinaria Scandinavica. 1982;23(4):515-27
- 40. Goldberg DM, Spooner RJ. In "Methods of enzymatic analysis (Bergmeyen, H. V. Ed) 3rd Ed. VerlogChemie, Deerfield Beach, Fl. (1983); 3:258-265
- 41. Patterson JW, Lazarow A. Determination of glutathione. Methods of biochemical analysis. 1955 Jan 1:259-78.
- 42. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry. 1979 Jun 1;95(2):351-8.
- 43. Buege JA, Aust SD. [30] Microsomal lipid peroxidation. InMethods in enzymology 1978 Jan 1 52, : 302-310 Academic press.
- 44. Nayak Y, Hillemane V, Daroji VK, Jayashree BS, Unnikrishnan MK. Antidiabetic activity of benzopyrone analogues in nicotinamide-streptozotocin induced type 2 diabetes in rats. The Scientific World Journal. 2014 Jan 1; 2014.
- 45. Disbrey BD, Rack JH. Book of histological laboratory methods. Harcourt Brace/Churchill Livingstone; London, 1970.
- 46. Pullen TJ, Rutter GA. When less is more: the forbidden fruits of gene

- repression in the adult β -cell. Diabetes, Obesity and Metabolism. 2013 Jun:15(6):503-12.
- 47. Sekine N, Cirulli V, Regazzi R, Brown LJ, Gine E, Tamarit-Rodriguez J, Girotti M, Marie S, MacDonald MJ, Wollheim CB. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. Journal of Biological Chemistry. 1994 Feb 18;269(7):4895-902.
- 48. Dunning BE, Gerich JE. The role of α-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocrine reviews. 2007 May 1;28(3):253-83.
- Vestergaard H. Studies of gene expression and activity of hexokinase, phosphofructokinase and glycogen synthase in human skeletal muscle in states of altered insulin-stimulated glucose metabolism. Danish medical bulletin. 1999 Feb 1;46(1):13-34.
- Wasserman DH. Four grams of glucose. American Journal of Physiology-Endocrinology and Metabolism. 2009 Jan;296(1):E11-21.
- 51. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes care. 2009 Nov 1;32(suppl_2):S157-63.
- Beck-Nielsen H, Vaag A, Damsbo P, Handberg A, Nielsen OH, Henriksen JE, Thye-Rønn P. Insulin resistance in skeletal muscles in patients with NIDDM. Diabetes care. 1992 Mar 1;15(3):418-29.
- 53. Bogardus C, Lillioja S, Stone K, Mott D. Correlation between muscle glycogen synthase activity and in vivo insulin action in man. The Journal of clinical investigation. 1984 Apr 1;73(4):1185-90.
- 54. Greenberg CC, Jurczak MJ, Danos AM, Brady MJ. Glycogen branches out: new perspectives on the role of glycogen metabolism in the integration of metabolic pathways. American Journal of Physiology-Endocrinology and Metabolism. 2006 Jul;291(1):E1-8.
- 55. Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nature medicine. 2017 Jul 1;23(7):804-14.
- 56. Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian journal of biochemistry & biophysics. 1984 Apr;21(2):130-2.
- 57. Helen RL, Jayesh K, Syama S, Latha MS. Secondary metabolites from Clerodendrum infortunatum L.: their bioactivities and health benefits. In Health Benefits of Secondary Phytocompounds from Plant and Marine Sources 2021 Jan 20 (pp. 39-60). Apple Academic Press.
- 58. Wang JH, Luan F, He XD, Wang Y, Li MX. Traditional uses and

- pharmacological properties of Clerodendrum phytochemicals. Journal of traditional and complementary medicine. 2018 Jan 1;8(1):24-38.
- 59. Rhoades RA, Bell DR, editors. Medical physiology: Principles for clinical medicine. Lippincott Williams & Wilkins; 2012 Jan 18.
- 60. Ghosh A, Shieh JJ, Pan CJ, Sun MS, Chou JY. The catalytic center of glucose-6-phosphatase: His176 is the nucleophile forming the phosphohistidine-enzyme intermediate during catalysis. Journal of Biological Chemistry. 2002 Sep 6:277(36):32837-42.
- 61. Marcus F, Harrsch PB. Amino acid sequence of spinach chloroplast fructose-1, 6-bisphosphatase. Archives of biochemistry and biophysics. 1990 May 15;279(1):151-7.
- 62. Makoff RK, Brown J, Mullen Y, Clark WR. Normalization of six key hepatic enzymes after fetal pancreas transplantation in diabetic rats. Diabetes. 1983 Aug 1;32(8):730-3.
- 63. Kar P, Goyal AK, Das AP, Sen A. Antioxidant and pharmaceutical potential of Clerodendrum L.: An overview. International Journal of Green Pharmacy (IJGP). 2014;8(4).
- 64. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001 Dec 13;414(6865):813-20.
- 65. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991 Apr 1;40(4):405-12.
- 66. Maritim AC, Sanders A, Watkins Iii JB. Diabetes, oxidative stress, and antioxidants: a review. Journal of biochemical and molecular toxicology. 2003;17(1):24-38.
- 67. Gepts W, Lecompte PM. The pancreatic islets in diabetes. The American journal of medicine. 1981 Jan 1;70(1):105-15.
- 68. Nurdiana S, Goh YM, Ahmad H, Dom SM, Syimal'ainAzmi N, Noor MohamadZin NS, Ebrahimi M. Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficusdeltoidea and vitexin. BMC complementary and alternative medicine. 2017 Dec;17(1):1-7.
- 69. Abunasef SK, Amin HA, Abdel-Hamid GA. A histological and immunohistochemical study of beta cells in streptozotocin diabetic rats treated with caffeine. Folia Histochemica et Cytobiologica. 2014;52(1):42-50.
- 70. Amin A, Lotfy M, Mahmoud-Ghoneim D, Adeghate E, Al-Akhras MA, Al-Saadi M, Al-Rahmoun S, Hameed R. Pancreas-protective effects of chlorella in STZ-induced diabetic animal model: insights into the mechanism. Journal of Diabetes Mellitus. 2011 Aug 31;1(03):36.

HOW TO CITE THIS ARTICLE: Pillai JS, Nair KGP, Nandakumar S, Thomson Rj, Pillai SS. Clerodendrum infortunatum Attenuates Pancreatic Oxidative Stress and Dysregulated Carbohydrate Metabolism in Streptozotocin-induced Experimental Diabetes. Int. J. Pharm. Sci. Drug Res. 2023;15(3):229-236. **DOI:** 10.25004/IJPSDR.2023.150302

