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Introduction
At present, COVID-19 related cases are ever-increasing, 
and as of June 15, 2022, worldwide, over 534,495,291 
confirmed cases and 6,311,088 deaths were reported.[1]  
It is caused by SARS-CoV-2 (severe acute respiratory 
syndrome coronavirus-2), which is a rapidly mutating 
virus species that creates uncertainty in the vaccination 
process. SARS-CoV-2 is an enveloped, positive-sense single-
stranded RNA virus. Its genome is ̴30 kbp RNA genome 
comprising 14 open reading frames (ORFs); two-thirds 
encode non-structural proteins, and the rest, one-third, 
encode structural and accessory proteins.[2] Spike protein 
is the first structural protein that interacts with the host 
cell receptor angiotensin-converting enzyme 2 (ACE2) and 
mediates viral entry. The presence of conserved residues 
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The efficacy of currently used vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) is questionable since the virus is rapidly mutating.  A single drug that can simultaneously act on 
multi-target at different stages of disease causing pathways is the best option to fight against it.  The 
multi-target inhibitory activities of many phytochemicals have been reported. The present investigation 
was aimed to screen the multi-target inhibitory activity of 215 phytochemicals from Carica papaya L. 
against three targets of SARS-CoV-2  viz spike protein (SP), main protease (Mpro), RNA-dependent RNA-
polymerase (RdRp) and a target from host, angiotensin-converting enzyme 2 (ACE-2) using the docking 
tool, AutoDock Vina in PyRx 0.8.  The docked results with free energy of binding ≤ -6 kcal/mol were 
considered active/hit molecules.   Of the 215 phytochemicals, 48 have binding energy ≤ -6 kcal/mol 
against all the targets. Further molecular interaction between the ligand and targets, pharmacokinetics 
and ADMET analysis of the top ranked five hits obtained against each target revealed that the compound 
hesperidin can be selected as the best lead since it has the least binding energy, admissible ADMET and 
a better binding score than the control drugs. Hesperidin has been used as an approved drug to treat 
vascular disease.  Overall, results revealed that C. papaya is a rich source of phytochemicals with activity 
on multi-target of SARS-CoV-2 infection and multiplication in the human host.
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A B S T R A C TA R T I C L E  I N F O

in the receptor-binding domain (RBD) within the spike 
protein makes it a promising target for drug discovery.[3] 
The Mpro of SARS-CoV-2 is another enzyme that plays a 
key role in processing polyproteins into non-structural 
proteins. Two major factors make it an attractive target: 
they share less similarity with human proteases and 
play a significant role in viral replication/transcription.
[4] Another important enzyme is RNA-dependent RNA 
polymerase (RdRp), a multi-domain protein that plays a 
key role in viral replication. RdRp is the most conserved 
enzyme among different viral species, including CoVs, and 
thus is considered a primary target for therapeutics.[5] 
Since SARS-CoV-2 has been rapidly mutating, the discovery 
of phytochemicals having biological activity on multi-
targets of SARS-CoV-2 may be the best sustainable option 
to prevent this viral infection.
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Carica papaya L., commonly known as papaya, is an 
important tropical fruit tree belonging to the family 
Caricacea. It has been used as an antiviral agent in 
traditional treatment systems. It has immunomodulatory, 
ant i-cy tokine storm, and ant i-thrombocy topenic 
properties and possesses antimicrobial, antifungal, 
antiparasitic, anticancer, antioxidant, contraceptive, anti-
sickling, and antidiabetic effects.[6] The anti-dengue[7] and 
anti-dengue with immunomodulatory effects of papaya 
leaf extract were reported.[8-10] Papaya pulp possesses 
anti-ZIKV virus activity.[11] Its anti-dengue and anti-
chikungunya activities were also reported.[12] The silver 
nanoparticles prepared using C. papaya leaves showed 
activities against chikungunya[13] and dengue type 2 
virus.[14] Clinical studies have reported the benefits of 
papaya leaf extracts for dengue patients.[15] Its extract 
has been prescribed by physicians as an anti-dengue 
medicament under various trade names, such as caripill 
tablet and zandu capsule, particularly for enhancing 
blood platelet count in dengue patients. In-silico studies 
have been conducted and identified phytochemicals with 
anti-dengue, anti-chikungunya, anti-influenza[16] and anti-
SARS-CoV-2[17] activities from papaya. However, evaluation 
of anti-SARS-CoV-2 activity of all the phytochemicals from 
C. papaya and identification of lead molecules with multi-
target activity has not been tested yet.

The significance of the multi-target activity of plant-
derived chemical molecules has been well-reviewed.[18,19]  
Recently, the common practice “one disease-one target-
one drug” approach has been transformed into a 
polypharmacology or multi-target drug discovery 
approach, since it is a potential solution for diseases of 
complex etiology and drug-resistance problems.[20] It is 
well demonstrated that plant-derived molecules have 
biological activity on multi-targets. Many such drug 
molecules discovered in modern medicine by serendipity 
were later repurposed for other diseases. For example, the 
compound salicylic acid first isolated from the willow tree 
based on traditional knowledge was modified into aspirin. 
Which has been used as a painkiller in modern medicine 
and later found to be a medicament for many other diseases 
such as coronary artery disease, heart attack, stroke, etc., 
and now aspirin is considered a wonder drug.

Similarly, many drugs such as remdesivir, favipiravir, 
hydroxychloroquine, azithromycin, lopinavir/ritonavir, 
and nafamostat mesylate have been repurposed to 
treat chronic COVID-19 patients.[21] When compared to 
synthetic drugs, plant-derived drugs are safer, stable, 
and have unpredictable activity on multi-target since 
these phytochemicals evolved within the living system in 
accordance with various stimuli, and such molecules are 
repeatedly tested and modified by the complex network 
of the biological system, which a synthetic chemist 
can’t do. A single molecule that can simultaneously 
bind to multiple proteins of SARS-CoV-2 can inhibit the 
viral infection at different phases of disease-causing 

pathways such as attachment, fusion, entry, replication, 
multiplication, assembly, and egress, thus unraveling an 
effective treatment strategy against the emerging viral 
variants. Many authors have reported that this may be the 
future treatment scenario for COVID-19.[22] The in-silico 
screening of phytochemicals from Punica granatum against 
tuberculosis[23] and Syzgium aromaticum against SARS-
CoV-2[24]  revealed that several phytochemicals in these 
plants have inhibitory activity on multi-targets. In these 
backdrops, the present investigation aimed to evaluate 
the anti-SARS-CoV-2 activity of all the phytochemicals 
reported from C. papaya and identify leads that can 
simultaneously act on multi-targets of the COVID-19 
pathogenicity in humans through the in-silico method.

Materials And Methods

Selection and Preparation of Macromolecules
Spike protein (SP PDB ID: 6M0J), angiotensin-converting 
enzyme 2 (ACE-2 PDB ID: 1R4L) receptor from humans, 
main protease (Mpro PDB ID: 7BUY), and RNA-dependent 
RNA-polymerase (RdRp PDB ID: 7BV2) from SARS-CoV-2 
were selected as targets. Its structures were downloaded 
from the RCSB protein data bank and prepared for docking, 
i.e., removed ligand complexed with the targets, water, 
or hetatoms and saved the protein in pdb form at using 
AutoDock 4.2.[25] The active site residues of the proteins 
were detected using the PDBsum tool.

Selection and Preparation of Ligands
A total of 215 phytochemicals from C. papaya were used 
as the ligands. The 3D structure of each ligand was 
downloaded from the PubChem database in sdf format 
and was then minimized using universal force field (uff) 
with conjugate gradient as the algorithm and converted 
to pdbqt format using Open Babel software in PyRx 0.8 
virtual screening tool.[26] 

Molecular Docking
Molecular docking was performed using AutoDock Vina 
in PyRx 0.8 software implying the Lamarckian Genetic 
Algorithm and Empirical Free Energy Scoring Function.[27]  
The proteins were loaded as rigid and ligands as flexible 
and docking were performed using a grid whose centre 
was assigned as follows. Spike protein X= -36.10, Y= 
27.91 Z= 8.24; ACE2 X= 39.25, Y= 4.68 Z= 25.94; Mpro X= 
-13.90, Y= 23.06 Z= 65.67; and RdRp X= 94.71, Y= 94.03 Z= 
100.32, respectively. The top five ligands with the least 
binding energy were further analyzed. The protein-ligand 
interaction was studied using Pymol[28] and Discovery 
studio visualizer.

Physiochemical, Pharmacokinetic, and Toxicity 
Predictions 
The pharmacokinetic properties were predicted using 
Swiss ADME,[29] Molsoft LLC,[30] and Pro-Tox II web  
servers.[31]
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Similarity Screening
The lead compounds were checked using the SWISS 
similarity tool to select antiviral drugs that FDA has 
already approved.

Results

Structure of Target Proteins
The spike protein of SARS-CoV-2 has 1273 amino acid 
residues, including N-terminal signal peptide, S1 subunit 
for receptor binding, and S2 subunit for membrane 
fusion. S1 subunit contains a receptor-binding domain 
that forms antiparallel β sheets (β1, β2, β3, β4, and β7). 
Between β4, and β7 sheets is a core containing receptor 
binding motif, the spike protein region directly interacting 
with the ACE2 receptor.[3] The humanACE2 receptor, a 
key regulator of renin angiotensin aldosterone system 
(RAAS) is an 805 amino acid protein that includes a zinc 
metallopeptidase catalytic domain (19–611 residues), 
composed of 20 α-helixes and nine 310 helical strands 
and six short β-pleated sheets which play a vital role 
in RAAS by counterbalancing the adverse effects of 
ACE/RAAS pathway.[32] Mpro is a 33.8 kDa homodimer, 
made up of two protomers A and B, each protomer 
further divided into three domains: I (8–101 residues), 
II (102–184 residues) composed of antiparallel β barrels, 
and III (201–303 residues) composed of α-helices.[33]  
RdRp (RNA-dependent RNA polymerase) is a 240–450 
kDa enzyme containing an N-terminal β-hairpin (31–50 
residues), a nucleotidyltransferase domain (115–250 
residues) composed of seven α-helixes and three β-sheets, 
an interface domain (251–365 residues) composed of three 
α-helixes and five β-sheets and RdRp domain (366–920 
residues).[34] 

Molecular Docking
A total of 215 phytochemicals derived from C. papaya were 
docked against spike protein, human ACE2, Mpro, and RdRp 
of SARS-CoV-2. Out of the 215 phytochemicals, 48 showed 
binding energy ≤ -6 kcal/mol against all four targets 
(Table 1), and these molecules were considered active/
hits as reported earlier.[23,35] The number of hit molecules 
(ΔG ≤ -6 kcal/mol) obtained against each target in the 
order of merit was ACE2 94, Mpro 58, RdRp 58, and 
spike protein 48, respectively. The top-ranked five 
hits obtained against spike protein were hesperidin 
(-8.4 kcal/mol), violaxanthin (-7.8 kcal/mol), stigmasterol 
glucoside (-7.8 kcal/mol), zeaxanthin (-7.7 kcal/mol) 
and all-trans-neoxanthin (-7.6 kcal/mol). The protein-
ligand interaction studies revealed that the compound 
hesperidin established seven H-bonds with spike protein 
involving active site residues Lys417, Gln493, and 
compound violaxanthin formed 2 H-bonds connected 
to catalytic residue Asn501. Similarly, compounds all-
trans-neoxanthin, stigmasterol glucoside, and zeaxanthin 

exhibited a single H-bond interaction. The top-ranked 
leads against ACE2 were hesperidin (-11.3 kcal/mol), 
naringin (-11.2 kcal/mol), β-cryptoxanthin (-10.9 kcal/mol),  
v iol a x a nt h i n (-10.7 kc a l/mol)  a nd z e a x a nt h i n  
(-10.7 kcal/mol). The compound hesperidin exhibited nine 
H-bond interactions involving Tyr515 catalytic residue and 
compound naringin formed four H-bonds connected with 
active site residues Arg273 and Thr371. The compound 
zeaxanthin has three H-bonds but β-cryptoxanthin and 
violaxanthin have only hydrophobic interactions. The top-
ranked five hits obtained against Mpro were stigmasterol 
glucoside (-8.9 kcal/mol), dicumarol (-8.7 kcal/mol), rutin 
(-8.5 kcal/mol), naringin (-8.4 kcal/mol) and hesperidin 
(-8.1 kcal/mol). The compounds stigmasterol glucoside 
and naringin showed two H-bonds, hesperidin formed 
seven H-bonds involving active site residues Gly143, 
Ser144, and Cys145. Similarly, compounds dicumarol and 
rutin established four H-bonds with Mpro. The compounds 
hesperidin, stigmasterol glucoside, pseudocarpaine, 
naringin, and dehydrocarpaine II showed the least binding 
energy against RdRp with binding scores of -8.6 kcal/mol, 
-8.6 kcal/mol, -8.6 kcal/mol, -8.4 kcal/mol and -8.4 kcal/mol 
respectively. The compound hesperidin formed eight 
H-bond interactions, and pseudocarpaine and naringin 
formed three H-bonds with RdRp. Similarly, stigmasterol 
glucoside and dehydrocarpaine II showed two and one 
H-bond against RdRp. Among the top five leads obtained 
against the selected targets, the compound hesperidin 
showed a good binding affinity with all four targets 
(Table 2 and Fig. 1).
Molecular property analysis of leads showed that 
compounds β-cryptoxanthin, hesperidin, naringin, rutin, 
stigmasterol glucoside, and violaxanthin have good 
druggability index. In physicochemical properties, except 
dehydrocarpaine II, dicumarol, and pseudocarpaine all 
the lead molecules showed violation to Lipinski’s rule of 
five (Table 3). Lipinski’s rule of five (RO5) postulates the 
criteria for a drug molecule, which is molecular weight 
˂ 500 Da, hydrogen bond acceptors ˂ 10, hydrogen bond 
donors ˂ 5, and LogP ˂ 5.[36] 

The ADMET property analysis results are depicted in 
Table 3. The absorption profile showed that the compounds 
dehydrocarpaine II, dicumarol pseudocarpaine, and 
stigmasterol glucoside have good intestinal absorption, 
and all the lead molecules except dicumarol and 
pseudocarpaine act as P-glycoprotein substrates. BBB 
permeability indicates the ability of a drug to cross the 
brain membrane and all the lead molecules showed no 
BBB permeation. Inhibition of various cytochrome P450 
isoforms like CYP1A2, CYP2C19, CYP2C9, CYP2D6, and 
CYP3A4 affects the drug metabolism and excretion. All 
the lead molecules showed similarity in cytochrome 
metabolism except dicumarol which inhibits CYP1A2. All 
the lead molecules are non-mutagenic, non-hepatotoxic, 
and non-cytotoxic except all-trans-neoxanthin, hesperidin, 
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Table 1: List of phytochemicals from C. papaya with inhibitory activity 
(binding energy ≤ -6 kcal/mol) on all the selected targets.

S. 
No. Phytochemical

Binding energy (kcal/mol)

Spike ACE2 Mpro RdRp

1 1-Coumaroylquinic acid -6.3 -8.1 -7.3 -6.8

2 24-Methylenecycloartanol -6.3 -9.9 -7.2 -7.1

3 3-Hydroxyflavone -6.7 -8.4 -6.6 -6.3

4 5-Dehydro-avenasterol -6.3 -9.4 -6.6 -7.4

5 5-p-Nitrobenzoyl gentisic 
acid -6.1 -8.6 -7.5 -6.7

6 all-trans-Neoxanthin -7.6 -10.5 -7.1 -8.2

7 Antheraxanthin -6.7 -10.7 -7.2 -8.1

8 Apigenin -7.1 -8.5 -7.5 -7.7

9 Benzyl glucosinolate -6.7 -8.4 -7 -6.2

10 beta-Carotene-5,6-epoxide -7.4 -10.5 -7.2 -7.8

11 beta-Cryptoxanthin -7.1 -10.9 -7.2 -8

12 Campesterol -6.3 -9.2 -6.3 -7.2

13 Carpaine -6.9 -9.5 -7.2 -8.3

14 Chlorogenic acid -6.5 -9 -7.5 -7

15 Cianidanol -6.6 -9.1 -7.4 -7.5

16 Clausamine G -6.1 -8.9 -6.7 -7

17 Cycloartenol -6.7 -9.9 -7.3 -7.6

18 Dehydrocarpaine I -7 -10 -7.2 -8.4

19 Dehydrocarpaine II -7.4 -10.2 -7.8 -8.4

20 delta7-Avenasterol -6.3 -9.1 -6.7 -7.3

21 Dicumarol -7.1 -9.1 -8.7 -7.3

22 epsilon-Carotene -7 -10.5 -7.1 -7.7

23 Ethinylestradiol -6.6 -9.4 -6.7 -6.7

24 Flavone -6.5 -8.3 -7.6 -6.8

25 gamma-Carotene -6.6 -10.6 -6.6 -7.4

26 Genistein -6.2 -8.5 -6.8 -7.2

27 Glucotropaeolin -7 -8.3 -7.1 -6.7

28 Hesperidin -8.4 -11.3 -8.1 -8.6

29 Kaempferol -6.3 -8.5 -7.1 -6.8

30 Luteolin -7.5 -8.9 -7.7 -7.8

31 Lycopene -6.7 -9.7 -6.7 -7

32 Myricetin -7 -8.6 -7.7 -7.7

33 Naringenin -7 -8.5 -7.2 -7.7

34 Naringin -7.3 -11.2 -8.4 -8.4

35 Olean-12-ene -7.2 -9.7 -7.1 -8.2

36 Prunasin -6.1 -7.7 -6.8 -6.3

37 Pseudocarpaine -7.4 -9.9 -8.1 -8.6

38 Quercetin -6.8 -9.2 -7.6 -7.7

39 Quinine -6.2 -8.1 -6.3 -6.4

40 Reserpine -6.7 -9.8 -8 -7.8

41 Rutin -7.5 -10.5 -8.5 -8.1

naringin, rutin, and stigmasterol glucoside, which are 
immunotoxic.

In pharmacokinetic properties, ADMET parameters 
of the drug molecule are studied (Table 3). ADMET 
(absorption, distribution, metabolism, excretion, toxicity) 
properties play an important role in drug design since it 
accounts for the majority of drug failures in clinical trials. 
It determines whether a drug molecule will reach its active 
site, how long it will stay in the bloodstream, how well it 
gets distributed in tissues and the adverse effect of the 
molecule on the body.[37] 

Discussion
The effectiveness of vaccines, therapeutic medicines, and 
diagnostic tools is a great challenge to treat COVID-19 
since the pathogen, SARS-CoV-2, is rapidly mutating.[38] 
Recent reports have unequivocally demonstrated that 
multi-target treatment approaches are a viable strategy 
to address this menace.[39] Several studies have reported 
the efficacy of phytomolecules with biological activity 
on multi-targets that effectively prevent or control the 
pathogenicity of mutating viruses.[40] C. papaya L. has 
been effectively used against dengue, HIV, ZIKA, and 
chikungunya viruses.[41] It may be due to the presence of 
a wide range of secondary metabolites such as alkaloids, 
fatty acids, sterols, and triterpenoids as major components 
in papaya.[17]  The alkaloid carpaine, isolated from papaya 

Fig. 1: Docking between target proteins and the best lead molecule 
hesperidin (a) 3D view and (b) 2D view. 1 (a&b) Spike protein 
and hesperidin, 2 (a&b) ACE2 and hesperidin, 3 (a&b) Mpro and 

hesperidin, 4 (a&b) RdRp and hesperidin
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42 Sapogenin A -7 -10.7 -7.1 -8.1

43 Stigmasterol -6.6 -9.4 -6.9 -7.6

44 Stigmasterol glucoside -7.8 -10.1 -8.9 -8.6

45 Tiron free acid -6 -6.7 -6.9 -6.1

46 Violaxanthin -7.8 -10.7 -7.5 -8.3

47 Zeaxanthin -7.7 -10.7 -6.9 -7.9

48* Remdesivir -7.3 -8 -6.9 -7.4

49* Lopinavir -6.7 -9.7 -6.7 -7.5

50* Hydroxychloroquine -5.4 -7.1 -6.1 -5.3
*Reference drug molecule.

Table 2: Binding interaction of the lead molecule hesperidin with the selected targets

Hit Molecules PDB ID
BE Active Site Residues

(kcal/mol) H-Bond Bond Length (A0) Hydrophobic Interactions

Spike protein 6M0J -8.4 Glu406:OE2--H:Lig 2.35 Arg403

Asp405:O---C:Lig 3.52 Lys417

Gln409:HE21--O:Lig 2.73

Lys417:HN---O:Lig 2.87

Gln493:OE1--O:Lig 3.02

Gln493:HE21--O:Lig 2.21

Gly502:HN---O:Lig 2.81

ACE2 1R4L -11.3 Pro346:CD---O:Lig 3.38 Arg273

Lys363:HZ3---O:Lig 2.69 Phe274

Asp367:OD1---H:Lig 2.3 Pro346

Asp368:OD1---H:Lig 2.79 Glu375

His374:NE2--H:Lig 2.5

Glu402:OE1--H:Lig 2.23

Thr445:OG1---H:Lig 2.82

Tyr515:HH---O:Lig 2.15

Arg518:HH11--O:Lig 2.63

Mpro 7BUY -8.1 Cys44:O--H:Lig 1.75

Leu141:O--H:Lig 2.17,2.87 Thr45

Gly143:HN--O:Lig 2.48 Met49

Ser144:OG--H:Lig 2.34

Cys145:HN1--O:Lig 2.25

His163:HE2--O:Lig 2.32

Glu166:HN--O:Lig 2.21

RdRp 7BV2 -8.6 Asn497:HN---O:Lig 2 Val557

Thr565:HG1--O:Lig 2.08

Arg569:HH22-O:Lig 2.66,2.70

Val560:O----H:Lig 2.69

Asn497:O----H:Lig 2.04

Ser501:O----H:Lig 2.93

      Gly559:CA----O:Lig 3.00  

cytotoxicity, anti-viral, and selective indices of papaya 
leaf n-butanol, ethyl acetate, and n-hexane fractions 
indicated that the n-hexane fraction was the most selective 
to the viral cells without inducing toxicity in the normal 
cells. Thirteen compounds were annotated from the 
foregoing three fractions of papaya leaf extracts, and those 
compounds were docked with multi-targets of SARS-CoV-2 
and found to have significant anti-SARS-CoV-2 activity.[17] 
There are about 215 phytochemical constituents reported 
from C. papaya and all these compounds were not subjected 
to in-silico or in-vitro screening for the identification of the 
best lead against SARS-CoV-2. The in-silico approach is the 
primary option for rapid screening of phytochemicals to 
determine their druggability with the least economic input 
and generating clear-cut theoretical insights.

leaf, has antiprotozoal, anthelmintic, antiplasmodial, 
and antithrombocytopenic activities.[16,42,43] The in-vitro 
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The best way to eradicate the disease is to prevent viral 
entry and multiplication in the host body. For this purpose, 
the selection of the right targets in the pathogenicity 
system is of paramount importance. SARS-CoV-2 enters 
the human body by the interaction between the viral 
structural proteins, namely spike protein and the 
human receptor protein, ACE2. Inactivation of these two 
proteins prevents the entry of the virus into human host 
cells, and therefore these two proteins were selected as 
the targets. Once the virus enters the human cells, its 
replication should be effectively blocked. Mpro and RdRp 
are the viral proteins that play pivotal roles in viral 
replication[33,34] and therefore, these two viral proteins 
were also selected as the targets. The selection of multi-
targets involved in the two main stages of infection and 
replication and the discovery of a single drug that can 
simultaneously inhibit all these multi-target involved at 
different stages of pathogenicity can effectively overcome 

the challenge of the mutating behavior of the virus. Out 
of 215 phytochemicals screened, 48 have binding energy 
≤ -6 kcal/mol against all four targets, i.e., 22.32% of the 
phytochemicals have inhibitory activity on multi-target 
(Table 1), and the majority of them belong to flavonoids, 
carotenoid, and phytosterol classes. Among these, the 
compound hesperidin showed the least binding energy 
with all the targets, such as spike protein (-8.4 kcal/mol), 
human ACE2 (-11.3 kcal/mol), Mpro (-8.1kcal/mol), 
and RdRp (-8.6 kcal/mol), and showed a better binding 
score when compared with the control standard drugs 
remdesivir, hydroxychloroquine, and lopinavir.[44]  
Although hesperidin showed a violation of Lipinski’s 
rule of five, it has a promising druggability index and is 
an FDA-approved drug (DrugBank accession number: 
DB04703) used to treat vascular diseases. Lipinski stated 
that his rule of five does not apply to natural products.[45] 
The significant inhibitory activity of hesperidin at 

Table 3: Pharmacokinetic analysis of selected hit molecules
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Molecular weight 552.8 600.8 474.6 336.2 610.5 580.5 478.7 610.5 574.8 600.8 568.8

HBA 1 4 6 6 15 14 6 16 6 4 2

HBD 1 3 0 2 8 8 2 10 4 2 2

MolLogP 12.25 8.74 5.66 2.07 -0.14 -0.44 6.29 -0.33 5.6 9.76 10.91

Drug-likeness score 0.78 -0.78 -1.17 -0.02 0.94 1.05 -1.49 0.91 0.33 0.29 -0.18
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GI absorption Low Low High High Low Low High Low High Low Low

BBB permeability N N N N N N N N N N N

P-gp substrate Y Y Y N Y Y N Y Y Y Y

CYP1A2 inhibitor N N N Y N N N N N N N

CYP2C19 inhibitor N N N N N N N N N N N

CYP2C9 inhibitor N N N N N N N N N N N

CYP2D6 inhibitor N N N N N N N N N N N

CYP3A4 inhibitor N Y N N N N N N N N N

To
xi

ci
ty

Hepatotoxicity N N N N N N N N N N N

Carcinogenicity N N N N N N N N N N N

Immunotoxicity N Y N N Y Y N Y Y N N

Mutagenicity N N N N N N N N N N N

Cytotoxicity N N N N N N N N N N N
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multiple targets of SARS-CoV-2, such as spike protein, 
ACE2, and proteases (PLpro and Mpro), was demonstrated 
through docking and its mode of inhibition was also 
well discussed.[46] The present docking results were in 
line with the earlier reports[46] in which the compound, 
hesperidin, was mostly derived from citrus fruits. Papaya 
is a rich source of flavonoids, carotenoids, and sterols. 
Besides hesperidin, the flavonoids naringin and rutin, 
carotenoid β-cryptoxanthin, stigmasterol glucoside, and 
violaxanthin also showed good druggability indexes, 
physicochemical properties, and ADMET. These molecules 
are widely accepted dietary antioxidants with multiple 
pharmacological activities. So the wide range of antiviral 
activity, particularly against SARS-CoV-2, of papaya is not 
only induced by a single compound, hesperidin, but also by 
the synergistic and cumulative effects of different classes 
of the foregoing phytochemicals.

The multiple pharmacological effects of hesperidin, such 
as antiviral, antioxidant, antidiabetic, antihypertensive, 
anti-inflammatory, and cardioprotective effects, were 
reported.[46] It can bind to multi-targets in complex 
diseases like Alzheimer’s disease.[47] The safety profile 
of hesperidin was confirmed by FASEB (the Federation 
of American Societies of Experimental Biology), and a 
clinical trial with more than 2850 patients administered 
with hesperidin for almost a year showed no toxicity.[48] 
Tablet daflon 500 mg combines hesperidin and diosmin to 
treat vascular diseases.[49] Also, the FDA-approved drug 
ouabain showed similarity with hesperidin with scores 
of 0.467, which was used to treat COVID-19 patients with 
cardiovascular diseases.[50] Therefore, hesperidin can be 
recommended as a promising multi-target drug candidate 
against COVID-19.

Conclusion
Overall, results indicated that C. papaya is a rich source of 
phytochemicals with activity on muti-targets involved at 
different stages of SARS-CoV-2 infection and multiplication 
in the human host. Among these, the compound hesperidin 
was selected as the best lead since it showed the least 
binding energy, admissible ADMET, and a better binding 
score than the control drugs. Moreover, it is already used 
as an approved drug to treat vascular disease. However, 
in-vitro and in-vivo experiments are to be required to 
validate the activity in the live system.
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