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Introduction
Antibiotic resistance is the main challenge in the currently 
available treatment of bacterial diseases, hence needs 
novel potent against pathogenic bacteria.[1] Thiazole and 
its derivatives have demonstrated antimycobacterial, anti-
inflammatory, and analgesic properties.[2-4] The nucleus 
pyridine and its derivatives have also demonstrated 
a wide range of biological activity.[5] The pyridyl or 
hydrazinyl clubbed thiazole azomethine exhibit strong 
synergistic antibacterial effects.[6] For the synthesis of 
novel molecules, compounds having the functional group 
C=N (azomethine) play a special role. Azomethine are 
significant due to its flexibility and structural resemblance 
to some natural substances; hence, derivatives can be used 
in medicinal chemistry.[7,8] We begin with the adjustment 
of a novel heterocyclic hybrid involving a pyridyl and 
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An essential bacterial protein called DNA gyrase is involved in transcription and replication and stimulates 
the negative super-coiling of the circular DNA found in bacteria. Since its inhibition causes bacterial 
mortality, DNA gyrase is a well-known target for antibacterial drugs. Gyrase is inhibited by quinolones, 
coumarins, and cyclothialidines. The objective of the present study is to evaluate the binding interaction of 
pyridyl and hydrazinyl-bearing thiazole compounds with DNA gyrase inhibitors and also check the ADME 
properties of all compounds. We performed docking and pharmacokinetic studies of 28 novel hypothetical 
compounds. Interacting amino acids of receptor DNA gyrase with reference drug prothionamide were 
VAL 167, VAL 71, ILE 78, and THR 165 and binding affinity was found to be -5.61 kcal/mol. Most of our 
docked compounds also show interaction with amino acids VAL 71 and ILE 78 with superior binding 
affinity. Molecular docking suggests that all the synthesized derivatives have shown higher level binding 
affinity in contrast to standard drug prothionamide and have an acceptable range of ADME properties.
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A B S T R A C TA R T I C L E  I N F O

hydrazinyl bearing thiazole with the expectation that 
they could have good antimicrobial activity. Pyridyl and 
hydrazinyl bearing thiazole have got an extraordinary 
focus because of their wide range of pharmacological 
activity such as cytotoxic, antioxidants, antimicrobial,[9]

antifungal[10] and against viral,[11] helminthic infection, 
antiparasitic,[12-14] insecticidal,[15,16]anticonvulsant[17] and 
antibacterial[18] activities. 
In designing a novel potent, the study of interaction among 
drugs and receptors is important, which is perceived 
by utilizing molecular docking studies. This furnishes 
data about the cooperation of drugs towards the active 
site of the receptor. Enzymes engaged with the cycle of 
biosynthesis of the cell wall of the microorganisms are 
viewed as great focuses for docking and are viewed as 
an important target for antimicrobial agents. A bacterial 
protein from the topoisomerase family involved in DNA 
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Table 1: Ligand-receptor interaction data of pyridyl and hydrazinyl bearing thiazole on PDB ID: 1KZN using virtual screening tool PyRx.

Compound No.

Amino Acid Interaction 
having the shortest bond 
length (* indicates an 
amino acid that binds 
with an H-bond, all 
other are hydrophobic 
interactions)

H-Bond 
Number

Score for 
Binding 
Affinity

Compound No.

Amino Acid 
Interaction having 
the shortest bond 
length (* indicates 
an amino acid 
that binds with an 
H-bond, all other 
are hydrophobic 
interactions)

H-Bond 
Numbers

Score for Binding 
Affinity

Prothionamide

ILE78A(4.30)
THR165A(3.97)
VAL165A(2.08)
VAL71A(1.08)*

1 -5.6

1a

PRO79A(4.75)
ARG76A(3.78)
GLU50A(3.98) 
ILE78A(5.21)
ALA47A(5.10)
VAL71A(4.58)
VAL167A(4.15)
VAL43A(4.81)

0 -7.0 3a

VAL71A(4.70)
VAL167A(4.31)
VAL43A(5.05)
ILE78A(4.99)
ASN46A(2.67)
ALA96A(5.01)
VAL93A(3.79)
SER121A(2.88)*
ILE90A(3.67)

1 -7.7

1b

PRO79A(4.51)
GLY77A(3.37)
ARG76A(3.81)
GLU50A(3.93)
ILE78A(5.13)
ALA47A(5.18)
VAL71A(4.69)
VAL43A(4.75)
VAL167A(4.03)

0 -7.1 3b

ALA96A(5.12)
ILE90A(3.65)
ILE78A(4.44)
ASN46A(2.02)*
THR165A(3.92)
VAL43A(4.85)
VAL167A(4.34)
VAL71A(4.62)

1 -7.7

1c

VAL71A(2.25)*
ALA47A(5.08)
VAL167A(5.28)
THR165A(3.71)
ALA53A(3.84)
ARG76A(2.74)*
GLU50A(3.52)
ASN46A(5.15)
ILE78A(3.84)

2 -7.2 3c

PRO79A(5.34)
GLU50A(3.65)
ARG76A(4.30)
ASN46A(2.50)
THR165A(2.36)*
VAL71A(2.51)*
VAL167A(5.47)
VAL120A(5.31)

2 -7.4

1d

ALA53A(4.21)
ILE78A(4.85)
ASP73A(4.93)
THR165A(3.60)
VAL167A(5.41)
ALA47A(4.83)

0 -7.3 3d

ALA96A(5.07)
ILE90A(3.72)
ILE78A(4.38)
ASN46A(1.98)*
ALA47A(5.28)

1 -7.8

1e

ALA86A(4.29)
ILE90A(4.61)
PRO79A(3.71)
ILE78A(3.78)
ALA47A(4.22)
VAL71A(4.11)
VAL43A(4.86)
ASN46A(3.00)

0 -7.3 3e

ALA96A(5.09)
ILE90A(3.71)
ILE78A(4.39)
ASN46A(2.06)*
ALA47A(3,78)
VAL71A(3.66)
ASP73A(3.59)
THR165A(3.74)

1 -7.4

1f

ILE78A(4.20)
VAL71A(4.95)
ALA47A(4.35)
GLY77A(5.39)
ASN46A(2.33)*
ILE90A(3.81)
HIS95A(2.88)*
SER121A(2.68)*
ALA96A(2.40)
GLY119A(3.44)*

4 -7.5 3f

GLU50A(2.94)*
ASN46A(3.13)
ILE78A(4.85)
ALA47A(4.85)
THR165A(3.89)
VAL167A(5.48)
VAL71A(2.20)*

2 -7.3
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1g

ALA86A(4.02)
ILE90A(4.64)
PRO79A(3.65)
ILE78A(3.84)
ALA47A(3.69)
ASP73A(3.52)
THR165A(3.55)
VAL71A(3.38)
ASN46A(3.00)

0 -7.1 3g

SER101A(3.09)*
ASN46A(2.03)*
ALA96A(5.14)
ILE90A(3.66)
ILE78A(4.50)
THR165A(3.97)
VAL43A(5.00)
VAL167A(4.06)
VAL71A(4.67)

2 -7.6

2a

VAL71A(3.37)
VAL167A(4.15)
VAL43A(5.00)
ALA47A(5.11)
ILE78A(5.41)
ALA53A(4.91)
ASP49A(3.78)
GLE50A(3.12)

0 -6.9 4a

ASN46A(2.72)*
ALA96A(525)
ILE90A(3.74)
ILE78A(5.10)
VAL167A(4.30)
ALA47A(5.47)
VAL43A(4.98)
VAL71A(4.69)

1 -7.5

2b

VAL167A(4.19)
VAL71A(4.70
VAL43A(4.91)
ALA47A(5.10)
ILE78A(5.25)
GLE50A(2.96)
ASP49A(3.82)
ALA53A(5.02)
ASN46A(3.16)

0 -7.5 4b

ASN46A(2.61)*
ILE78A(5.23)
ALA47A(4.98)
VAL43A(4.87)
VAL71(4.72)
VAL167A(4.00)
ILE90A(3.85)

1 -7.7

2c

VAL167A(4.04)
VAL71A(4.57)
VAL43A(4.83)
ALA47A(5.13)
ILE78A(5.25)
GLU50A(2.86)
ALA53A(5.05)
ASP49A(3.83)

0 -7.4 4c

GLU50A(2.78)*
ASP49A(3.86)
ALA53A(4.99)
ILE78A(5.24)
ALA47A(5.10)
VAL167A(4.06)
VAL43A(4.84)
VAL71A(4.53)

1 -7.7

2d

VAL71A(2.70)*
VAL167A(5.47)
THR165A(3.81)
ALA47A(5.15)
ASN46A(5.17)
ALA96A(5.25)
ILE90A(3.71)
ILE78A(4.36)

1 -7.4 4d

ASN46A(1.97)*
ALA96A(5.10)
ILE90A(3.69)
ILE78A(4.47)
THR165A(3.98)
AL47A(5.45)
VAL167A(4.35)
VAL43A(4.85)
VAL71A(4.44)

1 -7.6

2e

VAL167A(2.88)*
THR165A(3.95)
ALA47A(5.27)
ASN46A(2.06)*
ILE78A(4,51)
ALA96A(5.19)
ILE90A(3.83)

2 -7.6 4e

ASN46A(2.31)*
VAL167A(2.86)*
ALA96A(5.19)
ILE90A(3.73)
ALA47A(5.30)
ILE78A(4.50)

2 -7.8

2f

VAL167A(4.16)
VAL71A(4.77)
VAL43A(5.09)
ALA47A(5.42)
ASN46A(2.50)*
ILE78A(4.39)
ALA96A(5.27)
ILE90A(3.73)

1 -7.1 4f

ASN46A(2.03)*
ILE78A(4.25)
ASP49A(3.80)
GLE42A(4.65)
GLY117A(3.28)

1 -7.0

2g

VAL167A(5.23)
ALA47A(4.83)
THR165A(3.59)
ASP73A(4.69)
GLU50A(4.13)
ILE78A(4.93)
ASP49A(5.07)
ILE90A(4.55)

0 -7.5 4g

VAL71A(2.22)*
PRO71A(4.99)
ILE78A(4.68)
ALA47A(4.85)
THR165A(3.88)
VAL167A(2.27)
ASN46A(2.75)
ILE90A(5.34)

1 -7.3
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Table 2: Pharmacokinetic calculations of pyridyl and hydrazinyl bearing thiazole derivatives.

Compound 
No.

GI 
absorption

BBB
Penetration

Predicted Oral 
solubility

P-glycoprotein 
Substrate

Cytochrome P450 
Inhibitor

Log Kp 
(cm/s) 
epidermis 
Penetration

Predicted 
Medicine 
similarity

1a Good Positive
Negative, saturation 
axes lie surface of the 
pinkish region

Positive CYP1A2, CYP2C19, 
CYP2C9, CYP3A4 -4.88 Negative

1b Good Positive
Negative, saturation 
axes lie surface of the 
pinkish region

Positive CYP1A2, CYP2C19, 
CYP2C9, CYP3A4 -4.66 Negative

1c Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Positive
CYP1A2, CYP2C19, 
CYP2C9, CYP2D6, 
CYP3A4

-5.46 Negative

1d Good Negative
No, saturation axes 
lie surface of the pink 
region

Negative
CYP1A2, CYP2C19, 
CYP2C9, CYP2D6, 
CYP3A4

-5.24 Negative

1e Good  Positive
Negative, saturation 
axes lie surface of the 
pinkish region

Positive CYP1A2, CYP2C19, 
CYP2C9, CYP3A4 -4.72 Negative

1f Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Negative CYP1A2, CYP2C19, 
CYP2C9, CYP3A4 -5.28 Negative

1g Good  Positive
Negative, saturation 
axes lie surface of the 
pinkish region

Negative
CYP1A2, CYP2C19, 
CYP2C9, CYP2D6, 
CYP3A4

-5.09 Negative

2a Good  Positive
Negative, saturation 
axes lie surface of the 
pinkish region

Negative
CYP1A2, CYP2C19, 
CYP2C9 -4.75 Negative

2b Good  Positive
Negative, saturation 
axes lie surface of the 
pinkish region

Negative
CYP1A2, CYP2C19, 
CYP2C9 -4.59 Negative

2c Good  Positive
Negative, saturation 
axes lie surface of the 
pinkish region

Negative CYP1A2, CYP2C19, 
CYP2C9 -4.53 Negative

2d Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Negative
CYP1A2, CYP2C19, 
CYP2C9, CYP2D6, 
CYP3A4

-5.34 Negative

2e Good Negative
Negative, saturation 
axes rest surface of 
the pinkish region

Negative
CYP1A2, CYP2C19, 
CYP2C9 -5.16 Negative

2f Good  Positive
Negative, saturation 
axes lie surface of the 
pinkish region

Negative
CYP1A2, CYP2C19, 
CYP2C9, CYP2D6, 
CYP3A4

-4.96 Negative

2g Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Negative
CYP1A2, CYP2C19, 
CYP2C9 -5.11 Negative

3a Good Negative
No, saturation axes 
lie outside the pink 
region

Negative CYP1A2, CYP2C19, 
CYP2C9, CYP3A4 -5.45 Negative

3b Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Negative
CYP1A2, CYP2C19, 
CYP2C9, CYP2D6, 
CYP3A4

-5.28 Negative
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3c Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Negative
CYP1A2, CYP2C19, 
CYP2C9, CYP2D6, 
CYP3A4

-6.03 Positive

3d Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Negative CYP1A2, CYP2C19, 
CYP2C9, CYP3A4 -5.85 Negative

3e Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Negative
CYP1A2, CYP2C19, 
CYP2C9, CYP2D6, 
CYP3A4

-5.66 Negative

3f Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Negative
CYP1A2, CYP2C19, 
CYP2C9, CYP2D6, 
CYP3A4

-5.81 Positive

3g Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Negative CYP1A2, CYP2C19, 
CYP2C9, CYP3A4 -5.22 Negative

4a Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Negative CYP1A2, CYP2C19, 
CYP2C9, CYP3A4 -4.68 Negative

4b Good  Positive
Negative, saturation 
axes lie surface of the 
pinkish region

Negative CYP1A2, CYP2C19, 
CYP2C9, CYP3A4 -4.52 Negative

4c Good  Positive
Negative, saturation 
axes lie surface of the 
pinkish region

Negative
CYP1A2, CYP2C19, 
CYP2C9 -4.46 Negative

4d Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Negative
CYP1A2, CYP2C19, 
CYP2C9, CYP2D6, 
CYP3A4

-5.26 Negative

4e Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Negative CYP1A2, CYP2C19, 
CYP2C9, CYP3A4 -5.08 Negative

4f Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Negative
CYP1A2, CYP2C19, 
CYP2C9, CYP2D6, 
CYP3A4

-4.89 Negative

4g Good Negative
Negative, saturation 
axes lie surface of the 
pinkish region

Negative CYP1A2, CYP2C19, 
CYP2C9, CYP3A4 -5.08 Negative

Fig. 2: Hydrophobic interaction of prothionamide with amino acids 
[ILE78A (4.30), THR165A (3.97), VAL167A (2.08), VAL71A (1.80)*]; 

*highlight H-bond interaction.

replication and transcription is called DNA gyrase.[19, 20] 
The type II topoisomerase Escherichia coli DNA gyrase 
(PDB ID-1KZN) catalyzes the negative supercoiling of 

R' N NH
S

N

R

N
S

N

R

[1(a-g)]

N

S

NH2

Reference Drug- Prothionamide

 R'= CH

N

CH3C CH3C

or or

[2(a-g)] [3(a-g)] [4(a-g)]

S. No. a b c d e f g

R Br Cl NH2 OH NO2 CH3 OCH3

Fig. 1: Structures of hypothetical compounds

closed-circular DNA using the free energy generated by 
ATP hydrolysis.[21-23] Since gyrase is necessary for both 
DNA replication and transcription, it is a great target 
for antibacterial drugs and functions as an inhibitor of 
bacterial growth.[24]
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The Swiss ADME software (http://www.swissadme.ch) is 
an online tool used to determine the proposed derivatives’ 
drug-likeness and pharmacokinetic parameters.
The skin permeation coefficient (Log Kp) was also 
anticipated as a pharmacokinetics parameter for the 
molecule’s ability to pass through the skin. A higher 
negative value indicates lessened skin permeability, and 
the coefficient’s value directly relates to the molecular size 
and lipophilicity of substances.

Materials and Methods
We perform docking studies to examine 28 hypothetical 
compounds (Fig. 1), with the hope of better antibacterial 
potential than available in the market. DNA gyrase 
inhibition blocks super-twisting activity and hence 
replication of disease-causing bacteria. It has a different 
affinity with different molecules.[25]

Ligand Preparation
Chem3D 15.0 was used to create the ligand compounds. 
Using the construction and optimize the process, the 
molecules were turned into 2D and, subsequently 3D. The 
SDF format will be used to preserve the structure. The 
ligand molecules were produced in this stage and given 
bond, bond order, hybridization charges, free hydrogen, 
and f lexible torsion. For docking, the produced 3D 
structure was loaded into the virtual screening Tool PyRx.

Preparation of Protein
Protein (DNA gyrase) X-ray crystallography structure 
with PDB ID 1KZN was downloaded from the protein data 
bank as already been used in docking studies.[23] Discovery 
Studio 2021 client software was used to prepare the 
proteins. Removal of all water molecules, internal ligands, 
and the addition of polar hydrogen was done at this stage. 
The protein energy was minimized using Swiss PDB. 

The Procedures Involved
•	 Using PyRx to import a protein file.
•	 Making proteins with Bio via Discovery Studio.
•	 Swiss PDB was used for energy minimization of protein.
•	 Chem draw 3D was used to prepare ligands. 
•	 Docking is carried out using PyRx.
•	 Binding site was detected by maximum size grid box.

•	 Fixed 8 units of exhaustiveness was used during 
docking studies.

•	 Binding affinity data was extracted from CSV file 
generated by PyRx software. 

•	 Visualization by Bio via discovery studio.
•	 Validation of the docking process was done using 

Prothionamide and compound no. 1a for multiple times. 
The docking results in each time were same, hence 
docking procedure was considered to be validated.

Swiss-ADME
In this study, ADME is used to describe the absorption, 
distribution, metabolism, and excretion of drugs. ADME 
profile is a useful tool to predict drug pharmacological 
and toxicological properties. The freely accessible 
Swiss ADME web tool assembles the most relevant 
computational methods to provide a global appraisal of 
the pharmacokinetics profile of small molecules.

In-silico Pharmacokinetic Study
The Swiss-ADME data includes details on blood-brain barrier 
(BBB) permeability, gastrointestinal (GI) absorption, drug 
metabolizing enzymes (CYPs), and transporters (P-gp). 

Results
Docking and pharmacokinetic study results are tabulated 
in Table 1 and 2, respectively as follows.

BOILED-Egg Model (Brain Or IntestinaL EstimateD 
Permeation Method)
The GI absorption and Blood Brain Barrier penetration are 
illustrated in the diagram of a BOILED-Egg. The BOILED-
Egg model is useful in determining the polarity and 
lipophilicity of derivatives. In the BOILED-Egg diagram, 
the yellow region indicates a high likelihood of BBB 
penetration, the white region indicates GIT absorption. The 
red dots indicate the molecule is predicted not be effluated 
from the central nervous system by P-glycoprotein and the 
red dots indicate the molecule predicted be effluated from 
the central nerve system by P-glycoprotein.[17]

The analysis predicts that all compounds, including 
the standard drug prothionamide, will exhibit good GI 
absorption (Table 2).

Discussion
The outcome of docking experiments is connected to how 
proteins and ligands interact. The results of the protein-
ligand interaction were compiled using the binding affinity 
Score, number of H-bonding, and other hydrophobic 
interactions. The receptor and ligand appear to have 
a stable binding interaction, according to the ligand’s 
negative binding energies.

Docking Results
show that out of a total of 28 compounds, compound no. 
1c, 1f, 2d, 2e, 2f, 3a, 3b, 3c, 3d, 3e, 3f, 3g, 4a, 4b, 4c, 4d, 4e 

Fig. 3: Hydrophobic interaction of Compound No. 4e with amino 
acids [ALA96A (5.19), ILE90A (3.73), ALA47A (5.30), ILE78A 
(4.50), VAL167A(2.86)*, ASN46A (2.31)*]; *highlight H-bond 

interactions.
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form Hydrogen bond with amino acids VAL71, ASN 46, 
VAL 167, GLU 50, SER 101, THR 165, SER 121, HIS 95, GLY 
119, ARG 76. Standard drug prothionamide interact with 
receptor with a binding affinity of -5.61 Kcal/mol (Fig. 2) 
 and form one H-bond with amino acid VAL 71 other 
hydrophobic interactions were VAL 167, ILE 78, and THR 165. 
The majority of our docked compounds also show (Fig. 3) 
interaction with amino acids VAL 71 and ILE 78 with 
superior binding affinity. All derivatives show superior 
binding affinity than standard prothionamide. Compounds 
no. 3d and 4e interact with the highest binding affinity of 
-7.81 kcal/mol; meanwhile, compound no. 4e forms two 
H-bond and compound no. 3d form only one H-bond.

Pharmacokinetic
The bulk of the compounds were not ingestible since the 
pink area of the RADAR lacked polarity, saturation, and 
flexibility axes. All the derivatives were expected to absorb 
well via the GI tract. Only compounds 1a, 1b, 1e, 1g, 2a, 2b, 
2c, 2f, and 4b were confirmed to be BBB permeable among 
the investigated compounds. Compound No. 1a, 1b, 1c, and 
1e were expected to act as P-glycoprotein substrates. The 
majority of the compounds have the potential to inhibit 
CYP1A2, CYP2C9, and CYP2C19, whereas compounds No. 
1a, 1b, 1e, 1f, 3a, 3d, 3g, 4a, 4b, 4e, and 4g A have the poten-
tial to inhibit CYP3A4, as well as the aforementioned CYP 
isoforms and compounds No. 1c, 1d, 1g, 2d, 2f, 3b, 3c, 3e, 
3f, 4d and 4f, have the potential to inhibit CYP2D6 isoform.

Skin Permeability
It was not expected that any of the invest igated 
pharmacophores would be skin permeable because all of 
them had exceptionally low Log Kp values.

Conclusion
According to molecular docking studies, all the synthesized 
compounds have demonstrated superior binding affinity 
compared to the reference drug prothionamide and the 
majority of our docked compounds also show interaction 
with amino acids VAL 71 and ILE 78 with superior binding 
affinity. All the derivatives were expected to absorb well 
via the GI tract. Only compounds no. 1a, 1b, 1e, 1g, 2a, 2b, 
2c, 2f, and 4b were BBB permeable. None of the derivatives 
was expected to be permeable to the skin.
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