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Introduction
The recent WHO burden of malaria raises a crucial 
concern since 98% of 627 000 deaths (77%) are children 
aged under 5 years) are located in Africa where at the 
same time the emergence and spread of artemisinin-
resistant Plasmodium falciparum in WHO African region, 
namely Rwanda, Uganda and Eritrea in East Africa and 
thereafter Burkina Faso and Mali in West Africa almost 
a decade after the Cambodia and Thailand Mekong 
Subregion.[1-4] For now almost 400 years after Quinine 
(Cinchona bark known as cardinal’s bark or Jesuits’ 
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Through structure-based molecular design, we virtually design new subnanomolar range antimalarial, 
inhibitors of Plasmodium falciparum M17 aminopeptidase (PfA-M17). We developed the complexation 
QSAR models from hydroxamic acid derivatives (HDA). A linear correlation was established between 
the computed Gibbs free energies of binding (GFE: ∆∆Gcom) and observed enzyme inhibition constants 
(Ki

exp) for each training set pKi
exp = , R2 = 0.97. The predictive power of the QSAR model was validated with 

3D-QSAR pharmacophore generation (PH4): pKi
exp = 0.707×pKi

pred − 2.5182, R2 = 0.89. We then conducted a 
study on catalytic residues to exploit the different interactions (enzyme: inhibitor). Structural information 
from the models guided us in designing a virtual combinatorial library (VCL) of more than 56 thousand 
HDAs. The PH4 screening retained 48 new and potent HDAs with predicted inhibitory potencies pKi

pre up 
to 73 times lower than that of HDA1 (pKi

exp = 2.5 nM). Combining molecular modeling and PH4 in-silico 
screening of the VCL resulted in the proposed novel potent antimalarial agent candidates with favorable 
pharmacokinetic profiles.
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A B S T R A C TA R T I C L E  I N F O

bark) from South America in response to Vatican urgent 
needs of antimalarials,[5] 40 years after Artemisinin 
(Artemisia annua) from Asia as China response to USA 
malaria-based war strategy in Vietnam,[6,7] Africa is 
awaited to find this new antimalarial expected to face 
the critical future since today less than 1% of the needed 
antimalarial funding comes from the most affected 
continent.[4] Aminopeptidases cleaving dipeptides and 
oligopeptides to their constituent amino acids[8,9] during 
the erythrocyte stage of the disease are among the most 
studied parasite targets about antimalarial design [10-12] 
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especially the neutral M1 alanyl-aminopeptidase (PfA-M1) 
and M17 Leucyl aminopeptidase (PfA-M17) are the most 
studied and validated as essential Pf enzyme targets whose 
inhibition should be lethal[13,14] making them attractive 
for the design of a new class of antimalarials.[15] They are 
metal ion-containing exopeptidases where the metal ion 
acts as enzyme-catalyzed reaction promotor by favoring 
hydrolysis.[16,17]

Among the various scaffolds designed as inhibitors of 
PfA-M17 starting from the natural product Bestatin (1) 
mimicking the dipeptide d-Phe-l-Leu with the hydroxyl 
containing zinc ion binding group in red and the Phe 
(benzyl) and Leu (isoleucine) moieties fitting in the S1 
(phenyl ring in π---π contact with Tyr575) and S1’ pockets 
respectively reaching a biological activity of 25 nM.[18] 
A para-nitro substitution on the P1 benzyl for a better 
filling of the S1 pocket resulted in a ninefold potency 
rise (Ki = 2.7 nM) against the parasite. The dual-targets 
inhibitors phosphinates dipeptide (2) (PfA-M1 and PfA-
M17) binding to PfA-M17 through a bivalent contact with 
the zinc ion supported by the P1 (S1 pocket) and P1’ (S1’ 
pocket) phenyls in π---π stacking with Tyr575 and the 
catalytic His496 respectively reaching (Ki = 13.2 nM).[19] 
Phosphonates inhibitors (3), (4), also are dual targets 
designed to fit specifically the large S1 pocket of PfA-M17 
the phosphate group interacting with the zinc ion with 
the most potent (4) at 11 nM, the hydrophobic contact of 
4-(1H-pyrazol-1-yl) phenyl group filling the PfAM17 S1 
pocket increasing the binding affinity.[12] Hydroxamate is 
well known orally safe drug design zinc binding group[11] 
and malonic hydroxamate inhibitors exemplified by (5) 
in the rigidified phenylmeth-(Z/E)-ylidene geometry 
have high activity against PfA-M17 (IC50 = 6 nM); this is 
explained by the Z-isomer instead of the E-isomer from 
docking experiment. The non-rigidified inhibitor is almost 
fivefold less potent (IC50  =  27  nM); the benzylmalonyl 
group fits into the S1’ pocket and the phenylmeth-(Z)-
ylidene moeity seats in the hydrophobic S1.[20] More 
recently amino-hydroxamic acid has emerged in place 
of phosphonates due to their better pharmacokinetic 
profile as common drug design zinc ion binding group 
combined with the promising 4-(1H-pyrazol-1-yl) phenyl 
in P1 and a pivaloyl group in P1’ increasing the activity Ki 
from 11 (4) to 6 nM for N-(1-(4-(1H-Pyrazol-1-yl) phenyl)-
2-(hydroxyamino)-2-oxoethyl)- pivalamide (5)[12,21] 

Replacement of 4-(1H-pyrazol-1-yl) phenyl in P1 by 
para bromophenyl (6) resulted in a drop of potency to 
Ki = 700 nM but the trifluophenyl in place of bromophenyl 
in P1 and keeping the t-butylcarbonyl moiety limited the 
drop to 60 nM (or 147 nM) (7).[22,23] Keeping in (7) the 
trifluorophenyl and enlarging the tertiary-butylcarbonyl 
to a tertiary-butyloxycarbonyl (adamantyl respectively) 
moiety is beneficial to activity (8) (90) respectively: 
Ki  =  30  nM, (29  nM) [19,20]. All this suggests a lack of 
evidence about suitable pharmacophore of PfA-M17 active 

site to guide straightforward selection of R-groups in 
order to fill S1 and S1’ pockets advantageously since the 
S1 binding pocket can undergo conformational changes 
to accommodate bulky groups.[9] Accordingly, we retain 
in our study the better and safer zinc ion binding group 
(hydroxamate) along with R2–phenyl in P1 and varying 
P1’ substitution groups (R1) as SAR[18] from which a 
complexation QSAR model (10) will be built as well as a 
subsequent 3D-QSAR pharmacophore model as navigator 
to virtually explore the hydroxamate analogs chemical 
subspace with the expectation of improving binding 
affinity. 
The metrics describing interactions at the PfA-M17 active 
site have been assessed from the X-rays crystal structure 
analysis of PfA-M17 (PDB code 6EEE) in complex with one 
of the most active studied inhibitors in this work (9).[20] 
The zinc binding group is in various contacts with Asp449, 
Glu461, Asp379 and Asp399 (not displayed on Fig 2 2D 
diagram) and the hydroxamate in a network of HB contacts 
with Gly469, Asp459, Lys386, Glu461, Asp379, Lys374 and 
Leu487. The hydrophobic adamantyl contacts in S1’ involve 
Ala460, Ile547 the deepest residues at the pocket base and 
Arg463, Asn457, Lys552 and Ser554. The hydrophobic S1 
cavity (Ala577, Leu492, Trp581, Leu492, Phe583, Met392, 
Met396 and Gly390) accommodates the trifluorophenyl 
moiety in π---alkyl with Leu492 and Leu395, π---sulfur 
with Met396 and halogen bond with Ala577.

Fig. 1: Inhibitors of PfA-M17.
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Methods

General Workflow
The general workflow start from SAR results along with 
the availability of X-rays structure of the target enzyme 
in complex with either one of the SAR compounds or 
at least any ligand. From this, in-situ modification will 
be performed to carefully build as many complexes 
as SAR compounds available in the training set. The 
computation of the Gibbs free energy (∆∆Gcom) of each 
complex formation will lead, through a correlation 
with experimental activity (Ki), to the inhibitors’ active 
conformations. The 3D-QSAR pharmacophore (PH4) 
generated from the active conformation (correlating HDA 
training set estimated Ki with experimental ones) will 
serve to screen a virtual library of HDA analogs to yield a 
handful of HDA best PH4 fit hits.

Training and Validation Sets
The chemical structures and biological activities (Ki

exp) of 
all the inhibitors used throughout this work are taken from 
the literature.[18-20] Their Ki

exp covers a very wide range 
(2.5≤ Ki

exp ≤1700 nM), more than four order of magnitude, 
suitable for a reliable QSAR model. Out of a total of 43 
compounds, 36 were used for the training set (TS) and 7 for 
the validation (VS) set not used to build the QSAR model.

Model Building
The receptor preparation is a very important step in the 
complexation process. Therefore, molecular models of free 
inhibitors and complexes have been prepared from high-
resolution crystallographic structure using the Insight-II 
2005 molecular modelling programme and Discovery 
Studio Suite.[24,25] The PfA-M17 has 2 crystallographic 
structures, these structures are coded as: 6EE2 and 
6EEE.[20] These structures are available in a database of 
crystallographic structures: The Protein Data Bank (PDB). 
For this work, we chose the structure coded 6EEE because 
the hexamer is complete. It includes an endogenous ligand 
at its active site: 6k (N-(2-(Hydroxyamino)-2-oxo-1-

(3′,4′,5′-trifluoro-[1,1′-biphenyl]-4-yl)ethyl)adamantane-
1-carboxamide). The structure has been analyzed and 
prepared. No water molecule from the crystallographic 
structure was retained in the model. Based on the 
scaffold, substitutions in R1 and R2 have been made on 
the endogenous ligand to generate the whole series of 
parasite inhibitors. The washed structure undergo careful 
minimizations in order to preserve its tertiary structure. 
When simulating the crystal with a ligand other than the 
endogenous ligand, a systematic conformational research 
is carried out on the modified part of the ligand followed 
by its minimization extended to its vicinity in the active 
site over a radius of approximately 5Å.

Molecular Mechanics 
The main advantage of molecular mechanics compared 
to other methods is the speed of the calculations suitable 
for very large molecular systems simulations. Since this 
method does not take into account the molecular electronic 
structure, it is not devoted to study systems in which 
electronic effects are predominant.[26] This study was 
carried out using the CFF force field.[21,22]

Conformational Search
The conformational search for the free inhibitors used in 
this study has been described fully earlier.[27]

Solvation Gibbs Free Energies
Ligand-receptor interactions take place in a solvent, 
which contributes through solvation phenomena to the 
binding process. However, the electrostatic component of 
Gibbs free energy (GFE) incorporating the effects of ionic 
strength through the resolution of the non-linear Poisson-

Fig. 2: PfA-M17–(9) interactions at active site depicted in 2D.
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Scheme 1: General workflow of computer-aided design of the 
hydroxamates analogues.
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Boltzmann equation was calculated by the Delphi module 
of the Discovery Studio Suite.[28]

Calculation of Binding Affinity and QSAR Model
The calculat ion of binding af f init y expressed as 
complexation GFE has been described fully earlier.[24]

Interaction Energy
The force field CFF was used to calculate the interaction 
energy (Eint) between the enzyme residues and the 
inhibitor as reported earlier.[24]

Pharmacophore Generation
The 3D-QSAR (PH4) pharmacophore generation protocol of 
DS[22] through its algorithm program Catalyst HypoGen[29] 
has been used to build the PfA-M17 inhibition PHA as 
described earlier.[24]

ADME Properties
The pharmacokinetic profile of OHAs was calculated by 
the program QikProp[30] as described earlier.[24]

Virtual Library Generation
The virtual library generation has been described 
earlier.[24]

ADME-Based Library focusing
The orientation of the virtual library has been made thanks 
to numerous selection criteria as described earlier.[26]

Pharmacophore-based Library Searching
The pharmacophore model (PH4) derived from the bound 
conformations of HDAs at the active site of M17 served as 
a library searching tool as described earlier.[24]

Inhibitory Potency Prediction
The conformer with the best mapping on the PH4 
pharmacophore in each cluster of the focused library 
subset was selected for in silico screening by the 
complexation QSAR model. The computed ∆∆Gcom of each 
selected new analog was used for prediction of PfA-M17 
inhibitory potency (Ki

pre) of the focused virtual library of 
HDA analog by inserting this parameter into the target-
specific scoring function in equation (1) parameterized 
using the complexation QSAR model of the training set of 
HDA inhibitors.[18-20]

pKi
pre = −log10Ki

pre=a. ∆∆Gcom +b			   (1)

Results

Training and Validation Sets
The 43 HDAs were selected from a homogeneous series 
of PfA-M17 inhibitors with known experimentally 
determined inhibitory activities originating from a 
single laboratory.[18-20] The whole series was obtained by 
variations at two positions R1 and R2 on the backbone of 

hydroxamic acid as show in Table 1. Their experimental 
inhibitory activities (2.5 ≤ Ki

exp ≤ 1700 nM) [18-20] cover 
a sufficiently wide concentration range as required for 
building a reliable QSAR model. The ratio between the sizes 
of training and validation sets remains a critical point of 
correct classification but is limited by the count of the set of 
homologous compounds available from the literat ure.[31] 
In this study a training set of 36 HDAs and validation 
set of another 7 VDAs (Table 1) were created using the 
appropriate module of Discovery Studio Suite.[22]

The statistical data confirmed validity of the correlation 
Equations (A) and (B) plotted on Fig. 3. The ratio Ki

pre/
Ki

exp ≈1 (the Ki
pre values were estimated using correlation 

Equation B, Table 3) calculated for the validation set 
VDA1-7 documents the substantial predictive power of 
the complexation QSAR model from Table 2. Thus, the 
regression Equation B (Table 3) and computed ∆∆Gcom 
GFEs can be used for prediction of inhibitory potencies 
Ki

pre against PfA-M17 for novel HDA analogs, provided 
they share the same binding mode as the training set 
hydroxamic acid HDA1-36.

Binding Mode of HDAs
The inhibitors (HDAs) we have used throughout this work 
are a reported new series of hydroxamic acid obtained 
by synthesis.[18-20] Indeed, hydroxamic acids are used as 
metal ion chelators and the presence of the acid function 
in their molecular structure makes them particularly 
important for the inhibition of PfA-M17. Active site have 
been assessed from the X-rays crystal structure analysis 
of PfA-M17 (PDB code 6EEE) in complex with one of 
the most active studied inhibitors in this work (6).[20] 
The hydroxamate HB contacts active site with Gly469, 
Asp459, Lys386, Glu461, Asp379, Lys374 and Leu487. The 
hydrophobic adamantyl contacts in S1’ involve Ala460, 
Ile547 the deepest residues at the pocket base and Arg463, 
Asn457, Lys552 and Ser554. The hydrophobic S1 cavity 
(Ala577, Leu492, Trp581, Leu492, Phe583, Met392, Met396 
and Gly390) accommodates the trifluorophenyl moiety in 
π---alkyl with Leu492 and Leu395, π---sulfur with Met396 
and halogen bond with Ala577.

Interaction Energy
The energetic understanding of the different ligands 
(HDAx) used in the inhibition of PfA-M17 is also provided 
by the energy interaction diagram (IE; ∆E int). The 
distribution of the interaction energy in contribution of 
the residues to the active site of PfA-M17 is done in three 
classes: a first class of ligands with maximum biological 
activity (Fig. 4), a second class of ligands with moderate 
biological activity and a third class of ligands with lowest 
biological activities.
For all classes, the interaction energy per residue is 
stronger with the residues Asp459, Leu487, Thr488, 
Ala460 and Gly489. No relevant difference is noticeable 
from class 1 to class 3 via class 2. Therefore in the lack of 
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Table 1: Training set (HDA1-36) and validation set (VDA1-7) of PfA-M17 inhibitors [18,19, 20] used in the elaboration of QSAR model of 
inhibitor binding. The R1 and R2 groups are numbered in the Table’s column as #R ≡ group index.

R2

N
H

H
N

R1 OH

O

O

#R 1 2 3 4 5 6 7

R-group
F Br

F3C F3C

FF

#R 8 9 10 11 12 13 14

R-group
O

#R 15 16 17 18 19 20 21

R-group
O

#R 22 23 24 25 26 27 28

R-group

S
NN N

N

F

F

#R 29 30 31 32 33 34 35

R-group

F

CF3

CF3

FF

F

F

F

F

F

FF

#R 36 37 38 39

R-group

F

FF

F

F

F

FF

N

NH2

HO

H2N N

OH

Training Set HDA1 HDA2 HDA3 HDA4 HDA5 HDA6 HDA7 HDA8

#R1-#R2 6–36 6–33 6–28 6–34 6–24 6–23 6–37 6–39

2.5 5.2 6.2 6.4 7 7.2 8.4 8.6

Training Set HDA9 HDA10 HDA11 HDA12 HDA13 HDA14 HDA15 HDA16

#R1-#R2 6–38 6–27 9–39 21–35 6–29 9–27 9–23 9–29

9.7 12 18 28.9 33 41 56 74

Training Set HDA17 HDA18 HDA19 HDA20 HDA21 HDA22 HDA23 HDA24

#R1-#R2 8–35 19–35 9–28 17–35 9–31 6–35 12–35 14–35

101 127 130 138 140 147 185 195

Training Set HDA25 HDA26 HDA27 HDA28 HDA29 HDA30 HDA31 HDA32

#R1-#R2 9–35 7–35 9–25 11–35 15–35 13–35 16 - 35 5–35

200 200 220 270 290 300 306 426

Training Set HDA33 HDA34 HDA35 HDA36

#R1-#R2 10–35 9–26 4–35 9–1

492 540 999 1700

Validation Set VDA1 VDA2 VDA3 VDA4 VDA5 VDA6 VDA7

#R1-#R2 6–22 6–32 9–2 9–30 3–35 18–35 20–35

9,1 13 80 120 158 288 318
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Table 2: Gibbs free energy (binding affinity) and its components for 
the training set of PfA-M17 inhibitors HDA1-36 and validation set 

inhibitors VDA1-7.[18-20]

Training 
set a Mw b ∆∆HMM 

c ∆∆Gsol d
∆∆TSvib 
e

∆∆Gcom 
f Ki

exp g

HDA1 380 -10.43 2.25 -2.12 -6.06 2.5

HDA2 362 -7.43 1.33 -0.77 -5.33 5.2

HDA3 344 -5.67 0.11 0.45 -6.01 6.2

HDA4 362 -6.42 2.79 -0.38 -3.25 6.4

HDA5 326 -5.39 1.44 2.05 -6.00 7

HDA6 332 -5.54 1.05 1.27 -5.76 7.2

HDA7 416 -6.96 -1.05 -4.95 -3.06 8.4

HDA8 384 -6.83 2.67 -0.22 -3.94 8.6

HDA9 384 -6.50 2.87 0.00 -3.63 9.7

HDA10 344 -3.72 1.37 0.64 -2.99 12

HDA11 400 -7.67 3.02 -1.82 -2.83 18

HDA12 458 0.00 0.00 0.00 0.00 28.9

HDA13 344 -3.24 2.55 1.20 -1.89 33

HDA14 360 2.20 -2.01 2.10 -1.91 41

HDA15 346 1.34 3.16 2.23 2.27 56

HDA16 360 1.03 1.03 -0.35 2.41 74

HDA17 395 2.68 1.31 -0.31 4.30 101

HDA18 432 1.73 -1.18 -3.63 4.18 127

HDA19 360 4.95 0.45 0.18 5.22 130

HDA20 406 3.97 0.41 -0.55 4.93 138

HDA21 410 5.10 -3.20 -2.04 3.94 140

HDA22 380 3.64 -0.74 -2.62 5.52 147

HDA23 378 3.75 -0.90 -3.71 6.56 185

HDA24 406 4.20 -0.60 -2.91 6.51 195

HDA25 396 3.48 -0.86 -2.06 4.68 200

HDA26 442 2.31 -2.14 -7.11 7.28 200

HDA27 343 6.13 1.40 1.99 5.54 220

HDA28 378 5.57 -1.23 -3.97 8.31 270

HDA29 408 5.33 -1.50 -3.86 7.69 290

HDA30 392 5.86 0.18 -1.33 7.37 300

HDA31 392 5.02 -1.10 -3.59 7.51 306

HDA32 366 6.92 -1.47 -3.07 8.52 426

HDA33 364 7.71 -1.74 -4.18 10.15 492

HDA34 343 9.57 -0.08 -0.03 9.52 540

HDA35 406 10.27 -3.26 -5.56 12.57 999

HDA36 284 16.38 0.38 1.70 15.06 1700

VDA1 332 -3.48 1.07 2.08 -4.49 1.00

VDA2 362 -3.77 -0.51 -1.48 -2.80 0.99

Training 
set a Mw b ∆∆HMM 

c ∆∆Gsol d
∆∆TSvib 
e

∆∆Gcom 
f Ki

exp g

VDA3 344 1.42 3.10 1.60 2.92 1.11

VDA4 410 3.63 -0.50 -3.87 7.00 0.96

VDA5 352 6.64 -1.24 -1.56 6.96 0.98

VDA6 420 6.73 0.86 0.13 7.46 1.00

VDA7 440 4.07 0.14 -2.18 6.39 1.03
a for the chemical structures of the training set of inhibitors see 
Table 1; b Mw is the molar mass of inhibitors; c ∆∆HMM is the relative 
enthalpic contribution to the GFE change related to E-I complex 
formation derived by MM;∆∆HMM ≈[EMM{E-Ix} − EMM{Ix}] − [EMM{E-
Iref} − EMM{Iref}], Iref is the reference inhibitor HDA1; d∆∆Gsol is the 
relative solvent effect contribution to the GFE change of E-I complex 
formation: ∆∆Gsol = [Gsol{E-Ix} − Gsol{Ix}] − [Gsol{E-Iref} − Gsol{Iref}]; 
e −∆∆TSvib is the relative entropic contribution of inhibitor to the 
GFE of E-Ix complex formation: ∆∆TSvib = [TSvib{Ix}E − TSvib{Ix}] − 
[TSvib{Iref}E − TSvib{Iref}]; f∆∆Gcom is the overall relative GFE change 
of E-Ix complex formation: ∆∆Gcom ≈∆∆HMM + ∆∆Gsol − ∆∆TSvib; g Ki

exp 
is the experimental inhibitory concentration of PfA.M17 obtained 
from ref.;[18-20] hratio of predicted and experimental inhibitory 
potencies pKi

pre/pKi
exp

 (pKi
pre = −log10Ki

pre) was predicted from 
computed ∆∆Gcom using the regression equation for PfA-M17 shown 
in Table 3.

structural substitution directed to any active site residue, 
only a virtual screening of a diverse combinatorial library 
is expected to bring to novel more potent HDA analogs.

3D-QSAR Pharmacophore Model

PfA-M17 Active Site Pharmacophore
The interaction generation protocol in Discovery 
Studio molecular modeling program[22] provides the 
pharmacophore features of the active site of a protein. 
PfA-M17 predominantly displays aliphatic and hydrophobic 
aromatic features at the active site. 

Generation and Validation of Pharmacophore
PfA-M17 inhibit ion 3D-QSAR pharmacophore was 
generated from the active conformation of 36 TS 
HDA1-36 and evaluated by 7 VS VDA1-7 covering a large 
range of experimental activity (2.5–1700 nM) spanning 
almost three orders of magnitude, suitable for a reliable 
pharmacophore hypothesis. The generation process is 
divided into three main steps: (i) the constructive step, 
(ii) the subtractive step, and (iii) the optimization step[24] 
as described earlier. 
Accordingly, none of the training set HDAx was inactive 
and no starting PH4 features were removed. Finally, during 
the optimization phase, the score of the pharmacophoric 
hypotheses was improved. Hypotheses were scored 
according to errors in activity estimates from regression 
and complexity via a simulated annealing approach. 
At the end of the optimization, the top scoring 10 
unique pharmacophore hypotheses were kept, all 
displaying five-point features. The cost values, correlation 
coefficients, root-mean square deviation (RMSD) values, 
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the pharmacophore features, and the max-fit value of the 
top 10 ranked hypotheses (Hypo1-Hypo10) are listed in 
Table 4. They were selected based on significant statistical 
parameters, such as high correlation coefficient, low total 
cost, and low RMSD.
The generated pharmacophore models were then assessed 
for their reliability based on the calculated cost parameters 
ranging from 335.24 (Hypo1) to 434.97 (Hypo10). The 
relatively small gap between the highest and lowest cost 
parameter corresponds well with the homogeneity of the 
generated hypotheses and consistency of the TS of HDAx. 
For this PH4 model, the fixed cost (73.53) is lower than the 
null cost (2477.37) by a difference Δ = 2403.84. As reported 
earlier,[24] this difference is a major quality indicator of 
the PH4 predictability (Δ > 70 corresponds to an excellent 
chance or a probability higher than 90% that the model 
represents a true correlation.[22] A hypothesis has to be 
as close as possible to the fixed cost and as far as possible 
from the null cost to be statistically significant. For the 
set of 10 hypotheses, the difference Δ ≥ 597.58 attests to 
the pharmacophore model’s high quality. The standard 
indicators such as the RMSD between the hypotheses, 
ranged from 3.78 to 4.46, and the squared correlation 
coefficient (R2) falls to an interval from 0.95 to 0.92. The 
first PH4 hypothesis with the total costs (335.24) and 
best RMSD and R2 was retained for further analysis. The 
statistical data for the set of hypotheses (costs, RMSD, R2) 
are listed in Table 4. The configuration cost (14.78 for all 
hypotheses) far below 49 confirms this pharmacophore as 
reasonable. The evaluation of Hypo 1 is the mapping of the 
best active training set HDA1 (Fig. 5 (D)) displaying the 
geometry of the Hypo1 pharmacophore of M17 activation. 
The regression equation for pKi

exp vs. pKi
pre estimated 

from Hypo1: pKi
exp = 0.707× pKi

pre - 2.5182  (n = 36. R2 = 
0.89. R2

xv = 0.89. F-test = 286.23. σ = 0.25, α > 95%)  is also 

plotted on Fig. 5 (E). Therefore the PH4 is good potential 
to choice the new HDA analogs.	
We can carry out computational design and selection 
of new HDA analogs with elevated inhibitory potencies 
against PfA-M17, based on a strategy using the noticeable 
presence of the hydrophobic features included in the best 
pharmacophore model at the position of R1 and R2 coupled 
with mapping to the hydrophobic aromatic ring feature 
and the appropriate ring substitution to the hydrophobic 
aliphatic feature in Hypo1 (Fig. 5).

Virtual Screening
In silico screening of a virtual (combinatorial) library can 
lead to hit identification as it was shown in our previous 
works on inhibitors design.[24,32]

Virtual Library
An init ial v ir tual l ibrar y ( VL) was generated by 
substitutions at positions for R1 and R2 (see Table 5) 
on the scaffold: R1× R2 = 547 × 103 = 56,341 analogs. 
In order to match the substitution pattern of the best 
training set ligand HDA1 and consider the reported 
structural information about S pockets filling suitable 
for substitution not excluded through the Lipinski’s rule 
violation (Mw > 500 g/mol[33] the VL underwent a focusing. 
To increase the content of drug-like and orally bioavailable 
analogs, the initial VL was filtered in an ADME-based 
focusing step. Only those molecules that satisfied the 
Lipinski’s rule of five[30] computed using QikProp,[27] were 
kept. From the initial set of 56,341 analogs, 20,254 fulfilled 
the Lipinski test. 48 best fitting analogs (PH4 hits) were 
retained and submitted to structure-based screening 
using the QSAR model and computed GFE of the M17: HDA 

Table 3: Analysis of computed binding affinities ΔΔGcom, its enthalpic 
component ΔΔHMM, and experimental inhibitory concentrations pKi

exp 
= −logKi

exp of HDAs towards PfA-M17 [18,19, 20]

Statistical Data of Linear Regression (A) (B)

Number of compound n 36 36

Squared correlation coefficient of 
regression R2 0.94 0,97

LOO cross-validated Squared Correlation 
coef. R2

XV 0.94 0,97

Standard error of regression σ 0.19 0,14

Statistical significance of regression. 
Fisher F-test 523.6 969,7

Level of statistical significance α 95% 95%

Range of activities Ki
exp [nM] 2.5–1700 Fig. 3: (Top) plot of correlation equation between pKi

exp and relative 
enthalpic contribution to the GFE (∆∆HMM [kcal.mol-1]). (Bottom) 
similar plot for relative complexation Gibbs free energies of the PfA.M17-
HDA complex formation ∆∆Gcom [kcal.mol-1] of the training set.[18-20] 

The validation set data points are shown in red color.
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complex formation. The calculated ΔΔGcom of the M17: HDA 
complexes of the hits, their components, and predicted 
activities Ki

pre estimated from the correlation equation 
(B) (Table 3) are listed in Table 6.

In-silico Screening of Library of HDAs
The focused library of 20,254 analogs was further screened 
for molecular structures matching the 3D-QSAR PH4 
pharmacophore model Hypo1 of PfA-M17 inhibition. 48 
HDAs mapped to at least 5 features of the pharmacophore. 
These best-fitting analogs (PH4 hits) then underwent 
complexation QSAR model screening. The computed GFE 
of PfAM17-HDAx complex formation, their components, 
and predicted inhibitory activities Ki

pre calculated from 
the correlation equation B (Table 3) are listed in Table 6.

Novel HDA Analogs 
The design of the virtual library of novel analogs was 
guided by structural information retrieved from the HDAx 
active conformation and was used to select appropriate 
substituents (R1- and R2-groups). In order to identify 
which substituents lead to new inhibitor candidates 
with the highest predicted potencies towards the PfA-
M17, we have prepared histograms of the frequency 
of occurrence of R1- and R2-groups among the 48 best 
fit PH4 hits (Fig. 6). The histograms show that the R1 
group 530, 529 and 1 were represented with the highest 

Fig. 4: Molecular Mechanics intermolecular interaction energy 
Eint breakdown to residue contributions in [kcal.mol-1]: (A: Top) 
the most active inhibitors HDA1-5, (B: Middle) moderately active 
inhibitors HDA15-19, (C: Bottom) less active inhibitors HDA27-

36,[18-20]

Table 4: Parameters of 10 generated PH4 pharmacophoric hypotheses 
for PfA-M17 inhibitor after Cat-Scramble validation procedure (49 
scrambled runs for each hypothesis at the selected level of confidence 

of 98%).

Hypothesis RMSD R2b Total 
Cost c

Costs 
Difference d

Closest 
Random e

Hypo 1 3.78 0.95 335.2 2142.2 1033.4

Hypo 2 3.79 0.95 336.9 2140.5 1034.6

Hypo 3 3.97 0.94 362.5 2114.9 1034.7

Hypo 4 3.99 0.94 365.9 2111.5 1034.7

Hypo 5 4.24 0.93 402.5 2074.9 1034.7

Hypo 6 4.26 0.93 404.5 2072.9 1043.9

Hypo 7 4.26 0.93 405.7 2071.7 1099.8

Hypo 8 4.33 0.93 415.6 2061.8 1107.1

Hypo 9 4.45 0.92 433.6 2043.8 1116.6

Hypo 10 4.46 0.92 435.0 2042.4 1119.9

Fixed Cost 0 1 73.5

Null Cost 11.6 0 2477.4

Configuration cost = 11.40.
a root mean squared deviation; b squared correlation coefficient; 
c overall cost parameter of PH4 pharmacophore; d cost difference 
between Null cost and hypothesis total cost; e lowest cost from 
49 scrambled runs at a selected level of confidence of 98%

Fig. 5: (A) Distances between centers, (B) angles between centers of 
pharmacophoric features, (C) Features coordinates of centers, (D) 
mapping of pharmacophore of PfA-M17 inhibitor with the most potent 
molecule HDA1. Feature legend: HYDA = Hydrophobic Aliphatic (blue), 
HYDAr = Hydrophobic Aromatic (sky blue), HBA = Hydrogen bond 
Acceptor (green), HBD = Hydrogen bond Donor (pink). (E) Correlation 

plot of experimental vs. predicted inhibitory activity.

frequency of occurrence (8, 4 and 4 respectively) 
among the 48 HDA hits. The R2-groups most frequently 
represented in this subset are 5, 1 and 7 with occurrences 
of 9, 5 and 5 respectively. The top ten scoring virtual 
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hits, namely, analogs are 530-29 (Ki
pre. = 34 pM), 529–99 

(36 pM), 529–100 (43 pM), 19–1 (46 pM), 530–98 (48 
pM), 530–103 (50 pM), 530–95 (52 pM), 19–99 (64 pM), 
530–94 (84 pM) and 530–102 (102 pM). They include the 
following substituents at R1 position : 530 : 2-adamantyl 
(6), 529  : adamantyl (2) and 19  : tert-butoxy (2), or at 
R2 position  : 29  : 4’-((dimethylphosphoryl)oxy)-[1,1’-
biphenyl]-4-yl (1), 99 : 7-phosphonopyren-2-yl (2), 100 : 
4-(4-((dimethylphosphoryl)- oxy)cyclopenta-1,4-dien-1-yl)
phenyl (1), 1 : (1), 98 : 4’-phospho-no-[1,1’-biphenyl]-4-yl 
(1), 103  : 4’-(dimethoxyphosphoryl)-3’,5’-difluoro-[1,1’-
biphenyl] -4-yl (1), 95 : 6,8-difluoro-7-phos-phonopyren-
2-yl (1), 94 : 5,6,10-trifluoro-9H-cyclopenta[a]py-ren-2-yl 
(1) and 102  : 3’,5’-difluoro-4’-(hydroxy(metoxy)phos-
phoryl)-[1,1’-biphenyl]-4-yl (1). These R2-groups, all of 
which are hydrophobic rings, have a suitable substituent in 
the p-position that explores the depth of the S1 pocket. Due 
to the amino acid composition of the larger hydrophobic 
S1’ pocket, R1-groups show preferences for larger aliphatic 
building blocks from butyl to decyl.[20]

Substitutions in the R1 position sufficiently occupying 
the S1’ pocket and in the R2 position deeply embedded 
in the narrow S1 hydrophobic pocket of the HDAs led to 
an overall increase in the binding affinity of PfA-M17, as 
illustrated by the inhibitory potencies of the majority of 
the newly designed analogues. The best-designed HDA, 
530–29, has a predicted inhibitory potency of Ki

pre = 34 pM 
which is approximately 70 times lower than the most active 
compound in the TS series from the work of Drinkwater 
et al.,[19] and Vinh et al.[20]

Pharmacokinetic Profile of Novel HDA Analogs 
The question of the pharmacokinetic profile has been 
a very important issue in the search for new inhibitors, 
particularly PfA-M17 inhibitors.[18-20] For example, the 
best-designed triclosan derivative with very low oral 
bioavailability due to its low water solubility and rapid 
phase II metabolism, which must be optimized for possible 
use as an antituberculosis drug, possibly as an antimalarial 
drug in cases of high affinity with Pf EACP.[34,35]

Properties that determine the pharmacokinetics profile of a 
compound, besides octanol/water partitioning coefficient, 
aqueous solubility, blood/brain partition coefficient, 
Caco-2 cell permeability, serum protein binding, number of 
likely metabolic reactions and other 18 descriptors related 
to adsorption, distribution. Metabolism and excretion 
(ADME properties) of the ligands were computed by the 
QikProp program[31] based on the methods of Jorgensen. 
According to these methods, experimental results of 
more than 710 compounds, including about 500 drugs 
and related heterocycles, were correlated with computed 
physicochemical descriptors, accurately predicting the 
molecule’s pharmacokinetic profile. Drug likeness (#stars) 
is represented by the number of descriptors that exceed 
the range of values determined for 95% of known drugs 
out of 24 selected descriptors computed by QikProp.[31] 

Drug-likeness was used as the global compound selection 
criterion related to ADME properties. The selected ADME 
descriptors were calculated from 3D structures of the 
compounds considered. They were used to assess the 
pharmacokinetics profile of designed compounds (Table 7)
The values for the best-designed HDAs are compared with 
those calculated for current drugs used for the treatment 
of malaria or in clinical trials (Table 7).

Discussions 
The structural requirements for tight binding of HDAs to 
PfA-M17 include hydrophobic moiety in S1 pocket which 
can, through conformational changes, accommodate 
bulkier group, fitting S1’ hydrophobic pocket and a 
zinc binding group. The best-designed HDA analogs are 
displayed on Fig. 7 through their mapping to the PfA-M17 
inhibition PH4, 3D interactions and Connoly surface of 
the active site. The studied nanomolar range inhibitory 
concentration HDAx series bind to the target enzyme 
through hydrogen bonds, π---π , π---alkyl, π---sulfur 
and hydrophobic contacts which are assessed by PfA-
M17:HDAx interaction energy breakdown to each active 
site residue, a quantitative descriptor useful to evaluate 
residue  –  inhibitor interactions unavoidable in case of 
hydrophobic contacts. Comparing the best active training 
set HDA1 and one of the top designed HAD analog 530-29 
through the residues’ contribution to interaction energies 
(Fig. 8) one can notice: for the residues involved in S1 – 
Inhibitor interactions are Ala577 (HDA1: ∆Eint = -2, and 
530-29: ∆Eint =-3 kcal.mol-1), Leu492 (-2.2, and 530-29: 
-2.7 kcal.mol-1), Trp581 (-1.2, and 530-29: -2.3 kcal.mol-1), 
Phe583 (-0.8, and 530-29: -1.6 kcal.mol-1), Met392 (-1.5, 

Fig. 6: Histograms of frequency of occurrence of individual 
R-groups in the 48 best selected analogs mapping to four features 

of the PH4 pharmacophore hypothesis Hypo1
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Table 5: R-groups (fragments. Building blocks. Substituents) used in the design of the diversity VL of HDA analogs.
R2

N
H

H
N

R1 OH

O

O

R1-groups

1 tert-butyl 2 isopropyl 3 ethyl

4 2,2,2-trifluoroethyl 5 perfluoroethyl 6 Buta-1,3-dien-2-yl

7 penta-1,3-dien-3-yl 8 penta-1,4-dien-3-yl 9 3-vinylpenta-1,4-dien-3-yl

10 3-neopentyl 11 3-isobutyl 12 3-propyl

13 3,3,3-trifluoropropyl 14 2,2,3,3,3-pentafluoropropyl 15 2-methylenebut-3-en-1-yl

16 2-vinylbut-2-en-1-yl 17 2-vinylbut-3-en-1-yl 18 2,2-divinylbut-3-en-1yl

19 tert-butoxy 20 isoprotoxy 21 ethoxy

22 2,2,2-trifluoroethoxy 23 perfluoroethoxy 24 buta-1,3-dien-2-yloxy

25 penta-1,3-dien-3-yloxy 26 penta-1,4-dien-3-yloxy 27 (3-vinylpenta-1,4-dien-3-yl)oxy

28 tert-butylthio 29 isopropylthio 30 ethylthio

31 (2,2,2-trifluoroethyl)thio 32 (perfluoroethyl)thio 33 buta-1,3-dien-2-ylthio

34 penta-1,3-dien-3-ylthio 35 penta-1,4-dien-3-ylthio 36 (3-vinylpenta-1,4-dien-3-yl)thio

37 cyclopropyl 38 oxiran-2-yl 39 aziridin-2-yl

40 1-formylaziridin-2-yl 41 1-(hydrazineylidenemethyl)aziridin-
2-yl 42 cyclobuta-1,3-dien-1-yl

43 cyclobutyl 44 3-methylcyclobuta-1,3-dien-1-yl 45 2-methylcyclobuta-1,3-dien-1-yl

46 azet-3-yl 47 4-(trifluoromethyl)cyclobuta-1,3-dien-
1-yl 48 3,4-dimethylcyclobuta-1,3-dien-1-yl

49 4-methyl-3-(trifluoromethyl) 
cyclobuta-1,3-dien-1-yl 50 2-aminoazet-3-yl 51 3-aminocyclobuta-1,3-dien-1-yl

52 3-(difluoroamino)cyclobuta-
1,3-dien-1-yl 53 3-(1-aminovinyl)cyclobuta-1,3-dien-

1-yl 54 3-aminocyclobut-2-en-1-yl

55 3-methylcyclobut-2-en-1-yl 56 2-methylcyclobut-2-en-1-yl 57 2-aminocyclobut-2-en-1-yl

58 4-aminocyclobut-1-en-1-yl 59 cyclobut-1-en-1-yl 60 3-methylcyclobut-1-en-1-yl

61 4-methylcyclobut-1-en-1-yl 62 3-aminocyclobut-1-en-1-yl 63 3-carbamoylcyclobut-1-en-1-yl

64 3-fluorocyclobut-1,3-dien-1-yl 65 2,3-difluorocyclobut-1,3-dien-1-yl 66 3,4-difluorocyclobut-1,3-dien-1-yl

67 4-fluorocyclobut-1,3-dien-1-yl 68 2-fluorocyclobut-1,3-dien-1-yl 69 2,3,4-trifluorocyclobut-1,3-dien-1-yl

70
2,4-difluoro-3-
(trifluoromethyl) cyclobut-1,3-
dien-1-yl

71 3-amino-2,4-difluorocyclobut-1,3-
dien-1-yl 72 1H-pyrrol-1-yl

73 3-fluoro-1H-pyrrol-1-yl 74 3,4-diamino-1H-pyrrol-1-yl 75 3,4-difluoro-1H-pyrrol-1-yl

76 3-chloro-4-fluoro-1H-pyrrol-
1-yl 77 3-fluoro-4-formyl-1H-pyrrol-1-yl 78 3-fluoro-4-(2,2,2-trifluoroacetyl)-1H-

pyrrol-1-yl

79 3-(cyanocarbonyl)-4-fluoro-
1H-pyrrol-1-yl 80 3-cyano-1H-pyrrol-1-yl 81 6-cyanopyridazin-3-yl

82 5-cyanopyridin-2-yl 83 5-cyanopyrimidin-2-yl 84 5-cyanopyrazin-2-yl

85 Perfluoro-1H-pyrrol-1-yl 86 2,4-dibromo-3,5-difluoro-1H-pyrrol-
1-yl 87 3-methyl-1H-pyrrol-1-yl

88 3-(trifluoromethyl)-1H-pyrrol-
1-yl 89 3,5-dihydro-4H-1,2,4-triazol-4-yl 90 2,5-dihydro-1H-pyrrol-1-yl

91 3,4-diamino-2,5-dihydro-1H-
pyrrol-1-yl 92 2H-pyrrol-3-yl 93 3H-pyrazol-4-yl
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