

Contents lists available at UGC-CARE

International Journal of Pharmaceutical Sciences and Drug Research

[ISSN: 0975-248X; CODEN (USA): IJPSPP]

Available online at www.ijpsdronline.com

Research Article

Evaluation of Ethanolic Leaf Extract of *Cucumis melo* var. agrestis in Acetic Acid-induced Ulcerative Colitis on Rats

G. Sivakumar*, K. Aswin

Department of Pharmacology, KMCH College of Pharmacy, Coimbatore, Tamil Nadu, India

ARTICLE INFO

Article history:

Received: 24 May, 2023 Revised: 02 July, 2023 Accepted: 06 July, 2023 Published: 30 July, 2023

Keywords:

Ulcerative colitis, Ethanolic leaf extract of *Cucumis melo* var, agrestis, European union

DOI:

10.25004/IJPSDR.2023.150411

ABSTRACT

The crux of the present research work was to evaluate the therapeutic potential of Ethanolic leaf extract of Cucumis melo var. agrestis (ELECM) on Ulcerative Colitis in rats. The successful induction of Ulcerative Colitis was done by intra-rectal administration of 500 µl of acetic acid (4% v/v), rats were euthanized on day 8 by cervical dislocation under anesthesia. The pathological parameters such as colon weight, colon antioxidant enzymes (SOD, CAT), lipid peroxidase enzymes (MDA, MPO), inflammatory markers (TNF- α and IL-6), and histopathological aspects were estimated to evaluate the ELECM against the disease control. Sulfasalazine was used as positive control to compare the protective effect of the ELECM. The GC-MS analysis of ELECM confirms the presence of about 12 specific phytochemicals. Induction of ulcerative colitis was evidenced in the control group due to increased colon weight, lipid peroxidase enzymes, and immune markers also by alleviated levels of antioxidant enzymes in the rat colon. However, ELECM treated group almost reversed the effect of the disease control group, above all the histopathological response of the ELECM-treated group against the acetic acid-induced ulcerative colitis was almost the same as that of the control group, indicating the significant protective effect. Our present study suggests that ELECM extract has significant protective activity against acetic acid-induced ulcerative colitis, due to its higher antioxidant, moderate anti-inflammatory, and mild immune-suppressive effects, and the protective action might be due to the presence of active constituents such as flavonoids and total phenols as presented on the GC-MS analysis report.

INTRODUCTION

Ulcerative colitis is a chronic inflammatory bowel disease with recurrence, symptomized by nausea, diarrhea, loss of weight, and abdominal pain with a severe impact on quality of life. The etiological backroad is not clear. However, it has a genetic, immunological, and environmental link. Pathologically reactive oxygen species and reactive nitrogen species with depletion of antioxidants cause extensive mucosal damage and facilitate the disease's progression. The damaged epithelial cells consciously undergo the healing process by restitution, proliferation, and differentiation. Activation, and downstream

expression of pro-inflammatory mediators including TNF- α and interleukin 6 (IL-6). The pharmacotherapy of commonly used drugs such as 5-aminosalicylic acid, systemic corticosteroids, immune-modulators, and vitamin E 6 is challenged by immunity, instigation of microbes, and toxicities. The phytochemical-based treatment might be a better, more effective alternative and free from an adverse drug reaction.

We chose acetic-acid-induced ulcerative colitis in a rat model for our current research, as this model was found to be simple, less time-consuming, and more relevant to the pathology of human ulcerative colitis. It is also useful for the screening of antiulcer drugs.^[9] The fruit of

*Corresponding Author: Mr. G. Sivakumar

Address: Department of Pharmacology, KMCH College of Pharmacy, Coimbatore, Tamil Nadu, India

Email ⊠: shivakumar_gsk@rediffmail.com

Tel.: +91-9489980463

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2023 G. Sivakumar $et\ al.$ This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Cucumis melo var. agrestis, popularly known as Wild Melon also known as musk melon is an annual creeper widely consumed vegetable distributed in most parts of India. [10] The ethanolic leaf, seed, and fruit extract contains rich phytochemicals such as triterpenes flavonoids, phenolic compounds, steroids, alkaloids, essential oil, and tannins. 11 Musk melon is one of the valuable medicinal plants against pain, immunity, free radicals scavenging, and inflammatory management, [12-16] in addition to that it also possesses diuretic, [17] anticancer, [18,19] antioxidant [20] antiulcer, [21] antidiabetic, [22,23] anti-fertility, [24] anti-thyroidal [25] anthelmintic and anti-bacterial [26] potential, besides no side effects and musk melon can be considered as distinctive, affordable, tasty and safe fruit with wide medicinal value. In *C. melo var. agrestis* the presence of multiple and valuable phytochemicals, especially the flavonoids and phenolic compounds, has shown to posses varieties of proven pharmacological activity among that the presence of anti-inflammatory effects, made us to select ELECM for the evaluation of IBS. The flavonoids as it dissolves more in 70% ethanol compared to other solvents due to its rich polarity we selected ELECM for our current research work.^[27,28]

MATERIALS AND METHOD

Plant Collection and Extraction

Fresh leaves of *C. melo var argestis* were collected from the village of Thoothukudi region, Tamil Nadu, India in December 2020. Collected plant materials were air-dried, powdered by a mechanical mixer, and sieved under mesh sizes 40 and 60. The resultant 500 g of coarse powder was defatted with petroleum ether followed by continuous hot extraction with the help of the soxhlet apparatus using 70% ethanol. The greenish gummy extract obtained was freeze-dried. The final alcohol-free extract was found to be soluble in both water and alcohol, the percentage yield of moisture-free ELECM was 6.48 w/w.

Phytochemical Analysis

In our study, GS-MS was employed to identify and correlate the phytochemical components present in the MEPC. It was carried out at Sitra laboratory, Coimbatore, Tamil Nadu. The GC-MS separates chemical mixtures, identifies each chemical at a molecular level in the most accurate manner, and is considered to be a definitive analytical tool. GS-MS uses inert gas (helium) to carry the separated chemicals that emerge from the column opening, when it flows into the MS it identifies the analyte molecule using a library of spectra with corresponding compounds stored in the computer.

Animals

Ten weeks old healthy male wister rats obtained from an authorized source was quarantined and allowed to acquire standard laboratory condition for 2 weeks. All the animals were given a standard commercial diet and allowed to access the water *ad libitum*. The room temperature was maintained at $23 \pm 2^{\circ}$ C through air conditioning with 24 hours dark-light cycling throughout the study. The strict experiment protocol was followed as per CPCSEA guidelines and IAEC approval (KMCRET/ReRe/MPharm/11/2021) was obtained before the study. During the ulcerative colitis induction by intra-rectal acetic acid administration, the animals have exposed under 50 mg/kg pentobarbital (*i.p.*) anesthesia.

Induction of Ulcerative Colitis

Randomly allotted animals were divided into 5 groups (n = 6), all groups received the vehicle, standard, and test drug with the test dose of 200 and 400 mg/kg for low and high dose of ELECM based on literature review^[29] and dose is based on body weight as per the group illustrated in Table 1 for 1 to 7 days, [30] with the intervention of 500 μL of 4% (v/v) acetic acid by intra-venous cannula (21G) by intra-rectal route (6-7 cm from the anus) under 50 mg/kg pentobarbitone (i.p.) anesthesia, after 2 hours administration of vehicle, standard and test drug for the respective groups except the control group on 4th day. On the 8th day, all group animals were killed under anesthesia, the caecum and distal part of the colon was removed for macroscopical and microscopical assessment, and further, the colon tissues were homogenized for biochemical parameters estimation.

Estimation of Rat Colon Weight

All groups of rat colons were dissected by opening the colon longitudinally, rinsed with tap water to remove the feces then the cleaned colon was placed on a clean surface. The equal length of all group colons was weighed and tabulated.

Estimation of Antioxidant Enzyme Activity in Colon

The antioxidant enzyme levels such as superoxide dismutase (SOD) and catalase (CAT) were estimated by the homogenized colon samples on ice-cold tris buffer (0.02 M pH of 7.4) to get a 10% of homogenate sample.

Estimation of SOD levels in colon

The estimation was done based on the spectrophotometric principle $^{[31]}$ by adding 750 μL ethanol (96% v/v) and 150 μL of ice-cold chloroform into 500 μL of the colon homogenate then it was centrifuged at 2000 rpm for 20 minutes at 25°C from that 500 μL supernatant was collected additional 500 μL EDTA (0.6 mM) and 1-mL carbonate bicarbonate buffer (0.1 M, pH 10.2) were added. By the addition of 50 μL of adrenaline (1.3 mM), The reaction was initiated and the absorbance was recorded at 480 nm. Absorbance was measured against a blank at 480 nm using a UV spectrophotometer.

The following formula calculated the percentage inhibition of autoxidation of adrenaline and the amount of enzyme inhibited by auto-oxidation of adrenaline by 50% at 25°C.

Percentage inhibition = Σ Absorbance test – Absorbance blank $\Sigma \times 100:\eth1P$

The SOD activity (Unit of SOD activity/mg protein = Σ % inhibition $\Sigma \times 100$

Estimation of catalase levels in colon

The spectrophotometric estimation of catalase was done $^{[32]}$ by the addition of 100 μL of the supernatant colon tissue homogenate with a mixture containing 1-mL (0.01 M) phosphate buffer (pH 7.0), 500 μL H202 (1.18 M), and 400 μL of water and the reaction is initiated by incubating the sample at 28°C for 5 minutes, the reaction was terminated using a mixture comprising a 3: 1 ratio of glacial acetic acid and 5% potassium dichromate resulting in the formation of chromic acetate which is measured 620 nm by UV spectrophotometer. The enzyme activity was expressed in terms of its molar extinction coefficient of 39.4 M^{-1} cm $^{-1}$.

Estimation of Lipid Peroxidase Enzyme levels in Colon

Estimation of malondialdehyde (MDA) levels in colon

The elevation of MDA denotes the excess amount of lipid peroxidation process occurs during the pathology of ulcerative colitis by acetic acid induction, estimated by spectrophotometric principle^[33] using the tissue homogenate of the colon of about 1-mL with the addition of 3 mL of a mixture comprising of 20% trichloroacetic acid (TCA) and 0.5% thiobarbituric acid (TBA). The resultant sample was heated at 95°C for 30 minutes, cooled in an ice bath, and centrifuged at 2,000 rpm for 10 minutes. The absorbance of the MDA-TBA complex was measured at 532 nm against the blank using a UV spectrophotometer. MDA's concentration (nmol/mg protein) was calculated using the MDA extinction coefficient of 1:56 × 10-5 M⁻¹ cm⁻¹.

Estimation of myeloperoxidase (MPO) levels in Colon

The estimation of MPO indirectly denotes the neutrophil content of the colon tissue as the enzyme was present within the granules of neutrophils. [34] The entire procedure of MPO levels was estimated under dark conditions using a 96-well plate with a microplate reader at 490 nm. 50 µL of the sample was taken in duplicate. To this, 250 µL of ODA-H₂O₂ was added, comprising 680.45 mg of potassium dihydrogen orthophosphate in 100 mL of distilled water and the pH was adjusted to 6.0. ODA solution includes 0.167 mg of ODA in 1 mL of phosphate buffer of pH 6.0. Finally, ODA-H₂O₂ was prepared by adding 1-mL of 30% of H2O2 to 1-mL of ODA solution. In addition, the reading was noted at 5 and 15 minutes. After this, 4 M H₂SO₄ was added to stop the reaction, and again the reading was noted. The concentrations of MPO at subsequent time intervals were determined from the standard plot which uses horse radish peroxidase as standard.

Estimation of serum immune markers (TNF- α and IL-6) levels

At the end of the experiment (day 8), all group rats were euthanized, blood samples were collected and centrifuged

at 3000 rpm for 30 minutes at 4°C and the serum was obtained for the estimation of TNF- α and IL-6 using ELISA kits as per the manufacturer instruction.

Microscopical Examination of Colon and Caecum

The caecum and a distal part of colons of all group rats were immediately fixed with 10% formaldehyde, embedded in liquid paraffin, about 5 μ m thick transverse sections were cut and mounted on glass slides stained by hematoxylin and eosin (H & E) mixture. The acetic acid exposure damage to the colon and caecum was assessed and compared among the groups through the cellular damages mediated by infiltration, ulceration, hyperemia, necrosis, fibrosis, and submucosal abscesses.

Data Analyses

The statistical method for all the data was analyzed by one-way ANOVA followed by Dunnet's multiple comparison test. All the statistical analysis was performed using GraphPad Prism software Differences in p-values < 0.05 were considered to be statistically significant for comparison purposes. The ensuing results were then presented as mean ± SEM.

RESULTS

Phytochemical Analysis

The qualitative phytoconstituent analysis of ELECM by GS-MS and further comparing the chemical library showed the presence of about 12 specific phytochemicals as presented in Fig. 1.

Rat Colon Weight

The colon weight of the acetic acid-induced ulcerative colitis rats (1.37 \pm 0.03 g) was observed which is almost a two-fold increase as compared to the control group (0.73 \pm 0.03 g). However, the standard (1.01 \pm 0.04 g) and test low dose (1.18 \pm 0.03 g) and high dose (1.07 \pm 0.05 g) of ELECM have a substantial reduction in colon weight, indicating both prednisolone and ELECM have anti-inflammatory activity against ulcerative colitis induced by acetic acid (Table 2 and Fig. 2) in rats.

Chromatogram ASG 326- Cucumis melovaragretisD:\GCMS Data\ December 2021\15.12.2021\ASG 326- Cucumis melovaragretis. qg17,420,818

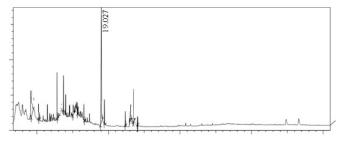


Fig. 1: ELECM of GC-MS Chromatogram

Peak#	R.Time	Area	Area%	Height	Height%	Name	Base m/z
1	9.258	29094883	13.60	3469036	7.39	5-Hydroxymethylfurfural	97.05
2	10.311	6795426	3.18	2143756	4.57	2-Methoxy-4-vinylphenol	150.05
3	12.905	12974529	6.06	6440325	13.72	1H-Inden-1-one, 2,3-dihydrotetramethyl-	173.10
4	15.042	9639649	4.51	1219121	2.60	Bergamotol, Zalphatrans-	93.10
5	15.714	4502376	2.10	1634497	3.48	Tetradecanoic acid	73.05
6	16.675	4767699	2.23	2357174	5.02	Neophytadiene	68.10
7	19.027	89688666	41.92	16224633	34.57	Hexadecanoic acid	73.00
8	19.513	10733605	5.02	3465160	7.38	Ethyl palmitate	88.05
9	22.366	5955906	2.78	2003035	4.27	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	57.05
10	23.118	12706586	5.94	2131290	4.54	AlphaLinolenic acid	79.05
11	23.554	24026593	11.23	4709077	10.03	9-Octadecenoic acid (z)-	55.05
12	24.084	3076828	1.44	1142024	2.43	Ethyl stearate	88.05

Table-1: Induction of acetic acid induced inflammatory bowel diseases on rats

		discuses on rats	
S. No	Groups	Treatment	
1	Group-1	Normal saline for 7 days	
		Normal saline for 7 days + intra-rectal	
2	Group-2	administration of 500µL of acetic acid (4% v/v)	
		after 2 hrs Normal saline (p.o.) on 4 th day.	
		Standard (Prednisolone 10 mg/kg, p.o.) for 7 days	
3	Group-3	+ intra-rectal administration of 500 µL of acetic acid	
		$(4\% \text{ v/v})$ after 2 hrs prednisolone $(p.o.)$ on 4^{th} day.	
		ELECM (200 mg/kg, p.o.) for 7 days + intra-rectal	
4	Group-4	administration of 500μL of acetic acid (4% v/v)	
		after 2 hrs ELECM(p.o.) on 4 th day.	
		ELECM (400 mg/kg, p.o.) for 7 days + intra-rectal	
5	Group-5	administration of 500 μ L of acetic acid (4% v/v)	
		after 2 hrs ELECM(p.o.) on 4 th day.	

Table 2: Effect of ELECM on colon weight and colon antioxidant activity

S. no	Groups	Colon weight (g)		Colon CAT level
			level (U/mg of	(nmol /min/mg of
			protein)	protein)
1	Control	0.73 ± 0.04	8.90 ± 0.22	10.78 ± 0.22
2	Negative	1.37 ± 0.03	2.81 ± 0.16	3.43 ± 0.17
3	Positive	1.01 ± 0.04	6.48 ± 0.18	7.76 ± 0.25
4	LD ELECM	1.18 ± 0.03	6.22 ± 0.16	6.04 ± 0.10
5	HD ELECM	1.07 ± 0.05	5.63 ± 0.20	6.88 ± 0.17

Antioxidant Enzyme Activity on Colon

The reduced level of tissue antioxidant is one the evidence of induction of ulcerative colitis, in our study, there was about 68% reduction of colon tissue SOD in the disease control group [2.81 ± 0.16 (U/mg of protein)] as compared to the control group [8.90 ± 0.22 (U/mg of protein)], conform the induction of ulcerative colitis. However, there was a substantial increase (less %reduction) of 57, 55, and 50 on standard [6.48 ± 0.18 (U/mg of protein)] and low

Fig. 2: Effect of ELECM on colon weight

Data are presented as mean \pm SEM, n=6. Control, Negative control (Acetic acid induced), Positive Control (Prednisolone), Low Dose, High Dose of ELECM. One-way ANOVA followed by Dunnett's test ns= non-significant. Compared with normal control; ns, * p<0.05, ** p<0.01, *** p<0.001

 $[6.22 \pm 0.16 \text{ (U/mg of protein)}]$ and high dose $[5.63 \pm 0.20 \text{ (U/mg of protein)}]$ of ELECM treated rats were observed (Table 2 and Fig. 3).

Similarly, there was about a 68% reduction of colon tissue Catalase in the ulcerative colitis control group [3.43 \pm 0.25 (U/mg of protein)] as compared to the control group [10.78 \pm 0.22 (U/mg of protein)], conform the induction of ulcerative colitis. However, there was a substantial increase (less %reduction) of 28, 44, and 36 on standard [7.76 \pm 0.25 (U/mg of protein)] and low [6.03 \pm 0.10 (U/mg of protein)] and high dose [6.88 \pm 0.17 (U/mg of protein)] of test treated rats were observed (Table 2 and Fig. 4).

Lipid Peroxidation

The significant alleviated tissue levels of MPO were observed in standard and test groups as 80.53 ± 2.96 , 76.33 ± 2.66 , and 62.66 ± 2.41 (µg/mg of tissue) as compared to

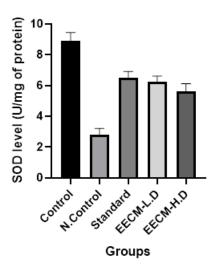


Fig. 3: Effect of ELECM on colon tissue SOD level

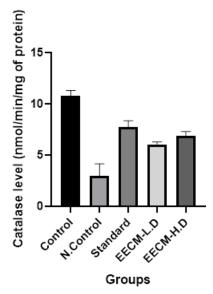


Fig.-4: Effect of ELECM on colon tissue catalase level

Data are presented as mean \pm SEM, n=6. Control, Negative control (Acetic acid induced), Positive Control (Prednisolone), Low Dose, High Dose of ELECM. One-way ANOVA followed by Dunnett's test ns= non-significant. Compared with normal control; ns, * p<0.05, ** p<0.01, *** p<0.001

acetic acid-treated rats with 140.72 ± 9.00 , reflecting close to 50% reduction of all treatment group as compared to control (Table 3 and Fig. 5).

The anti-inflammatory effect was reinforced further by a substantial reduction of colon MDA levels. The tissue MDA of standard, low dose of test, and high dose of the test were 22.15 ± 0.49 , 19.59 ± 0.29 , and 17.69 ± 0.26 (nM/mg

Table-3: Effect of ELECM on colon lipid peroxidase inhibitory effect

S. No	Groups	Colon MPO activity (µg/mg of tissue)	Colon MDA activity (nM/mg of protein)
1	Control	10.32 ±0.23	11.32 ±0.48
2	Negative	140.70 ± 9.00	28.87 ± 0.61
3	Positive	80.53 ± 2.96	22.15 ± 0.49
4	LD ELECM	76.33 ± 2.66	19.59 ± 0.29
5	HD ELECM	62.76 ± 2.41	17.69 ± 0.26

Data are presented as mean \pm SEM, n=6. Control, Negative control (Acetic acid induced), Positive Control (Prednisolone), Low Dose, High Dose of ELECM. One-way ANOVA followed by Dunnett's test ns= non-significant. Compared with normal control; ns, * p<0.05, ** p<0.01, *** p<0.001

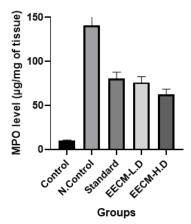


Fig. 5: Effect of ELECM on colon tissue MPO level

Data are presented as mean \pm SEM, n=6. Control, Negative control (Acetic acid induced), Positive Control (Prednisolone), Low Dose, High Dose of ELECM. One-way ANOVA followed by Dunnett's test ns= non-significant. Compared with normal control; ns, * p<0.05, ** p<0.01, *** p<0.001

of protein), respectively (Table 3 and Fig. 6), as compared to elevated level on the acetic-acid induced group as 28.87 ± 0.61 (nM/mg of protein).

Immune Markers (Serum TNF-α and IL-6) Levels

The TNF- α concentration of the disease control group was found to be 73.60 ± 1.04 pg/mL as compared to the control group of 16.44 ± 0.28 pg/mL, implying about 77.72% increased level of TNF- α (Table 3 and Fig. 7). However, the standard and low dose and high dose of the test were found to be 44.09 ± 1.28, 61.02 ± 0.80 and 55.43 ± 0.63 pg/mL, respectively and the %increase of about 62.81, 73.13 and 70.42. The results indicate a very mild reduction in the level of TNF- α almost in all treatment groups.

The concentration of IL-6 in disease control, standard, low dose, and high dose test was 31.24 ± 0.56 , 15.45 ± 0.2031 , 21.45 ± 0.85 , and 18.54 ± 0.39 pg/mL, respectively, and their % increase level of IL-1 was 72.31, 44.08, 59.72 and 53.34, respectively (Table 3 and Fig. 8), indicates a low reduction of IL-6 almost in all treatment group.

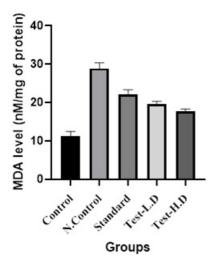
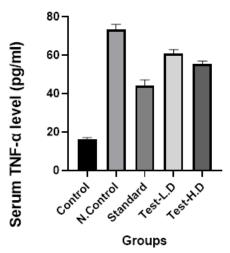



Fig. 6: Effect of ELECM on colon tissue MDA level

Fig. 7: Effect of ELECM on serum TNF- α level

Data are presented as mean \pm SEM, n=6. Control, Negative control (Acetic acid induced), Positive Control (Prednisolone), Low Dose, High Dose of ELECM. One-way ANOVA followed by Dunnett's test ns= non-significant. Compared with normal control; ns, * p<0.05, ** p<0.01, *** p<0.001

Microscopical Examination of Colon and Caecum

The microscopical examination of the colon and caecum of the acetic-acid-induced ulcerative colitis group showed ulcerative mucosa and dense lymphatic infiltration however the standard and test treatment group illustrate there was only mild ulcer and lymphatic infiltration, implying the test group has effective in reducing the symptoms of ulcerative colitis similar as standard drug prednisolone.

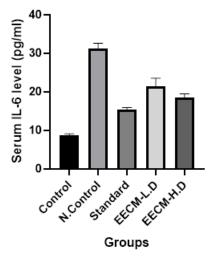


Fig. 8: Effect of ELECM on Serum IL-6 level (pg/mL)

Data are presented as mean \pm SEM, n=6. Control, Negative control (Acetic acid induced), Positive Control (Prednisolone), Low Dose, High Dose of ELECM. One-way ANOVA followed by Dunnett's test ns= non-significant. Compared with normal control; ns, * p<0.05, ** p<0.01, *** p<0.001

DISCUSSION

The present study aimed to assess the efficacy of ELECM to treat acetic acid-induced enterocolitis in wistar rats, though it is an acute study the pathological marker and the signs and symptoms imitate the human being. A higher and almost the same extent of antioxidant activity was observed through decreased levels of SOD and CAT in rat colon on both standard (prednisolone) and test groups (ELECM) compared to acetic acid-induced ulcerative colitis treated (negative group) rats.

The lipid peroxidation, and was significantly increased in the negative group rats as compared with the group treated with prednisolone (standard) group and ELECM treated (test group) of acetic acid-induced ulcerative colitis animal model and also pro-inflammatory mediators such as IFN- α and IL-6 indicate there was about mild to moderate immuno-suppressive response as compared to the standard drug treatment prednisolone. These findings illustrate, that there is a potent and moderate anti-inflammatory response for the standard and ELECM test groups, respectively similar results also reflected by the reduction of colon weight of the test group as compared to the diseased control.

The histological examination of the acetic-acid group shows ulcerative mucosa and the lamina propria showed dense lymphocytic infiltration with cryptitis and crypt abscess. However the ELECM-treated test group showed nearly normal epithelium, mild infiltrate, and mild cryptitis similar to the prednisolone-treated (standard group), indicating there is no significant pathology for the ELECM-treated test group. The GC-MS analysis of leaves ELECM confirms the presence of about 12 specific phytochemicals

Table 4: Effect of ELECM on colon immune-suppresive effect

S. No	Croung	Serum TNF-α level	Serum IL-6 level
3. NO	Groups	(pg/mL)	(pg/mL)
1	Control	16.4 ± 0.28	8.65 ± 0.19
2	Negative	73.6 ± 1.04	31.24 ± 0.57
3	Positive	44.09 ± 1.29	15.45 ± 0.20
4	LD ELECM	61.02 ± 0.80	21.45 ± 0.85
5	HD ELECM	55.43 ± 0.63	18.54 ± 0.39

Table 5: ELECM GC-MS photochemical and reported pharmacological activities

pharmacological activities				
S. no	Photochemicals	Pharmacological activity		
1	5-Hydroxymethylfurfural	Antioxidant and Anti-cancer (32)		
2	2-Methoxy-4-vinylphenol	Antioxidant and antimicrobial (33)		
3	1H-Inden-1-one, 2,3-dihydrotetramethyl-	Analgesic and CNS Stimulant and depressant activity (34)		
4	Bergamotol, Zalpha trans-	Antioxidant and Anti- microbial activity (35)		
5	Tetradecanoic acid	Anti-microbial (36)		
6	Neophyadiene	Anti-inflammatory (37)		
7	Hexadecanoic acid	Antioxidant and anti- inflammatory activity (38)		
8	Ethyl palmitate	Anti-inflammatory activity (39)		
9	3,7,11,15-Tetramethyl-2- Hexadecen-1-ol	Antioxidant and Hypolipdemic activity (40)		
10	Alpha-Linolenic acid	Antioxidant and anti- inflammatory and anticancer activity (41)		
11	9-Octadecenoic acid (Z)-	Motor activity (42)		

Fig. 9A: (Control Group)

Fig. 9C: (Standard Group)

Fig. 9B: (Negative Group)

Fig. 9D: (Test-Low Dose)

Fig. 9E: (Test - High Dose)

Fig. 9: Images of caecum and colon in acetic acid induced enterocolitis

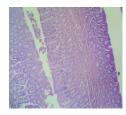


Fig. 10A: (Control) Colon shows normal mucosa. Lamina propria shows scattered lymphocytic infiltrates. Serosa and muscular layer show scattered inflammatory infiltrates. There is no granuloma/ malignancy seen

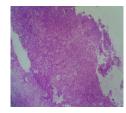


Fig. 10B: (Negative Control) Colon shows ulcerative mucosa. The lamina propria shows dense lymphocytic infiltration with cryptitis and crypt abscess. Muscularis layer and serosa shows inflammatory infiltrates

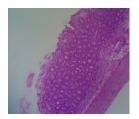


Fig. 10C: (Standard) Colon shows normal epithelium one focal shows ulcerated epithelium. The lamina propria is edema and inflammatory infiltrates composed of lymphocytes and neutrophils and focal cryptitis is also seen. Sub mucosa is mild edema. Muscularis layer shows no significant pathology

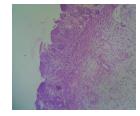


Fig. 10D: (Test - Low Dose)
Colon shows normal epithelium
one focal shows ulcerated
epithelium. The lamina propria
is edema and inflammatory
infiltrates composed of lymphocytes and neutrophils and
focal cryptitis is also seen.
Sub mucosa is mild edema.
Muscularis layer shows no
significant pathology

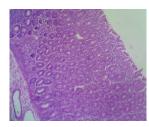
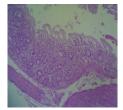



Fig. 10E: (Test - High Dose) Colon shows normal epithelium one focal shows ulcerated epithelium. The lamina propria is edema and inflammatory infiltrates composed of lymphocytes and neutrophils and focal cryptitis is also seen. Sub mucosa is mild edema. Muscularis layer shows no significant pathology

Fig.-10: Acetic acid - histopathology of colon

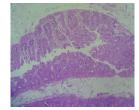


Fig. 11A: (Control)

Fig. 11B: (Negative Control)

Caecum shows ulcerated epithelium. Lamina propria shows lymphocytic infiltrates areas shows cryptitis and dense inflammatory infiltrates seen. Muscular layer and serosa show dense inflammatory infiltrates. Mucosal layer shows focal fibrosis.

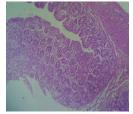


Fig. 11C: (Standard)

Fig. 11D: (Test - Low Dose)

Caecum shows normal epithelium. Caecum shows normal epithelium. Lamina propria shows few Lamina propria shows few scattered lymphocytic infiltrates scattered lymphocytic infiltrates and connective tissues. There is no malignancy/granuloma seen. no malignancy/granuloma seen.

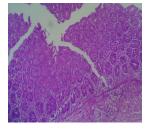


Fig.-11E: (Test - High Dose)

Caecum shows normal epithelium. Lamina propria shows few scattered lymphocytic infiltrates and connective tissues. There is no malignancy/granuloma seen.

Fig. 11: Acetic acid - histopathology of caecum

(Fig. 1), among the compounds represented^[35-45] in Table 5. The compound number 1, 2, 4, 7, 9 and 10 has antioxidant effect and the compound number 7, 8 and 10 possessing anti-inflammatory activity might be responsible for the anti-ulcerative activity.

CONCLUSION

All the parameters of ELECM-treated test group animals had shown better results which are comparable with the standard prednisolone-treated group. Therefore, our present study suggests that ELECM extract has significant protective activity against acetic acid-induced ulcerative colitis, due to its higher antioxidant, moderate anti-inflammatory, and mild immuno-suppressive effects. The protective action of this ELECM may be due to the presence of active constituents such as flavonoids and total phenols as presented on GC-MS analysis.

ACKNOWLEDGMENTS

The authors are thankful to the KMCH College of Pharmacy Management for providing valuable infrastructure for the successful conduct of our research work.

REFERENCES

- Aleisa AM, al-Rejaie SS, Abuohashish HM, Ola MS, Parmar MY, Ahmed MM. Pretreatment of *Gymnema sylvestre* revealed the protection against acetic acid-induced ulcerative colitis in rats. BMC Complement Altern Med. 2014;14(1):49. doi: 10.1186/1472-6882-14-49, PMID 24507431.
- Loddo I, Romano C. Inflammatory bowel disease: genetics, epigenetics, and pathogenesis. Front Immunol. 2015;6(2015):551. doi: 10.3389/fimmu.2015.00551.
- Gautam MK, Goel S, Ghatule RR, Singh A, Nath G, Goel RK. 'Curative effect of Terminalia chebula extract on acetic acidinduced experimental colitis: role of antioxidants, free radicals and acute inflammatory marker,' Inflammophar- macology. Inflammopharmacol. 2013;21(5):377-83. doi: 10.1007/s10787-012-0147-3
- 4. Okamoto R, Watanabe M. Cellular and molecular mechanisms of the epithelial repair in IBD. Dig Dis Sci. 2005;50;Suppl 1:S34-8. doi: 10.1007/s10620-005-2804-5, PMID 16184419.
- Takagi T, Naito Y, Okuda T, Uchiyama K, Adachi S, Mizushima K et al. Ecabet sodium promotes the healing of trinitrobenzenesulfonicacid-induced ulceration by enhanced restitution of intestinal epithelial cells. J Gastroenterol Hepatol. 2010;25(7):1259-65. doi:10.1111/j.1440-1746.2010.06263.x, PMID 20594253.
- Tahan G, Aytac E, Aytekin H et al. Vitamin E has a dual effect of anti-inflammatory and antioxidant activities in acetic acid-induced ulcerative colitis in rats. Can J Surg. 2011;54(5):333-8.
- Lichtenstein GR, Abreu MT, Cohen R, Tremaine W, American Gastroenterological Association. American Gastroenterological Association Institute technical review on corticosteroids, immunomodulators, and inf liximab in inflammatory bowel disease. Gastroenterology. 2006;130(3):940-87. doi: 10.1053/j. gastro.2006.01.048, PMID 16530532.
- 8. Lichtenstein GR, Feagan BG, Cohen RD, Salzberg BA, Diamond RH, Chen DM et al. Serious infections and mortality in association with therapies for Crohn's disease: TREAT registry. Clin Gastroenterol Hepatol. 2006;4(5):621-30. doi: 10.1016/j.cgh.2006.03.002, PMID16678077.
- Low D, Nguyen DD, Mizoguchi E. Animal models of ulcerative colitis and their application in drug research. Drug Des Dev Ther. 2013;7:1341-57. doi: 10.2147/DDDT.S40107, PMID 24250223.
- Marino SDE, Caimen Festa F. Zollo, Maria Iorizzi. Phenolic glycosides from Cucumis melo var. indorus seeds. Vol. 2. Elsevier; 2009. p. 130-3.
- 11. Rajasree RS, Sibi Ittiyavirah P, Sankar Iyer R, Sayana PS, William H. Phytochemical Studies of bioactive Compounds from *Cucumis melo* Linn. Hygeia.J.D.Med 2018; 9(2):1-6. Available from http://www.hygeiajournal.com, DOI: 10.15254/H.J.D.Med.9.2018.167
- 12. Gill NS, Bajwa J, Sharma P, Dhiman K, Sood S, Sharma PD, et al. Evaluation of therapeutic potential of traditionally consumed *Cucumis melo* seeds. Asian J Plant Sci. 2011;10(1):86-91.
- 13. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action of aspirin-like drugs. Nat New Biol. 1971;231(25):232-5. doi:10.1038/newbio231232a0, PMID 5284360.
- 14. Soll AH, Weinstein WM, Kurata J, McCarthy D. Nonsteroidal antiinflammatory drugs and peptic ulcer disease. Ann Intern Med. 1991;114(4):307-19. doi: 10.7326/0003-4819-114-4-307, PMID1987878.
- 15. Patel M, Patel P, Patel M. Aqueous extract of *Ficus bengalensis* Linn. Bark for inf lammatory bowel disease. J Young Pharm. 2010;2(2):130-6. doi: 10.4103/0975-1483.63149, PMID 21264114.
- 16. Bar-Nun N, Mayer AM. Cucurbitacin-repressor of induction of laccase formation. Phytochemistry. 1989;28(5):1369-71. doi:10.1016/S0031-9422(00)97748-3.

- Parmar HS, Kar A. Protective role of Mangifera indica, Cucumis melo and Citrullus vulgaris peel extracts in chemically induced hypothyroidism. Chem Biol Interact. 2009;177(3):254-8. doi: 10.1016/j.cbi.2008.11.006.
- 18. Chan KT, Li K, Liu SL, Chu KH, Toh M, Xie WD. Cucurbitacin B inhibits STAT3 and the Raf/MEK/ERK pathway in leukemia cell line K562. Cancer Lett. 2010;289(1):46-52. doi: 10.1016/j. canlet.2009.07.015,PMID 19700240.
- Wright CI, Van-Buren L, Kroner CI, Koning MM. Herbal medicines as diuretics: a review of the scientific evidence. J Ethnopharmacol. 2007;114(1):1-31. doi: 10.1016/j.jep.2007.07.023, PMID 17804183.
- 20. Ismail HI, Chan KW, Mariod AA, Ismail M. Phenolic content and antioxidant activity of cantaloupe (*Cucumis melo*) methanolic extracts. Food Chem. 2010;119(2):643-7. doi: 10.1016/j. foodchem.2009.07.023.
- 21. Gill NS, Bajwa J, Sharma P, Dhiman K, Sood S, Sharma PD, et al. Evaluation of antioxidant and antiulcer activity of traditionally consumed *Cucumis melo* seeds. J PharmacolToxicol. 2011;6(1):82-9.
- 22. Décordé K, Ventura E, Lacan D, Ramos J, Cristol JP, Rouanet JM. An SOD rich melon extract Extramel prevents aortic lipids and liver steatosis in diet-induced model of atherosclerosis. NutrMetab Cardiovasc Dis. 2010;20(5):301-7. doi: 10.1016/j. numecd.2009.04.017, PMID 19695852.
- Altman R, Rouvier J, Weisenberger H. Identification of platelet inhibitor present in the melon (*Cucurbitacea cucumismelo*). ThrombHaemost. 1985;53(3):312-3. PMID 3931281.
- 24. Gopalkrishnan SB, Kolaiarasi T. Comparative phytochemical screening of the fruits of *Cucumis trigonus* Roxb. And *Cucumis sativus* linn. World J Pharm Pharm Sci. 2014;3:1455-68.
- 25. Naito Y, Akagiri S, Uchiyama K, Kokura S, Yoshida N, Hasegawa G, et al. Reduction of diabetes-induced renal oxidative stress by a cantaloupe melon extract/ gliadin biopolymers, oxykine, in mice. BioFactors. 2005;23(2):85-95. doi: 10.1002/biof.5520230204, PMID 16179750.
- 26.Lal D, Lata K. Plants used by the Bhat community for regulating fertility. Econ Bot. 1980;34(3):273-5. doi: 10.1007/ BF02858647,PMID 12336832.
- 27. Tiwari AK, Tomar GS, Chadha M, Kapoor MC. Takayasu's arteritis: Anesthetic significance and management of a patient for cesarean section using the epidural volume extension technique. Anesth Essays Res. 2011 Jan-Jun;5(1):98-101. doi: 10.4103/0259-1162.84184. PMID: 25885310; PMCID: PMC4173377.
- 28. Yadav JP, Patel DK, Dubey NK, Mishra MK, Verma A, Grishina M, Khan MMU, Pathak, P. Wound healing and antioxidant potential of *Neolamarckia cadamba* in streptozotocin nicotinamide induced diabetic rats. Phytomed. Plus, 100274. https://doi.org/10.1016/j.phyplu.2022.100274.
- Yadav JP, Singh AK, Grishina M, Pathak P, Zatel DK, Cucumis melo Var. agrestis Naudin as a potent antidiabetic: Investigation via experimental methods. Phytomedicine Plus 2022; 2(4):100340. https://doi.org/10.1016/j.phyplu.2022.100340
- Harputluoglu MM, Demirel U, Yücel N, Karadağ N, Temel I, Firat S et al. The effects of "Gingko biloba extract on acetic acid induced colitis in rats,". Turk J Gastroenterol. 2006;17(3):177-82. PMID 16941250.
- 31. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for super-oxide dismutase. J Biol Chem. 1972;247(10):3170-5. doi: 10.1016/S0021-9258(19)45228-9, PMID 4623845.
- 32. Sinha K. 'Colorimetric assay of catalase,' Analytical. Biol Chem. 1972;47(2):389-94.
- 33. Manju V, Balasubramaniyan V, Nalini N. Rat colonic lipid peroxidation and antioxidant status: the effects of dietary

- luteolin on 1,2-dimethylhydrazine challenge. Cell Mol Biol Lett. 2005;10(3):535-51. PMID 16217561.
- 34. Krawisz JE, Sharon P, Stenson WF. Quantitative assay for acute intestinal inf lammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterolog y. 1984;87(6):1344-50. doi: 10.1016/0016-5085(84)90202-6, PMID 6092199.
- 35. Zhao L, Chen J, Su J, Li L, Hu S, Li B, Zhang X, Xu Z, Chen T. In vitro antioxidantand antiproliferative activities of 5-hydroxymethylfurfural. J Agric Food Chem. 2013 Nov 6;61(44):10604-11. doi: 10.1021/jf403098y. Epub 2013 Oct 22. PMID: 24107143.
- 36. Rubab M, Chelliah R, Saravanakumar K, Barathikannan K, Wei S, Kim JR, Yoo D, Wang MH, Oh DH. Bioactive potential of 2-Methoxy-4-vinylphenol and Benzofuran from *Brassica oleracea* L. var. *capitate f, rubra* (Red Cabbage) on Oxidative and Microbiological Stability of Beef Meat. Foods. 2020 May 4;9(5):568. doi: 10.3390/foods9050568. PMID: 32375308; PMCID: PMC7278745.
- Chojnacka-Wójcik E, Naparzewska A. Pharmacological properties of new 11H-indeno[1,2-b]-quinolin-11-one derivatives. Pol J Pharmacol Pharm. 1982 Nov-Dec;34(5-6):357-63. PMID: 6892276.
- 38. Matejić JS, Stojanović-Radić ZZ, Ristić MS, Veselinović JB, Zlatković BK, Marin PD, Džamić AM. Chemical characterization, in vitro biological activity of essential oils and extracts of three *Eryngium* L. species and molecular docking of selected major compounds. J Food Sci Technol. 2018 Aug;55(8):2910-2925. doi: 10.1007/s13197-018-3209-8. Epub 2018 Jun 1. PMID: 30065400; PMCID: PMC6046016.
- 39. Juárez-Rodríguez MM, Cortes-López H, García-Contreras R, González-Pedrajo B, Díaz-Guerrero M, Martínez-Vázquez M, Rivera-Chávez JA, Soto-Hernández RM, Castillo-Juárez I. Tetradecanoic Acids with Anti-Virulence Properties Increase the Pathogenicity of Pseudomonas aeruginosa in a Murine Cutaneous Infection Model. Front Cell Infect Microbiol. 2021 Jan 27;10:597517. doi: 10.3389/fcimb.2020.597517. PMID: 33585272; PMCID: PMC7876447.
- 40. Bhardwaj M, Sali VK, Mani S, Vasanthi HR. Neophytadiene from *Turbinaria ornata* Suppresses LPS-Induced Inflammatory Response in RAW 264.7 Macrophages and Sprague Dawley Rats. Inflammation. 2020 Jun;43(3):937-950. doi: 10.1007/s10753-020-01179-z. Erratum in: Inflammation. 2020 Feb 19;: PMID: 31981060.
- 41. Mazumder K, Nabila A, Aktar A, Farahnaky A. Bioactive Variability and In Vitro and In Vivo Antioxidant Activity of Unprocessed and Processed Flour of Nine Cultivars of Australian *lupin* Species: A Comprehensive Substantiation. Antioxidants (Basel). 2020 Mar 27;9(4):282. doi: 10.3390/antiox9040282. PMID: 32230703; PMCID: PMC7222189.
- 42. Saeed NM, El-Demerdash E, Abdel-Rahman HM, Algandaby MM, Al-Abbasi FA, Abdel-Naim AB. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models. Toxicol Appl Pharmacol. 2012 Oct 1; 264(1):84-93. doi: 10.1016/j. taap.2012.07.020. Epub 2012 Jul 25. PMID: 22842335.
- 43. Pandohee J, Kour J, Nayik GA . Chapter 15 Alpha-linolenic acid. Nutraceuticals and Health Care, Academic Press, 2022, pp. 279-288.
- 44. Kim KB, Nam YA, Kim HS, Hayes AW, Lee BM. α-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food Chem Toxicol. 2014 Aug;70:163-78. doi: 10.1016/j.fct.2014.05.009. Epub 2014 May 21. PMID: 24859185.
- 45. Huang J, Yi L, Yang X, Zheng Q, Zhong J, Ye S, Li X, Li H, Chen D, Li C. Neural stem cells transplantation combined with ethyl stearate improve PD rats motor behavior by promoting NSCs migration and differentiation. CNS Neurosci Ther. 2023 Jun;29(6):1571-1584. doi: 10.1111/cns.14119. Epub 2023 Mar 16. PMID: 36924304; PMCID:PMC10173712.

HOW TO CITE THIS ARTICLE: Sivakumar G, Aswin K. Evaluation of Ethanolic Leaf Extract of Cucumis melo var. agrestis in Acetic Acid-induced Ulcerative Colitis on Rats. Int. J. Pharm. Sci. Drug Res. 2023;15(3):469-477. DOI: 10.25004/IJPSDR.2023.150411