

Contents lists available at UGC-CARE

International Journal of Pharmaceutical Sciences and Drug Research

[ISSN: 0975-248X; CODEN (USA): IJPSPP]

Available online at www.ijpsdronline.com

Research Article

Identification of Serotonin Transporter Inhibitors from Selected Marine Alkaloids: A Molecular Docking and ADME Study

Ummehani A. Razvi, Laxmikant H. Kamble*

School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India.

ARTICLE INFO

Article history:

Received: 15 September, 2023 Revised: 21 October, 2023 Accepted: 24 October, 2023 Published: 30 November, 2023

Keywords:

Depression, Marine alkaloids, Serotonin transporter, Docking, ADME properties, Antidepressants.

יוטם

10.25004/IJPSDR.2023.150614

ABSTRACT

One of the common mental illnesses that affect people worldwide is depression. It can impact people from all backgrounds and age groups. Despite having medications for depression, very few people respond to it in an efficient manner. Currently used anti-depressants show side effects like urine retention, nausea, weight gain, cardiovascular disorders, etc. Natural compounds are being evaluated for their therapeutic potential to eradicate these side effects. Metabolites obtained from marine organisms possess diverse beneficial effects. Various sponges, corals, and seaweeds contain compounds with magical properties to heal mental disorders. This study demonstrates the molecular docking of serotonin transporter (SERT) with some marine alkaloids. Results generated from PyRx virtual screening software shows that out of thirteen selected alkaloids, only gelliusine A have a higher binding affinity than the prescribed anti-depressant paroxetine. According to SwissADME, most of the selected alkaloids showed better absorption, distribution, metabolism and excretion (ADME) properties. But gelliusine A has low gastrointestinal absorption and does not cross blood-brain barrier (BBB). Further optimization and experimental investigations of these compounds are needed to enhance their properties to become better anti-depressants against reuptake of serotonin.

INTRODUCTION

Depression affects millions of people globally and is the leading cause of disabilities worldwide. People facing chronic diseases, career failure, financial problems, inferiority complex are more prone to depression. Approximately 3.8% of the population, including 5% of adults (6 and 4% in women and men, respectively) and 5.7% of adults aged over 60 have depression. Around 280 million people globally have depression. Mental healthcare and treatment for depression can vary widely across the world due to limited resources, stigma surrounding mental illness, and insufficient training for healthcare providers. According to community surveys carried by WHO World Mental Health Survey Initiative for 12 months, only 36.8% in high-income countries, 22.0% in upper-middle-income countries and 13.7% in

lower-middle-income countries received treatment for depression.[2] The Global Burden of Disease (GBD) Study 2019 found that depressive and anxiety disorders are the two most disabling mental disorders and are ranked among the top 25 leading causes of burden worldwide in 2019. For adolescents it ranked among top 10 causes. [3] There are 9,596 studies in ClinicalTrials.gov database under the field of depression, out of which 324 are in active, not recruiting state, 1418 in recruiting state and 5464 are completed. [4] It is now well known that major depressive disorder (MDD) is highly associated with various chronic physical conditions such as cardiovascular disease, diabetes, cancer, chronic respiratory disease and various chronic pain conditions. [5-9] These conditions are of great personal and public health importance and can be considered representative of the costs of depression. [10]

*Corresponding Author: Dr. Laxmikant H. Kamble

Address: School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India.

Email ⊠: lhkamble@srtmun.ac.in

Tel.: +91-9011010314

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2023 Ummehani A. Razvi *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

It has been seen that chances of depression rises with the rising age. Studies in older adults also suggest that life incidents, especially financial challenges and death of family members are as important triggers of depression as in young people.[11] Patients' attitude and belief is one of the important factors to influence treatment conformance. [12] Different anti-depressants are used to treat depression like monoamine uptake inhibitors, monoamine oxidase inhibitors, atypical anti-depressants and some other classes. These may inhibit the reuptake of monoamines like noradrenaline, serotonin, serotonin and noradrenaline, noradrenaline and dopamine or by inhibiting monoamine oxidase enzyme. Atypical antidepressants may act in different ways; by increasing uptake of serotonin, by antagonizing the presynaptic alpha2-adrenoreceptor, by antagonizing all serotonin (5-HT) receptors, along with some other different mechanisms. [13] Newer anti-depressants may not be more effective as compared to placebo. Study carried out by Hetrick, S. E., et al. suggests that duloxetine, escitalopram, sertraline and fluoxetine could be taken as first-line option for treating depression. [14] Anti-depressants may or may not interact with other receptors but show some adverse effects like reduced salivation, worsening the pre-existing constipation, blurred vision, urinary hesitancy especially in males, drowsiness, weight gain and many more. Some anti-depressants may also have toxic effects like liver damage, hepatic necrosis, hemolytic anemia, arthralgia, fatal systemic vasculitis.[15] 5-hydroxy tryptamine transporter (5-HTT) is the main site of action for various anti-depressants.[16] 5-HTT is an important receptor to study depression and its mechanism. When serotonin is released in synaptic cleft, it binds to different serotonin receptors and activates or represses different signalling cascades. Serotonin transporter reuptakes serotonin and transports it back to presynaptic neuron and is responsible for regulation of released serotonin. Anti-depressants are used to block this reuptake and increases serotonin signalling.[17]

Researchers are focusing on development of antidepressants which show fewer or no side-effects. It is also necessary to develop drugs which sufficiently act on more than one receptor for same illness. Natural compounds are being evaluated for the same purpose. Most of the plants contain phytochemicals that are effectively showing results against depression and other related mental disorders. Many marine organisms also possess compounds that are used for various diseases. Onchidal is an irreversible inhibitor of acetylcholinesterase (AChE). Manzamine A is anti-inflammatory and has low toxicity. Endogenous peptides in venom of snails are used to treat chronic neuropathic pain.[18] Most of the research carried on marine organisms is related to anticancerous, anti-viral or anti-inflammatory compounds. Very little of marine area has been explored regarding

anti-depressants. Mollusks, sponges, microorganisms and mostly seaweeds are examined for anti-depressant compounds. Among these promising molecules are alkaloids. Most of the anti-depressant drugs focus on the neurotransmitter systems, i.e. mainly serotonin, noradrenaline, and dopamine. Structurally similar marine alkaloids can be helpful in developing new anti-depressants. Barettin showed interation with serotonin receptors 5-HT2A, 5-HT2C, and 5-HT4 and 8,9-dihydrobarettin solely interacted with the 5-HT2C. [19] 6-bromo-2'-de-N-methylaplysinopsin, 6-bromoaplysinopsin, N-3'ethylaplysinopsin reported to replace antagonist binding for human serotonin 5-HT2C receptor. [20] Gelliusine A and B possess affinity towards different serotonin receptors. [21] Methylaplysinopsin inhibits monoamine oxidases and removes serotonin form receptor. [22] Phenylethylamine found in marine algae like Dumontia incrassate, Polysiphonia morrowii, Gelidium crinale and many more acts as neurotransmitter and neuromodulator and is responsible in relieving depression.[23] 5,6-Dibromo-N,N-dimethyltryptamine and aaptamine acted as anti-depressants in forced swim test. [24] 5-bromo-N,N-dimethyltryptamine showed sedative effect by lowering locomotor activity. [25] 5,6-Dibromoabrine and 5,6-dibromotryptamine are also supposed to show anti-depressant activity. [26] Veranamine from Verongula rigida demonstrated in-vivo anti-depressant activity and selective affinity for 5HT2B. Hence, can be developed as anti-depressant.^[27] As there are multiple targets involved in depression, it is necessary to understand the target-ligand interaction. As well as it is crucial to identify different possible targets for these ligands to develop multi-target anti-depressants. Docking is feasible way to for it. Molecular docking is simple, time-effective, costeffective tool for generating scores for target and ligand binding.^[28] It not only generates binding affinity but also gives structure of target-ligand complex which can be further used for optimizing properties of lead molecule. [29] There are different docking programs out of which GLIDE, AutoDock Vina, GOLD, LeDock are more popular ones. They depend on distinct algorithms for generating score related to binding affinity. [30] It can help researchers to reduce the cost and time required for drug discovery. Unfit or unsuitable molecules can be eliminated earlier. Hence, narrow downs the area when working with large molecular libraries.

Marine alkaloids are being investigated for different therapeutic potentials. From past few years, marine organisms have been investigated to possess the rapeutically important compounds. Marine natural products are structurally diverse and have various bioactivities. Finding anti-depressants from natural source like marine could help in reducing severe complications of current anti-depressants. They will have fewer side effects and may not show adverse drug interactions. Also, these compounds

can be modified to obtain more beneficial results. Some of the experimental studies carried on marine products as anti-depressants do not clearly specify the targets. As SERT is essential target for anti-depressants, these marine compounds were docked against it to predict their affinity and interactions. Paroxetine, a SERT inhibitor, was selected to generate binding pocket and compare binding affinities. The main objective of this study is to carry out molecular docking analysis of SERT against selected marine alkaloids followed by absorption, distribution, metabolism and excretion (ADME) prediction to confirm the efficiency and efficacy of these active compounds against SERT.

MATERIALS AND METHODS

Retrieval of Receptor

3D structure of Serotonin transporter PDB ID- 6vrh^[31] was downloaded from Protein Data Bank (PDB) (https://www.rcsb.org/).^[32] Reason for its selection was already bound Paroxetine as a ligand. PDBsum (http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/) was used to perform PROCHECK analyses to get information about amino acid residues and G-factor.^[33]

Selection and Retrieval of Ligands

Thirteen marine alkaloids were selected as ligands through literature survey. 3D SDF files for ligands along with one anti-depressant Paroxetine were downloaded from PubChem Database (https://pubchem.ncbi.nlm.nih. gov/). [34] PyMOL (https://pymol.org/2/) which is an open source molecular visualization tool was used to convert files into PDB format. [35,36]

Prediction of Binding Pocket

Active Site for SERT was predicted using pocket generation of ProteinPlus server (https://proteins.plus/). [37-39] It is structure-based modeling support server. It is used to predict active binding pockets depending on ligand bound to the protein structure. It can also predict binding site if no ligand is bound. For 6vrh, already bound 8PR (Paroxetine) was selected to find binding pocket.

Molecular Docking

Free version of PyRx (https://pyrx.sourceforge.io/)^[40] was used for virtual screening of selected ligands. PyRx uses AutoDock 4 and AutoDock Vina as docking software. PyRx generates binding affinity for single ligand-receptor pair. Out of which first one will be the highest binding affinity having root mean square deviation (RMSD) lower bound and upper bound value as 0. Grid box was adjusted according to amino acids present in binding pockets obtained from ProteinPlus.

Ligand-receptor Interaction

For visualizing ligand-receptor interaction Biovia Discovery Studio was used (https://www.3ds.com/

products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/). [41] It is a free visualizer that shows interactions in 2D form. Paid software enables suits like simulation, docking, pharmacophore modelling, quantitative structure-activity relationship (QSAR).

ADME Property Prediction

SwissADME (http://www.swissadme.ch/)^[42] was used to predict ADME properties for all selected ligands. It's a free web tool operated by Swiss Institute of Bioinformatics (SIB). Properties like gastrointestinal absorption, blood brain barrier permeability, Lipinski's rule were predicted using SwissADME.

RESULT AND DISCUSSION

Protein Evaluation

6vrh was evaluated for G-factor and amino acid residues using PROCHECK through PDBsum database. Number of residues in disallowed region was 0% and average G-factor was 0.14.

Binding Pocket Prediction

As Paroxetine (8PR) was already present in the macromolecule, binding pocket was predicted based on it. Fig. 1 shows binding pocket for 6vrh.

Molecular Docking

PyRx was used for molecular docking as there were multiple ligands to evaluate. Among 13 alkaloids only Gelliusine A (-11.4 kca/mol) showed higher binding affinity than Paroxetine (-10.4 kcal/mol). Lowest binding affinity among all ligands was shown by Phenylthylamine (-5.5 kcal/mol). Docking scores for all selected compounds are shown in Table 1.

Ligand-protein Interaction

2D ligand-protein interaction was observed for complex formed by SERT with paroxetine and gelliusine A by using Biovia Discovery Studio visualizer. Paroxetine forms conventional hydrogen bonding with Ser336 and carbon hydrogen bonding with Thr497. Gelliusine A forms no conventional hydrogen bonding but a carbon hydrogen bond with Asp98. Interactions are shown in Fig. 2.

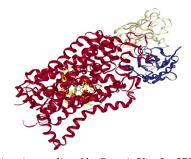


Fig. 1: Active site predicted by ProteinPlus for SERT bound to Paroxetine (6vrh)

Table 1: Binding affinities for paroxetine and selected alkaloids

S. No.	Ligands	Compound ID	Predicted Binding Affinity (kcal/mol)
1	Paroxetine	CID 43815	-10.4
2	5,6-Dibromo-N,N-dimethyltryptamine	CID 360251	-7.3
3	5,6-Dibromoabrine	CID 21776723	-7.5
4	5,6-Dibromotryptamine	CID 309209	-7.1
5	6-bromo-2'-de-N-methylaplysinopsin	CID 135474338	-8.4
6	6-bromoaplysinopsin	CID 135433933	-8.2
7	8,9-dihydrobarettin	CID 12144826	-9.7
8	N-3'-ethylaplysinopsin	CID 135412764	-8.7
9	Aaptamine	CID 122826	-7.2
10	Barettin	CID 11177588	-9.9
11	Gelliusine A	CID 157833	-11.4
12	Methylaplysinopsin	CID 135449090	-8.6
13	Phenylethylamine	CID 1001	-5.5
14	Veranamine	CID 25235287	-8.7

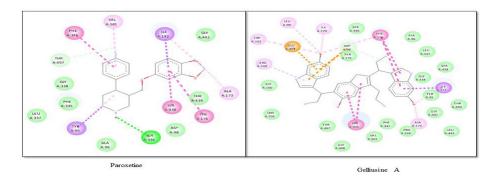


Figure 2: 2D interactions for Paroxetine and Gelliusine A with SERT

ADME Property Prediction

SwissADME was used to predict pharmacokinetic properties for selected molecules. Table 2 depicts predicted properties. Properties predicted for alkaloids were quite good. All of them except gelliusine A have high GI absorption as well as its topological polar surface area (TPSA) was higher than the required. Excluding 6-bromo-2'-de-N-methylaplysinopsin, 8, 9-dihydrobarettin, barettin and gelliusine A, rest all of the alkaloids are BBB permeant.

DISCUSSION

Marine alkaloids having structural similarities with serotonin are useful in generating new drug leads for depression. [43] According to previous research these compounds were inhibiting different serotonin receptors as well as other antidepressant targets. There was a possibility that most of them could inhibit serotonin reuptake. In this study, an attempt was made to identify potent leads against SERT from thirteen different alkaloids of marine origin. Paroxetine was selected for pocket

generation and to compare docking results as it is most potent among Selective serotonin reuptake inhibitors (SSRIs)^[44] and was already bound with target. According to docking results, only Gelliusine A showed more binding affinity than Paroxetine. Predicted pharmacokinetic properties for most alkaloids were satisfactory but some lacked to cross BBB which is an important factor for developing antidepressants. Despite having good affinity Gelliusine A lacked behind to be considered as the best lead as it failed pharmacokinetic properties.

Nevertheless, selected compounds can be checked for binding affinity compared to other anti-depressants for SERT and also for related targets. This computational study may provide a way for designing new anti-depressant and stimulate the process of drug discovery. Results generated from this type of computational analyses must be validated using *in-vitro* and *in-vivo* studies. In drug discovery, it is important to understand the mechanism of action of any compound. This will help to understand the way patients respond to drugs and find better anti-depressants.

Table 2: Properties predicted using swiss adme

S. No.	Ligands	GI absorption	BBB	Lipinski	Leadlikeness	TPSA
1	Paroxetine	High	Yes	Yes	No; 1 violation: XLOGP3>3.5	39.72 Å ²
2	5,6-Dibromo-N,N- dimethyltryptamine	High	Yes	Yes	No; 1 no violation: XLOGP3>3.5	$19.03{\rm \AA}^2$
3	5,6-Dibromoabrine	High	Yes	Yes	No; 1 violation: MW>350	$65.12\textrm{\AA}^2$
4	5,6-Dibromotryptamine	High	Yes	Yes	Yes	$41.81\textrm{\AA}^2$
5	6-bromo-2'-de-N- methylaplysinopsin	High	Yes	Yes	Yes	$76.43 {\rm \AA}^2$
6	6-bromoaplysinopsin	High	Yes	Yes	Yes	$66.30~\textrm{\AA}^2$
7	8,9-dihydrobarettin	High	No	Yes	No; 1 violation: MW>350	$138.39~{\rm \AA}^2$
8	N-3'-ethylaplysinopsin	High	Yes	Yes	Yes	$54.81~\textrm{\AA}^2$
9	Aaptamine	High	Yes	Yes	No; 1 violation: MW<250	$47.14\textrm{\AA}^2$
10	Barettin	High	No	Yes	No; 1 violation: MW>350	$138.39~{\rm \AA}^2$
11	Gelliusine A	Low	No	No; 2 violations: MW>500, NHorOH>5	No; 3 violations: MW>350, Rotors>7, XLOGP3>3.5	$145.66 {\rm \AA}^2$
12	Methylaplysinopsin	High	Yes	Yes	Yes	$54.81~\textrm{\AA}^2$
13	Phenylethylamine	High	Yes	Yes	No; 1 violation: MW<250	$26.02\textrm{\AA}^2$
14	Veranamine	High	Yes	Yes	No; 1 no violation: XLOGP3>3.5	24.92 Å ²

GI: Gastrointestinal absorption, BBB: Blood Brain Barrier, TPSA: Topological Polar Surface Area

ACKNOWLEDGMENT

Authors are very grateful to DST-FIST and UGS SAP-DRS-Phase-II sponsored school of life sciences, Swami Ramanand Teerth Marathwada University, Nanded for providing the infrastructure and necessary facilities.

REFERENCES

- World Health Organization. (2023, March 31). Depressive disorder (depression). World Health Organization. https://www.who.int/ news-room/fact-sheets/detail/depression
- Evans-Lacko SA, Aguilar-Gaxiola S, Al-Hamzawi A, Alonso J, Benjet C, Bruffaerts R, Chiu WT, Florescu S, de Girolamo G, Gureje O, Haro JM. Socio-economic variations in the mental health treatment gap for people with anxiety, mood, and substance use disorders: results from the WHO World Mental Health (WMH) surveys. Psychological medicine. 2018 Jul;48(9):1560-71. Available from: https://doi. org/10.1017/S0033291717003336
- 3. Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F, Abdelalim A, Abdollahi M. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet. 2020 Oct 17;396(10258):1204-22. Available from: https://doi.org/10.1016/S0140-6736(20)30925-9
- CTG Labs-NCBI. (2023-09-14) https://clinicaltrials.gov/ search?cond=depression
- Nemeroff CB, Musselman DL, Evans DL. Depression and cardiac disease. Depression and Anxiety. 1998;8(S1):71-9. Available from: https://doi.org/10.1002/(SICI)1520-6394(1998)8:1+<71::AID-DA11>3.0.CO;2-X
- Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes care. 2001 Jun 1;24(6):1069-78. Available from: https://doi.org/10.2337/diacare.24.6.1069
- Derogatis LR, Morrow GR, Fetting J, Penman D, Piasetsky S, Schmale AM, Henrichs M, Carnicke CL. The prevalence of psychiatric disorders among cancer patients. Jama. 1983 Feb 11;249(6):751-7. Available from: https://doi.org/10.1001/jama.1983.03330300035030

- Chapman DP, Perry GS, Strine TW. Peer reviewed: the vital link between chronic disease and depressive disorders. Preventing chronic disease. 2005 Jan;2(1). Available from: http://www.cdc. gov/pcd/issues/2005/jan/04_0066.htm
- McWilliams LA, Cox BJ, Enns MW. Mood and anxiety disorders associated with chronic pain: an examination in a nationally representative sample. Pain. 2003 Nov 1;106(1-2):127-33. Available from: https://doi.org/10.1016/S0304-3959(03)00301-4
- 10. Kessler RC. The costs of depression. Psychiatric Clinics. 2012 Mar 1;35(1):1-4. Available from: https://doi.org/10.1016/j. psc.2011.11.005
- 11. Agrawal N, Jhingan HP. Life events and depression in elderly. Indian journal of psychiatry. 2002 Jan;44(1):34.
- 12. Grover S, Dutt A, Avasthi A. An overview of Indian research in depression. Indian journal of psychiatry. 2010 Jan;52(Suppl1):S178. Available from: 10.4103/0019-5545.69231
- 13. Agius M, Bonnici H. Antidepressants in use in clinical practice. Psychiatria Danubina. 2017 Jun 15;29(suppl. 3):667-71.
- 14. Hetrick SE, McKenzie JE, Bailey AP, Sharma V, Moller CI, Badcock PB, Cox GR, Merry SN, Meader N. New generation antidepressants for depression in children and adolescents: a network meta-analysis. Cochrane Database of Systematic Reviews. 2021(5). Available from: https://doi.org/10.1002/14651858.CD013674.pub2
- Cookson J. Side-effects of antidepressants. The British Journal of Psychiatry. 1993 Jul;163(S20):20-4. Available from: https://doi. org/10.1192/S0007125000292325
- 16. Lotrich FE, Pollock BG, Ferrell RE. Polymorphism of the serotonin transporter: implications for the use of selective serotonin reuptake inhibitors. American Journal of Pharmacogenomics. 2001 Sep;1:153-64. Available from: https://doi.org/10.2165/00129785-200101030-00001
- 17. Sibille E, Lewis DA. SERT-ainly involved in depression, but when?. American Journal of Psychiatry. 2006 Jan 1;163(1):8-11. Available from: https://doi.org/10.1176/appi.ajp.163.1.8
- 18. Alonso D, Castro A, Martinez A. Marine compounds for the therapeutic treatment of neurological disorders. Expert Opinion on Therapeutic Patents. 2005 Oct 1;15(10):1377-86. Available from: https://doi.org/10.1517/13543776.15.10.1377
- 19. Hedner E, Sjögren M, Frändberg PA, Johansson T, Göransson U, Dahlström M, Jonsson P, Nyberg F, Bohlin L. Brominated

- cyclodipeptides from the marine sponge Geodia barretti as selective 5-HT ligands. Journal of natural products. 2006 Oct 27;69(10):1421-4. Available from: https://doi.org/10.1021/np0601760
- 20. Hu JF, Schetz JA, Kelly M, Peng JN, Ang KK, Flotow H, Leong CY, Ng SB, Buss AD, Wilkins SP, Hamann MT. New antiinfective and human 5-HT2 receptor binding natural and semisynthetic compounds from the Jamaican sponge Smenospongia a urea. Journal of Natural Products. 2002 Apr 26;65(4):476-80. Available from: https://doi.org/10.1021/np010471e
- 21. Bifulco G, Bruno I, Minale L, Riccio R, Calignano A, Debitus C. (±)-Gelliusines A and B, two diastereomeric brominated tris-indole alkaloids from a deep water New Caledonian marine sponge (Gellius or Orina sp.). Journal of natural products. 1994 Sep;57(9):1294-9. Available from: https://doi.org/10.1021/np50111a020
- 22. Baird-Lambert J, Davis PA, Taylor KM. Methylaplysinopsin: a natural product of marine origin with effects on serotonergic neurotransmission. Clinical and Experimental Pharmacology & Physiology. 1982 Mar 1;9(2):203-12. Available from: https://doi.org/10.1111/j.1440-1681.1982.tb00798.x
- Güven KC, Percot A, Sezik E. Alkaloids in marine algae. Marine Drugs.
 2010 Feb 4;8(2):269-84. Available from: https://doi.org/10.3390/md8020269
- 24. Diers JA, Ivey KD, El-Alfy A, Shaikh J, Wang J, Kochanowska AJ, Stoker JF, Hamann MT, Matsumoto RR. Identification of antidepressant drug leads through the evaluation of marine natural products with neuropsychiatric pharmacophores. Pharmacology Biochemistry and Behavior. 2008 Mar 1;89(1):46-53. Available from: https://doi.org/10.1016/j.pbb.2007.10.021
- 25. Kochanowska AJ, Rao KV, Childress S, El-Alfy A, Matsumoto RR, Kelly M, Stewart GS, Sufka KJ, Hamann MT. Secondary metabolites from three Florida sponges with antidepressant activity. Journal of natural products. 2008 Feb 22;71(2):186-9. Available from: https://doi.org/10.1021/np070371u
- 26. Mollica A, Locatelli M, Stefanucci A, Pinnen F. Synthesis and bioactivity of secondary metabolites from marine sponges containing dibrominated indolic systems. Molecules. 2012 May 21;17(5):6083-99. Available from: https://doi.org/10.3390/ molecules17056083
- 27. Kochanowska-Karamyan AJ, Araujo HC, Zhang X, El-Alfy A, Carvalho P, Avery MA, Holmbo SD, Magolan J, Hamann MT. Isolation and synthesis of veranamine, an antidepressant lead from the marine sponge Verongula rigida. Journal of natural products. 2020 Mar 31;83(4):1092-8. Available from: https://doi.org/10.1021/acs.jnatprod.9b01107
- 28. Subhaswaraj P, Siddhardha B. Molecular docking and molecular dynamic simulation approaches for drug development and repurposing of drugs for severe acute respiratory syndrome-Coronavirus-2. Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV2 Infection. 2022 Jan 1:207-46. Available from: https://doi.org/10.1016/B978-0-323-91172-6.00007-8
- 29. Wang G, Zhu W. Molecular docking for drug discovery and development: a widely used approach but far from perfect. Future Medicinal Chemistry. 2016 Sep;8(14):1707-10. Available from: https://doi.org/10.4155/fmc-2016-0143

- 30. Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophysical reviews. 2017 Apr;9:91-102. Available from: https://doi.org/10.1007/s12551-016-0247-1
- 31. Coleman JA, Navratna V, Antermite D, Yang D, Bull JA, Gouaux E. Chemical and structural investigation of the paroxetine-human serotonin transporter complex. Elife. 2020 Jul 3;9:e56427. Available from: https://doi.org/10.7554/eLife.56427
- 32. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic acids research. 2000 Jan 1;28(1):235-42. Available from: https://doi.org/10.1093/nar/28.1.235
- 33. Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM. PDBsum: Structural summaries of PDB entries. Protein science. 2018 Jan;27(1):129-34. Available from: https://doi.org/10.1002/pro.3289
- 34. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L. PubChem 2023 update. Nucleic acids research. 2023 Jan 6;51(D1):D1373-80. Available from: https://doi.org/10.1093/nar/gkac956
- 35. DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002 Mar;40(1):82-92.
- $36. \, The \, PyMOL \, Molecular \, Graphics \, System, Version \, 2.5.5, Schrödinger, \, LLC.$
- 37. Schöning-Stierand K, Diedrich K, Ehrt C, Flachsenberg F, Graef J, Sieg J, Penner P, Poppinga M, Ungethüm A, Rarey M. Proteins Plus: a comprehensive collection of web-based molecular modeling tools. Nucleic Acids Research. 2022 Jul 5;50(W1):W611-5. Available from: https://doi.org/10.1093/nar/gkac305
- 38. Schöning-Stierand K, Diedrich K, Fährrolfes R, Flachsenberg F, Meyder A, Nittinger E, Steinegger R, Rarey M. Proteins Plus: Interactive analysis of protein-ligand binding interfaces. Nucleic acids research. 2020 Jul 2;48(W1):W48-53. Available from: https://doi.org/10.1093/nar/gkaa235
- 39. Fährrolfes R, Bietz S, Flachsenberg F, Meyder A, Nittinger E, Otto T, Volkamer A, Rarey M. Proteins Plus: A web portal for structure analysis of macromolecules. Nucleic acids research. 2017 Jul 3;45(W1):W337-43. Available from: https://doi.org/10.1093/nar/gkx333
- 40. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Chemical biology: methods and protocols. 2015:243-50. Available from: https://doi.org/10.1007/978-1-4939-2269-7_19
- 41. BIOVIA, Dassault Systèmes, [BIOVIA Discovery Studio Visualizer], [v21.1.0.20298], San Diego: Dassault Systèmes, [2020]
- 42. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports. 2017 Mar 3;7(1):42717. Available from: https://doi.org/10.1038/srep42717
- 43. Kochanowska-Karamyan AJ, Hamann MT. Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chemical reviews. 2010 Aug 11;110(8):4489-97. Available from: https://doi.org/10.1021/cr900211p
- 44. Hyttel J. Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs). International clinical psychopharmacology. 1994 Mar 1;9:19-26. Available from: 10.1097/00004850-199403001-00004

HOW TO CITE THIS ARTICLE: Razvi UA, Kamble LH. Identification of Serotonin Transporter Inhibitors from Selected Marine Alkaloids: A Molecular Docking and ADME Study. Int. J. Pharm. Sci. Drug Res. 2023;15(6):798-803. **DOI:** 10.25004/IJPSDR.2023.150614