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Introduction
The human body needs metals to maintain cell structure, 
control gene expression, trigger antioxidant reciprocation, 
and enhance neurotransmission. Elevated absorption of 
metals inside the brain system is detrimental as it can lead 
to oxidative damage, block the actions of mitochondria, 
and hinder the work of numerous enzymes. A person’s 
quality of life might be significantly reduced and serious 
neurological issues can result from metal overload. 
Unintentional metal exposure has been linked to several 
neuro-decadence illnesses, including Alzheimer’s disorder 
(AD), an almost prevalent kind of insanity that causes age-
related deterioration.[1]

Progressive cognitive impairment is an assay mark of 
Alzheimer’s disorder, the neuro-decadence condition that 
affects the elderly the most and is the lead cause of insanity. 
Among the most important health problems of the 21st 
century, AD is becoming more and more commonplace 
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Alzheimer’s disorder is the most prevalent type of insanity. It can start with a slight loss of memory and 
progress to a loss of response to stimuli and interaction. Deregulation of the antioxidant response and 
neurotransmission has been linked to neuro-decadence illnesses, likely Alzheimer’s disorder. Metals, along 
with microelements, support the proper operation of the nervous system. Heavy and essential metals 
both increase tau protein hyperphosphorylation and Aβ assemblage. The root of Alzheimer’s disorder is 
summarized in this article, along with the roles played by daily exposure to substances like pesticides and 
some macro and microelements. So, by knowing them, we can limit their exposure of them in day-to-day 
life. Gaining insight into these functions in brain health and illness could lead to discovering new curative 
targets for neuro-decadence diseases. Since metal ions are implicated in most degenerative diseases, future 
treatments may target them. One method is to limit the ions’ ability to obstruct oxidative processes or 
disturb protein folding by chelating and sequestering them.
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A B S T R A C TA R T I C L E  I N F O

globally. With almost 110 years having passed since 
the discovery of AD, numerous connected pathogenic 
pathways have been hypothesized; the most well-known 
of these are the tau and amyloid theories.[2]

Indian Scenario
Based on the Global Burden of Disease Study (GBDS) 
2019, there will be an alarming 166% rise in insanity 
diagnoses between 2019 and 2050, impacting the lives of 
almost 152.8 million individuals.[3,4] These forecasts are 
consistent with the World Health Organization’s (WHO). 
Furthermore, the largest increase in the incidence of 
insanity is expected to happen (up to 330%) in countries 
with low sociodemographic index scores (like India).  
In terms of insanity cases, India was in fourth place globally 
in 2019, but by 2050, it is expected to surpass both the US 
and Japan to occupy the top spot. The prevalence of AD 
varies significantly throughout the states in the country; 
the top 5 states contributing to the overall number of AD 
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cases in the country are Kerala, Goa, Andhra Pradesh, 
Tamil Nadu, and Himachal Pradesh.[5]

In India, 7.4% of people 60 years of age and older are 
thought to have insanity. Insanity affects 8.8 million Indian 
adults over the age of 60. In both rural and urban areas, 
insanity is more prevalent in women than in males.[6]

Amyloid Hypothesis
The amyloid hypothesis states that diseased conditions 
or aging decrease the amount of β- and γ-secretase, which 
breaks down amyloid-beta (Aβ) produced from the amyloid 
precursor protein. As a result, Aβ, particularly amyloid-
beta Aβ40 and amyloid-beta Aβ42, accumulate. Raising 
the ratio of amyloid-beta 42/Aβ40 results in the creation 
of amyloid-beta-amyloid fibrils, which subsequently lead 
to tau pathology and neurotoxicity, neurodegeneration, 
and death of neuronal cells.[7]

Tau Hypothesis
The protein linked with microtubules In contrast, tau is 
essentially unearthed in the axons of normal neurons. 
Here, tau is an essential controller of microtubule 
dynamics, af fecting the processes of maturation, 
extension, and assembly. Tau protein helps keep 
microtubules stable and coincide, which is obligatory 
for brain tasks as well as the transportation of crucial 
chemicals and organelles.[5] Through the Interlinking 
of alpha and beta tubulin monomers, tau controls the 
length, stability, and thickness of axonal microtubules.[8]  
Many physiological functions in the human body depend 
on bimetals, or metals having biological activity, and 
important trace metals. Some of them may be involved in 
cellular signaling pathways when they are free, and when 
they are attached to proteins, they might have structural 
or regulatory effects on how proteins fold and function. 
Because of their interdependence, it is more difficult to 
achieve a balance between various metals. The complex 
interactions betwixt trace metal ions and their ligands 
control the amount of trace metal ions present.[9] 

The Biological Mechanism by which Metals bring 
on Alzheimer’s Disorder
Higher metal levels inside the brain may have an impact 
on several AD-related pathological processes, such as tau 
polypeptide hyperphosphorylation, neuroinflammation, 
oxidative damage, disruption of the blood-brain barrier, 
neuronal programmed cell death and necrosis, autophagy, 
also inflammation.[10-12] Investigational evidence suggests 
that heavy and crucial metals both promote tau protein 
hyperphosphorylation and aggregation, as well as Aβ 
aggregation.[13-15] Oxidative damage can be brought on by 
a few important metals, such as iron[16-18], copper, zinc, and 
calcium.[19,20] Reactive oxygen species may be formed as 
an outcome of Fenton reactions, in which Fe takes part.[21]

According to experimental evidence, oxidative damage 
may occur before the documented disruption of the blood-

brain barrier[23,24] besides the neuronal apoptosis and 
necrosis that occurs when exposed to heavy metals.[24] 

Neurons are very susceptible to oxidative damage. Wang 
et al.[24] state that oxidative damage can result from 
an imbalance in metal ions and that this stress may 
subsequently have the following negative effects:
•	 Tau protein would become more phosphorylated if 

there was an imbalance between protein kinases and 
phosphatases.

•	 An imbalance in secretases, which would lead to a rise 
in Aβ production.

Arsenic

•	 Sources of arsenic exposure in the environment
While arsenic trioxide (As2O3) is the most common 
conformation of inorganic arsenic in the air, aspartic acid 
(AsO3) and arsenites (AsO2) are two forms of arsenic that 
are frequently found in food, water, and soil.[24,25] Because 
of its widespread application in microelectronics, gallium 
arsenide also referred to as GaAs, is an inorganic arsenic 
compound that poses an earnest risk to human well-being. 

•	 Dietary sources
Grains, mushrooms, poultry, and shellfish are the principal 
foods that expose humans to arsenic. The most frequent 
sources of arsenic poisoning include deliberate delivery, 
work-related exposure, and tainted wine or moonshine. 
Pigments that make eye shadows and cosmetic colors are 
often contaminated with toxic substances like arsenic. 
Makeup for the eyes might cause eczema. Wet skin can 
absorb arsenic particles that have been dissolved in 
water. Carcinogenesis may occur when considerable 
concentrations of arsenic are absorbed through the skin 
and enter the bloodstream.
Poor memory and cognitive function were indicative of 
early Alzheimer’s disorder symptoms, even after adjusting 
for potential confounders such as ApoEε4.[25] Low levels of 
arsenic (3–15 µg/L, as in water) exposed over an extended 
period are linked to several symptoms. Human cognitive 
decline and memory loss have been linked to workplace 
arsenic susceptibility.[26] The chronic susceptibility of 
children and adolescents to arsenic inside air else palatable 
water in the Kingdom of Thailand, Bharat, Bangladesh, 
Mexico, Taiwan, and mainland China has been frequently 
associated with cognitive loss.

•	 The molecular underpinnings of arsenic poisoning and 
the consequences for AD

Reactive free radicals are generated, which induce 
oxidative damage and eventual cell damage by oxidizing 
proteins, lipids, and DNA in cells. Arsenic-induced DNA 
oxidation reduces ATP-synthase and promotes lipid 
peroxidation in rat brains via lowering the antioxidant 
capacity of rodent brains and polypeptide thiols inside the 
cortex, striatum, also hippocampus.[26] Arsenic toxicity 
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is mostly shown as oxidative damage, inflammation, ER 
damage, mitochondrial debilitation, apoptosis, also altered 
protein homeostasis.[27]

Pesticides
Pesticides are environmental chemicals that are widely 
utilized worldwide, particularly in India. Less than 0.1% 
of the 2.5 million tonnes of insecticides used each year 
in the world completely remove pests. As a result, the 
vast majority (99%) of pesticides now in use are released 
into the environment at random. Studies on pesticide 
effects on the nervous system have shown that various 
pesticide families, such as carbamates, organophosphates, 
organochlorines, and bipyridyles, can cause considerable 
neurological harm.[28] 

•	 The way that pesticides cause neurotoxicity is as follows
Neurotoxic mechanisms are the cause of many pesticides’ 
deadly adverse effects. Neurological consequences 
encompass a range of outcomes such as impaired 
neurobehavioral performance, dysfunction of the 
senses ,  motor,  a nd ner ves ,  memor y,  at tent ion, 
v isual-spat ia l processing , pat tern memor y, and 
others.[29] About 40% of insecticides used in India are 
organochlorines. Dieldrin, hexachlorocyclohexane (HCH), 
dichlorodiphenyltrichloroethane (DDT), and endosulfan 
are examples of OCPs that are persistent environmental 
contaminants.[30] When an impulse is carried along nerve 
fibers and across synapses, either from one nerve to 
another or from a nerve to a muscle fiber, the majority of 
organochlorine pesticides (OCPs) work by altering this 
process. OCPs are very lipophilic, chemically stable, and 
have a slow breakdown rate.[31] These substances are 
concentrated high up the food chain and can be found in 
food, as well as drinking water. OCPs can produce free 
radicals that harm the mitochondrial machinery and 
cause oxidative damage. They can also have neurotoxic 
effects.[32] 

Cadmium

•	 Sources
Cadmium is a prominent environmental contaminant 
that is discovered in a broad span of foods but is mostly 
present in vegetables, seafood, cereals, root crops, and 
leftover meat. However, the primary source of cadmium 
is tobacco smoke. It should be mentioned that inhaling 
tobacco smoke or ingesting tobacco products increases 
the risk of CD-related morbidities.[33]

•	 Mechanism of inducing neurotoxicity
Cadmium can penetrate the blood-brain barrier, build up 
inside brain tissue, and have a major detrimental effect on 
neurons. Exposure to lead (Cd) results in inflammation, 
oxidative damage, and neuronal demise inside the 
brain. Reactive oxygen species also oxidative damage 
are strongly induced by Cd, according to a number of 

studies.[34,35] These processes then modulate several 
signaling pathways and cellular homeostasis, ultimately 
resulting in neurodegeneration. 

Lead

•	 Sources of lead
•	 Paint (old homes, toys, furniture, crafts) 
•	 Dust
•	 Soil
•	 Stay hydrated
•	 Air
•	 Ayurvedic, folk, and cosmetic remedies
•	 Jewelry and toys for children
•	 In the workplace
•	 Lead can be found in various products, including 

sweets, wrappers, pottery, and ethnic meals, imported 
foods in cans.[36]

•	 How lead contributes to the etiology of AD
Lead inhibits the release of neurotransmitters that are 
dependent on calcium ions by increasing the activity 
of protein kinase C and inhibiting NMDA-ion channels. 
By keeping calcium from exiting mitochondria, it also 
interferes with energy metabolism by producing reactive 
oxygen species, causing mitochondria to “self-destruct,” 
and ultimately leading to neuronal death.[37, 38]

Mercury

•	 Sources of mercury
Most commonly found in plant, animal, and earth tissues. 
Humans can be exposed to mercury through the use of 
dental amalgams, seafood eating, thimerosal, and certain 
occupational contexts. Mercury is classified into three 
conformations: elemental mercury (Hg0), inorganic 
mercury (Hg2+), and organic mercury (Hg2+). Elementary 
mercury has been utilized in dental fillings and, more 
recently, commercial thermometers.[39] Mercury salts, 
skin-lightening beauty creams, homeopathic treatments, 
and batteries are a few naturally occurring forms of 
inorganic mercury found in the environment. The two 
forms of organic mercury are methyl and ethyl mercury. 
Apart from its usage as a thimerosal preservative in 
vaccines, ethyl mercury has also been utilized as an 
antibiotic and fungicidal. Methyl mercury is highly 
soluble in water, making it a ubiquitous element in the 
environment that accumulates in greater quantities within 
the aquatic food cycle.

•	 Mechanism of action
Mercury interacts rapidly with intracellular molecules 
or structures, interrupting normal cellular function. The 
significant affinity of mercury for the sulfhydryl groups 
present in antioxidants reduces their ability to help the 
body recover from oxidative damage. For example, When 
mercury interacts with glutathione (GSH), it loses its 
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antioxidant properties. This has an immediate impact 
on the phase II detoxification pathway.[40] Mercury 
also reduces the passive ion permeability of the cell 
membrane transport system and carrier-mediated ion 
transporter. Microtubules shape the cytoskeletal system 
and neurotransmitter transport in brain tissue. Long-
term mercury exposure disrupts neuronal function by 
preventing brain tubulin from polymerizing, an essential 
process for microtubule formation.

Aluminum

•	 Sources
Although Aluminum (Al), is the most common metal in 
the Continental crust and is not cardinal for existence, 
compounds containing Al in unconstrained, combined, 
and its chemical valence of three forms have been 
employed for centuries to make products such as alum, 
clays, and glasses. Aluminum is occasionally found in 
common products like cookware, food packaging, some 
medications, and deodorants or antiperspirants.[41,42]  
The daily allowance of Al is consumed in drinking water 
to the extent of about 5%. Consequently, it’s possible that 
certain of the components in drinking water impede or 
speed up the absorption of aluminum. It has been shown 
that the interaction of silicate with aluminum in the water 
lowers the toxicity of fish. Because of this, drinking water’s 
silicate content could potentially be high.

•	 Mechanism of action
Al3+ builds up inside the central nervous system (CNS) 
and also results in physiological reactivity.[41] The 
entorhinal portion of the cortex, the hippocampus, and 
the amygdaloid nucleus are some of the brain regions 
affected by AD that have greater concentrations of 
aluminum. Al was found to be co-deposited with fibrillar 
amyloid β in amyloid plaques in a study of brain tissue 
samples from altruists with familial Alzheimer’s disorder 
as well as the PSEN1-E280A (Glu280Ala) alteration.[40] 

This alteration raises cortical Aβ levels in donors and is 
linked to an accelerated development of Alzheimer’s.[42] 

Due to its unique correlation with Aβ and its increased 
concentration in particular brain regions, aluminum 
may have contributed to the neuropathology linked to 
Alzheimer’s syndrome. 
Al can bind to several proteins and initiate the process 
of oligomerization, which modifies the structure of 
the protein and renders it resistant to degradation 
by proteases. More specifically, large phosphorylated 
cytoskeleton polypeptide clumps also concentrate as an 
outcome of Al3+ binding to phosphorylated amino acids.[43] 

After being exposed to Al, glial cells and neurons undergo 
apoptosis. That aluminum-beta-amyloid co-deposition in 
FAD correlates with intraneuronal NFTs is unsupported 
by data.[45] Although an interaction amidst tau may happen 
later in the illness, Al is predicted to bind to amyloid-beta 

in amyloid plaques in the preliminary stages.[46]

The connection between oral aluminum intake in drinking 
water and Alzheimer’s disorder has been the subject of 
many studies.[47] Alzheimer’s is much more prevailing 
in regions with elevated aluminum concentrations in 
the potable water. A huge body of investigation has been 
completed to examine the relationship between oral 
aluminum exposure from potable water and Alzheimer’s; 
nevertheless, additional investigation is needed to 
completely comprehend the roles that lifestyle, hereditary, 
and environmental components act in the progression of 
AD. 

Crucial Metals for Alzheimer’s Disorder
Essential metal equilibrium has been disturbed in 
Alzheimer’s disorder patients.[43] This word describes the 
range of naturally occurring metals found in the body that 
function as different polypeptides and or as secondary 
messengers. The most frequently needed metals in the 
human body are sodium, calcium, and magnesium, with 
trace amounts of iron (Fe), zinc, molybdenum, cobalt, 
manganese, and chromium also there. Several earlier 
investigations have also discovered a connection between 
important metals, specifically iron, copper, and zinc, and 
clinical alterations in Alzheimer’s.

Iron
Lots of bodily functions, including those in the brain 
region, are regulated by ferrous ions. Among the many 
processes that iron is needed for are the synthesis of 
proteins, the division and proliferation of cells, the transfer 
of oxygen, the electron chain in oxidation-reduction 
reactions, and gene regulation. In addition, development, 
neurotransmitter system function, and myelination 
all depend on iron. In[44] beta-amyloid plaques and 
neurofibrillary tangles have been shown to have greater 
ferrous contents. Alzheimer’s disorder patients’ brains 
produce reactive oxygen species (ROS) and oxidative 
damage, which are linked to iron across the Fenton 
reaction. The phosphorylation of tau protein, amyloid 
beta aggregation, also tau aggregate formation in-vitro 

Fig. 1: Metal-enhanced pathological process[4]



SA Kalwaghe et al.

Int. J. Pharm. Sci. Drug Res., May - June, 2024, Vol 16, Issue 3, 496-505500

are all facilitated by iron. Interestingly, APP causes Fe 
release by keeping the iron-exporter ferroprotein on the 
cell surface.[45]

The cerebrospinal f luid (CSF) of Alzheimer patients 
did not significantly alter, even though their plasma 
and serum[44,45] had far lower Fe levels than their CSF. 
This is according to meta-analyses. On the other hand, 
several investigations discovered a link between CSF Fe 
concentrations also several CSF Alzheimer biomarkers 
(Fig. 1). Other observational studies, however, did not 
discover any variations in Iron levels within Alzheimer’s 
patients and controls.

Zinc
Compared to other organs, the brain possesses higher zinc 
(Zn).[46] Zinc protects neurons from glutamate-induced 
excitotoxicity by acting as an antagonist to glutamate 
N-methyl-D-aspartate (NMDA) receptors. This clarifies the 
necessity of zinc for neurotransmission.[46, 47] Zinc, which 
binds to amyloid-beta and promotes its accumulation to 
form plaques, is present in amyloid plaques. 
Furthermore, tau protein phosphorylation, translation, 
and aggregation are all increased by zinc. Meta-analyses, 
however, revealed that zinc levels in AD patients’ serum, 
plasma, and hair had dramatically dropped.[48] whereas 
levels in their brain and CSF had not changed much. MR 
studies have not yet found a connection between zinc and 
an increased risk of AD. 
An in-vivo study employing Zn supplementation was found 
to have good effects on AD-prone mice, while a small 
double-blind clinical trial demonstrated that AD patients’ 
cognitive capacities stabilized after six months. Although 
Loef et al. discovered no proof of a significant improvement 
in Alzheimer’s, Zn supplementation has been proposed as 
a means of improving the cognitive abilities of people with 
AD. In-vivo, studies have revealed that Zn supplementation 
increases Ayloid beta deposition and neurofibrillary tangle 
genesis.[49]

Copper
The disruption of brain metabolism suggests that proper 
Cu levels are required for brain function to function 
normally. Menkes syndrome sufferers, for example, are 
affected by neurodegeneration and intellectual disability. 
This illness is typified by reduced intestinal absorption 
of copper, which lowers the amount of copper present 
in the cytosol of all bodily cells saving the kidneys and 
intestines.[49] The X chromosome’s ATP7A gene, which 
codes for a polypeptide participating in the cytoplasmic 
transport of Cu ions, has a sex-linked mutation that is 
the cause of it. Insanity, Parkinsonism, and psychosis 
are associated with excessive copper accumulation in 
the body in Wilson’s sickness. Alzheimer’s disorder also 
compromises copper homeostasis. Cu ties up to amyloid-
beta and promotes oligomer formation and aggregation. 
Cu chelation can help reduce the cytotoxic effects of the 

Cu-amyloid β combo. Cu assembles in plaques. There is 
evidence of an association between Cu and APP. Cu can 
cause tau phosphorylation and aggregation, and it has 
a function in the pathological processes of Alzheimer’s 
disorder by interacting with apolipoprotein E. ApoE2 
has the greatest rapport for divalent copper, zinc, also 
iron ions, while ApoE4 has the smallest. According to 
meta-analyses, AD patients’ serum Cu levels increased 
significantly, whereas their brain Cu levels declined.[50] 

Unexpectedly, the latest research has found that elevated 
Cu lessens the occurrence of Alzheimer’s disorder.

Calcium 
Calcium (Ca) is an important secondary messenger 
that controls hundreds of signaling tracks required for 
remembrance and perception-related cells and systems 
to function properly. Cellular Ca signaling dysfunction 
is a frequent assay mark of several neuro-decadence 
disorders, including Alzheimer’s.[51] Excessive calcium 
ion entry using ionotropic glutamate receptors is a major 
cause of excitotoxic cell demise. Calcium homeostasis 
disturbance encourages the pathogenesis of tau protein 
and Aβ proteins. Human research, on the other hand, has 
yielded inconsistent results, with both high and low Ca 
levels identified as determinant factors. In the latest MR 
investigations, higher calcium was found to lessen the 
incidence of Alzheimer’s disorder, but no association was 
found between the two.[51,52] 

Manganese
Magnesium is required for polypeptide formation, glucose 
and lipid catabolism, also resistance to oxidative damage. 
Nevertheless, it is also a toxicant found in the environment, 
and high concentrations have been linked to impaired 
cognitive function. Patients with Alzheimer’s disorder 
have also been observed to have upraised Mn levels, 
but Du et al.’s meta-analysis discovered a notable fall in 
manganese levels mediating the AD and control groups.[53]

Magnesium
Magnesium shortage has been shown in human studies 
to impair memory[54], but magnesium supplementation 
improves cognitive performance in insanity patients. 
Furthermore, Alzheimer’s patients’ tissues contain lower 
quantities of magnesium. Nonetheless, in several of the 
trials analyzed, the magnesium levels in the brains of 
Alzheimer’s patients remained constant.[55] Magnesium 
levels affect APP refining and conveying, with small 
levels promoting the beta-secretase trackway and 
elevated levels favoring the alpha-secretase trackway. 
In experimental animals, magnesium sulfate injection 
reduces tau phosphorylation and has an impact on both 
cognitive ability and synaptic plasticity. CSF magnesium 
concentrations did not differ across groups, although AD 
patients had lower serum and plasma magnesium levels 
than controls. According to Thomassen et al.[55], there is no 
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link between plasma magnesium levels and the prevalence 
of Alzheimer’s disorder in a study encompassing over 
100,000 people. Kieboom et al. found a link between 
high and low magnesium levels and an augmented risk of 
insanity. They concluded that there was a U-shaped rather 
than a linear connection between magnesium and the risk 
of insanity.[56]

Another Crucial Metal
Alzheimer’s also disrupts the sodium, potassium, and 
cobalt equilibrium. Earlier research has linked high 
sodium levels to Alzheimer’s disorder. Both went up and 
down.[57] Although AD has been linked to elevated K levels, 
several investigations have shown no indication of elevated 
K levels in AD. Cobalt, in addition to being harmful to the 
environment, is a crucial constituent of vitamin B12. Zheng 
et colleagues. discovered that mice tend to Co-develop 
neurodegeneration as they age.[58]

Metal chelators for alzheimer’s disorder therapy
Since the definite step underlying progressive Alzheimer’s 
disorder remains unknown, it’s challenging to pinpoint 
potential therapeutic targets for drug development. 
Nonetheless, there is growing interest in a range of 
pharmaceutical treatments that can help maintain a 
good quality of life while slowing the rate of aging-related 
cognitive and operative impairments. According to the 
widely accepted metal hypothesis of Alzheimer’s disorder, 
aberrant metal ion homeostasis and collaboration 
mediate metal ions and amyloid-beta are associated 
with the disease’s neuropathology.[62,64]  This notion 
has resulted in the development of metal chelation 
treatment as a method of lowering metal-amyloid beta 
neurotoxicity also restoring metal ion balance inside the 
brain.[65] Nevertheless, chelators must possess specific 
features to be evaluated as prospective medications for 
the therapy of neuro-decadence disorders. To penetrate 
the blood-brain barrier (BBB), chemicals must be stable, 
have a lesser molecular weight, and be weakly or never 
charged. Huge non-distinct chelation would result in the 
widespread exhaustion of metal ions, involving those of 
metalloenzymes, which are critical, thus they must target 
specific metal ions. For the surplus metal ions in the 
clumped polypeptides to be dissolved as well as eliminated, 
the chelator must be able to complex them within the 
brain. In conclusion, the effectiveness of a chelator is 
contingent upon its low toxicity and minimal side effects.  
Treatments for Alzheimer’s disorder using metal ion 
chelation have included a variety of metal chelators. The 
first drug developed to break up amyloid aggregates and 
treat metal overburdened in the central nervous system 
was called desferrioxamine B. This drug dramatically 
improved the behavioral and cognitive abnormalities seen 
in Alzheimer’s patients.[66] Unfortunately, applying this 
siderophore has several disadvantages:
•	 Its hydrophilic and charged nature prevents the blood-

brain barrier from crossing;
•	 It breaks down rapidly in the living system, and 
•	 It originates major adverse impacts like forgetfulness 

as a result of its intense attraction for Ferrous(III) plus 
alternative bivalent cations.

Drugs that chelate substances have been studied for their 
latent to manage neurodecadence.[67–71] When treated with 
the hydrophobic metal complexing agent  DP-109, the brains 
of genetically engineered mice demonstrating human being 
amyloid b progenitor polypeptide exhibited less amyloid 
pathology[71] With binding units for 4-benzothiazole-2-yl-
phenylamine and DTPA, compound XH1 is a bifunctional 
metal chelator. Its foundation is the brand-new idea of 
“pharmacophore conjugation”. It has been demonstrated to 
selectively reduce the expression of the amyloid precursor 
protein in human SH-SY5Y neuroblastoma cells, moreover 
diminishing cortical Aβ amyloid disease state in PS1/APP 
genetically engineered mice, all lacking visibly detrimental 
side effects or behavioral problems.[69] It has also received 
a lot of attention to study the byproduct of a 14-membered 
saturated tetraamine. The bicyclam analog JKL169 (1,1’-
xylyl bis-1,4,8,11 tetraazacyclotetradecane) reduced the 
amounts of copper in the rats’ brain cortical layer, but Cu 
stages in their blood, cerebrospinal fluid, as well as corpus 
callosum did not change.[60]

A trial phase II clinical study is presently being conducted 
on cloquinol, one of the substances that has shown the 
greatest potential for treating a variety of neuro-decadence 
illnesses. According to the trial’s findings, clioquinol (CQ) 
may help certain patients’ discernment purpose and lessen 
the extent of Ab42 plasma. HLA-20, MA-30, and VK-28 are 
the other chemicals in this series. Cloioquinol, also known 
as 5-chloro-7-iodo-8-hydroxyquinoline, or CQ is a tiny, 
hydrophobic, bio-usable metal complexant that has been 
shown to effectively intersect the blood-brain barrier and 

Fig. 2: Metal chelators for Alzheimer’s disorder[77]
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also dissolve amyloid plaques in the brain. This is likely due 
to the metallic ions being removed from the framework, 
which may permit their reallocation.[76, 74]

The drug ciprofloxacin, created by Ciba-Geigy, was broadly 
utilized as a secure intestinal antiseptic upto it was banned 
from oral application in 1970s [75] because it was linked to 
a neurotoxicity outbreak in Japan that was called sub-acute 
myelo-opticoneuropathy. We still don’t fully understand 
this poisoning mechanism. The prevailing basic idea states 
that in the presence of clioquinol, cobalamin (vitamin 
B12) is less bioavailable, resulting in a deficit and a 
state resembling sub-acute combined degeneration.[76] 
On the other hand, it has been observed that sub-acute 
myelo-opticoneuropathy episodes can be prevented by 
vitamin supplementation and cautious, controlled dosage 
delivery.[74] CQ adheres Cu2+ and Zn2+ (2:1 ratio) in a 
quadrilateral, planar structure with an intermediate 
affection.[75,76] CQ disperses artificial Amyloid β-Cu2+/
Zn2+ complexes also, amyloid β accumulates found in 
the autopsy of Alzheimers brains (Fig. 2), according to 
research done in 1999 by Ashley I. Bush and colleagues.[72]

In APP2576 genetically engineered mice, an in-living 
model of Alzheimer’s disorder, they uncovered that oral 
therapy alongside clioquinol significantly decreased 
amyloid-beta accumulates (49% decline) without 
obviously inducing neurotoxicity. The body weight and 
overall health indicators of the test animals also showed 
a marked increase in consistency.[73] These results 
have been confirmed by C. Grossi et al. A step II clinical 
study adds to the evidence supporting the benefits of 
clioquinol for Alzheimer’s endures. In this experiment, 
clioquinol was adequately tolerated; patients who 
received clioquinol showed much less cognitive decline 
and lower levels of plasma Ab than those who received a 
placebo.[76] Regarding CQ’s potential mode of action and 
capacity to disrupt brain metal metabolism, competing 
theories are presently in circulation. When used 

therapeutically, clioquinol does not cause metal excretion, 
in contrast to high-affinity chelators. The concept that CQ 
functions as an ion carrier, aiding metal assimilation in 
brain tissue, is supported by C. Grossi et al.’s discovery[74] 
of a minor but significant rise in Zn2+ and Fe2+/3+ steps 
in the neocortex and Cu2+ stages in the hippocampus of 
TgCRND8 mice managed with CQ (Fig. 3).[75,76]

Conclusion
The upkeep of metallic ion equilibrium is vital for brain 
physiological processes. Neuro-decadence illnesses 
caused by oxidative damage, polypeptide misfolding and 
accumulation, mitochondrial malfunction, and energy 
exhaustion can all be attributed to an imbalance of metal 
ions. These processes all eventually lead to neural network 
failure. Aggregation, tau hyperphosphorylation, and 
excessive synthesis of Aβ can all be caused by imbalanced 
or elevated metal ions. Future developments in neuro-
decadence research will result from a multisystem 
integrative approach that is necessary to comprehend 
these pathways. While metal ion concentrations have 
been reported to both rise and fall in AD, increasing ion 
overload/accumulation is more common.
As a result, a lot of research has been done on using 
metallic ion complexants to manage diseases also enhance 
intellectual function in Alzheimer’s patients. The following 
characteristics are necessary for a good metal chelator: 
•	 Capable of overcoming the blood-brain barrier.
•	 Aims for a particular metallic ion, also 
Does not obstruct the regular metabolism of metal ions.
To bind and sequester ions in order to limit their ability 
to obstruct oxidative processes or disturb protein folding. 
Utilizing contemporary techniques to redistribute metal 
ions has therapeutic advantages. A number of neuro-
decadence illnesses, including Alzheimer’s disorder, 
may benefit from the use of iron-chelating medications, 
such as hydroxypyridones, which activate transferrin to 
facilitate iron redistribution. Drugs have been created to 
lower metal ion levels that cause Aβ aggregation and to 
create reactive oxygen species by chelation. Developing 
medications that target several targets may be the 
subsequent stage in the management of neuro-decadence 
illnesses like Alzheimer’s.
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