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Introduction
Type 2 diabetes mellitus (T2DM), a metabolic disease, 
is the leading cause of death and morbidity worldwide. 
It affects around 537 million people aged 20 to 79.[1] 
An in-depth understanding of the disease’s underlying 
mechanism is crucial for developing better and highly 
ef fect ive therapy. Metformin, thiazolidinediones, 
sulfonylureas, glides, and DPP-4 inhibitors are used for 
therapy. Newer therapeutics, such as sodium-glucose 
cotransporter-2 (SGLT2) inhibitors, lower blood glucose 
levels by decreasing glucose reabsorption in the kidney, 
and glucagon-like peptide-1 receptor agonist (GLP-1) 
lower the rate of digestion by enhancing GLP-1’s functional 
role, lowering blood sugar levels. Essential biochemical 
alterations in T2DM include decreased glucose tolerance, 
hyperglycemia, and glycosuria. Most of these drugs affect 
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Type 2 diabetes is a metabolic disorder that affects people worldwide.The G-protein coupled receptor 
(GPCR) known as free fatty acid receptor 4 (FFAR4) has been shown to be a potential therapeutic target 
for type 2 diabetes mellitus (T2DM) and complications linked to obesity. The present study focuses on the 
pharmaceutical role of FFAR4 and its potential agonists by predicting anti-diabetic responses, including 
insulin secretion, glucose uptake and calcium ion concentration levels. We identified differentially expressed 
genes and elucidated their role extensively through analysis of pathways, molecular mechanisms and 
linked biological processes. In the present study, a systems biology approach was implemented to establish 
an interaction network between FFAR4 and its driver such as CASR and NR1H4, that highlighted their 
significance as potential prognostic and therapeutic targets. A mathematical model incorporating biological 
events mediated by these proteins is studied and simulated using kinetics law reactions. Furthermore, 
the kinetic simulations were conducted to assess the impact of drug molecules, namely comp35, comp50, 
compN1 and compN2, on FFAR4 function. The findings reveal FFAR4’s potential as a therapeutic target 
for the treatment of type 2 diabetes mellitus.
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A B S T R A C TA R T I C L E  I N F O

blood glucose control, avoiding hyperglycemia. However, 
these drugs show gastrointestinal side effects, increased 
cases of acute pancreatitis, cardiovascular disorders, and 
kidney failure. Therefore, it is imperative to explore newer 
targets for better therapeutic interventions.
GPR120 or free fatty acid receptor 4 (FFAR4), regulates 
whole-body metabolic homeostasis. The nutritional 
changes regulate energy balance and can lead to certain 
metabolic disorders, including diabetes, cardiovascular 
diseases and obesity. The absence or low levels of insulin 
results in an imbalance of glucose utilization by affecting 
energy production pathways. It leads to fat mobilization 
from adipose tissue and accumulating higher cholesterol 
levels, triglycerides (TG), free fatty acids, lipoproteins, 
and ketone bodies. Various studies have shown that FFAR4 
is a potential drug target for controlling blood glucose 
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levels and enhancing tissue insulin sensitivity.[2] Higher 
expression of GPR120 in enteroendocrine cells elucidates 
its pharmacological activity. Activation of GPR120 
enhances GLP1 secretion, which validates its role in insulin 
secretion in the pancreas. Identifying and classifying 
synthetic ligands associated with FFAR4 is integral to a 
better understanding of biological function. Some of the 
ligands reported for FFAR4, including NCG21, TUG-891, and 
GW9508, overlap with those for FFAR1  since they share 
structural similarities.[3] A selective agonist of FFAR4 has 
shown improvement in the tolerance of glucose levels, 
decreased hyperinsulinemia, and increased sensitivity to 
insulin in obese mice when fed on a high-fat diet,[4] clinical 
trials for the natural and synthetic ligands for FFAR4 
are progressing for diabetes and obesity. Hence, a better 
understanding of pharmacokinetic and pharmacodynamic 
properties is vital for further development.
High-throughput methods facilitate understanding of 
the biological role of the FFAR4 receptor, discovering 
high-aff inity synthetic ligands and studying their 
pharmacological aspects. Gene expression data based 
computational techniques can characterize genetic 
modifications at the genome level, allowing to study 
of differential gene expression and their potential 
physiological or pathological significance. This study uses 
different network analysis approaches to construct and 
analyze the biological network of FFAR4, highlighting its 
association with key drivers in the disease. These novel 
drivers can help in prognosis, detection as well as disease 
prevention. Various diseases, including cancers, focus 
on driver mechanisms such as epigenetic regulators, 
mutations, transcription factors and gene regulation 
for generating therapy and personalized treatment 
opportunit ies.[5,6] Our f indings reveal the crucial 
links between disease progression and novel drivers. 
Furthermore, we have extensively studied the role of 
FFAR4 in diabetes and diabetes-linked disorders, which 
not only validates the potential of FFAR4 to be used as a 
therapeutic target for T2DM. It also provides insight into 
the disease’s mechanisms and can enable the development 
of newer treatment opportunities for T2DM. Additionally, 
FFAR4 agonists can help in disease management; 
therefore, to establish this finding, we also performed 
kinetic simulations and monitored anti-diabetic responses 
of potential hit compounds.

Materials And Methods

Data Retrieval and Differential Gene Expression 
Analysis
In the present study, an analysis of differential gene 
expression was performed on GEO datasets from the 
GEO-NCBI database (https://www.ncbi.nlm.nih.gov/geo/) 
GSE118139, GSE166502, GSE156993, and GSE166467 with 
samples of human disease patients (Type 2 Diabetes) and 

control samples of healthy tissues. Normalization was 
performed to remove the batch effects of the datasets. 
This analysis to calculate differential gene calculations 
was done in control versus diseased groups using the 
R package, Limma (https://www.bioconductor.org/
packages/release/bioc/html/limma.html).[7] Benjamini & 
Hochberg’s false discovery and Limma precision weights 
were performed to calculate DEGs with significant fold 
change. The threshold to consider DEGs was logarithmic 
fold change >1.0 and p-value <0.05.

Gene Ontology and Pathway Studies
Enrichment studies were carried out to understand the 
biological characteristics of gene sets and genes for high 
throughput transcriptome and genome data. DAVID 
(https://david.ncifcrf.gov/), a Database for Annotation, 
Visualization, and Integrated Discovery, was used to 
understand the biological significance of genes. Biological 
processes, cellular components, and molecular functions of 
genes were studied. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [8] database was used to study enriched 
pathways systematically. 

Protein-protein interaction
Protein-protein interaction analysis was performed. 
The search tool for the retrieval of interacting genes 
(STRING, version 11.5; string-db.org/), currently covering 
24’584’628 proteins from 5,090 organisms,[9] was used 
to construct the PPI network. STRING associations 
with a minimum confidence score of 0.4 were used 
to construct relationships among proteins. Multiple 
proteins of significant differential expression from the 
aforementioned analysis were used to build a network of 
human PPI. Genomic context predictions, automated text 
mining, (conserved) co-expression, high-throughput lab 
experiments and literature were considered fundamental 
principles for determining the interaction between 
proteins. Interacting proteins and hub protein networks 
were analyzed based on the following criteria. Topology 
and characterization of proteins: The protein-protein 
interaction network is characterized based on key 
topological parameters. These parameters are crucial 
in determining the connectivity between the nodes to 
understand their biological significance of interaction. 
Network Analyzer in Cytoscape was used to construct a 
topological property-based interaction network. The node 
degree of a protein in the network was calculated based 
on the number of interactions it has with other nodes or 
proteins. Probabilistic degree distribution was calculated 
throughout the whole network.

Identification of sub-network and hub proteins
The topologically distributed PPI network was further 
studied to identify crucial interactions, sub-networks, and 
hub proteins contributing to the network. An approach to 
determine sub-networks or highly contributing clusters 
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from the complete network of 5332 proteins is performed 
using molecular complex detection (MCODE).[10] Cytoscape 
(https://cytoscape.org/), an open-source application for 
integrating data and visualization of intricate networks 
and integrating data into many other attributes, employed 
MCODE-based clustering. The sub-networks or clusters 
in the complex networking shared by proteins and 
their neighbors were identified in a three-step process: 
(a) weighting- a score is given to more interconnected 
nodes; (b) molecular complex prediction- starting with the 
highest weighted node, also known as a seed, iteratively 
move out, adding more nodes that have a specific value 
above a threshold and (c) post-processing- applies filters, 
thus improving cluster quality. 
In addition to this, an approach to identify bottleneck nodes, 
CytoHubba was used. These networks were analyzed on 
edge percolated component, maximum neighborhood 
component, bottleneck, maximal clique centrality and 
stress-based on shortest paths, which gave us highly 
contributing proteins (hub proteins). Furthermore, 
enrichment studies of selected MCODE and CytoHubba 
clusters were studied with the attributes of biological 
processes, molecular function, and cellular compartments.

FFAR network construction and kinetic simulations
We constructed another protein interaction network 
keeping FFAR4 as a seed to understand better the 
essential drivers’ association and the disease progression’s 
biological mechanism. We performed topological analysis 
to identify and classify related and novel hubs, elucidating 
the essential link between FFAR4 and critical drivers 
of T2DM. Enrichment studies identified the interacting 
drivers and pathways associated with strengthening our 

understanding of hubs and their underlying mechanisms. 
Based on these studies, we constructed a biological 
pathway of the FFAR4 signaling mechanism in the diabetic 
pathway using the topological PPI as a frame, revealing the 
crucial linkage in disease progression and the importance 
of FFAR4 as a drug target in diabetes. For kinetic 
simulations, firstly, with the help of a process diagram 
editor called Cell Designer,[11] we drew the biochemical 
network comprising the signaling pathways associated 
with FFAR4 and its drivers. We divided the components of 
this network into different compartments like the nucleus, 
cytoplasm, macrophages, and cells. Secondly, to monitor 
the effect of kinetic reactions concerning simulation 
time, we used COPASI, a software application, to study 
biochemical network dynamics.[12]

Results

Identification of DEGs in Diabetes Mellitus
Differential gene expression analysis of GSE118139,[13] 
GSE166502, GSE166467,[14] and GSE156993[15] was done 
using R. Preprocessing and normalization of data files 
allowed us to remove batch effects and redundancy across 
the data. Normalized data were then processed for FDR 
calculation using Limma package in R. Top tables for each 
dataset were analyzed and significant genes with less than 
a 0.05 p-value and differential expression in terms of fold 
change>1.0 for upregulation and <-1.0 for downregulation 
were selected for further analysis.
Screening of genes and their corresponding proteins was 
performed. In all, 7041 DEGs were selected for further 
analysis. About 3880 genes were upregulated, while 3161 
were downregulated. The volcano plots for each dataset 

Fig. 1: Volcano plots depicting the upregulated (red) and downregulated (blue) genes in four datasets, (a) GSE118139, (b) GSE166502, (c) 
GSE156993, (d) GSE166467, grey color depicts the genes which fall below the threshold value, i.e., P value (less than 0.05) and logFC (-1 < 0 < +1)
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with significant (P value) versus magnitude of change 
(fold change) were plotted. The number of upregulated 
genes (red) is observed on the right. In contrast, the 
downregulated ones (blue) can be visualized on the left, 
and the most statistically significant genes are placed 
toward the top of the plot based on their fold change value 
(Fig. 1).

Enrichment and Ontology of DEGs
After the compilation of the genes that were differentially 
expressed genes, we evaluated genes according to biological 
processes, cellular components, molecular functions, 
and biological pathways. The main molecular functions 
associated with the DEGs were phospholipid binding, 
G-protein coupled receptor activity, transmembrane 
transporter activity, antigen binding, signaling receptor 
binding and olfactory receptor binding. The GO terms based 
on biological processes ranked by fold enrichment were 
regulation of signal receptor activity, positive regulation 
of inflammatory responses (IL1B, FFAR3, FFAR4, NR1H4, 
IL1A, NLRP3), positive regulation to kinase activity, 
homeostasis process (FFAR3, FFAR4), positive regulation 
of protein metabolic processes (PCSK1, 1L1R2, CASP3) and 
calcium-mediated signaling (TNF, EDN1, CD4CCR7). Also, 
the pathways associated were the TNF-signaling pathway, 
pathways in cancer, insulin secretion (INSR, MAPK1, TNF, 
SOCS1, MAFA, IRS2), P13-Akt signaling pathway, Type 
2 diabetes mellitus (MAFA, TNF, SOCS3, INSR, KCNJ11), 
MAPK signaling pathway (VEGFC, TNF, NLK, PGF, TGFB2),  
gastric cancer (WNT2, WNT4, TGFB1, CDH1), calcium 
signaling pathway (PLCB3, VEGFC, HGF, EGFR), cAMP 
signaling (ADCY5, MAPK1, GCG, PLN), MAPK signaling, 
pancreatic secretion, glucagon signaling and pancreatic 
cancer (SMAD3, SMAD4, EGFR, TGFB1, VEGFA).

Protein-protein Interaction Network Analysis
Examining networks is helpful since it allows one to 
investigate the connections among various proteins. 
To find critical protein interactions and biological 
modules involved in type 2 diabetes. A network of 
protein interactions between proteins was created for 
differentially expressed genes was constructed. A protein-
protein interaction (PPI) of 5332 proteins corresponding 
to DEGs was built using the STRING plugin in Cytoscape. 
The interaction network with a combined score >0.4 was 
set as the cut-off criterion. Owing to the vast number of 
proteins in the PPI network, several cluster forms were 
identified in the parent network. There are less than six 
steps between two nodes, also known as the shortest 
path. We also observed “scale-free networks” in which 
most nodes are connected to a low number of neighbors 
and a small number of hubs that provide high connectivity 
to the network. The network was analyzed based on its 
topological properties. 
The topological analysis implemented included: 
1) Centrality analysis which estimates how vital a node or 
edge is for connectivity, and the nodes with high clustering 
values are considered more biologically significant. The 
centrality measured the degree of nodes and global 
centrality of the complete network. The network was 
analyzed considering both closeness centrality and 
betweenness centrality. Based on these parameters, 
tumor necrosis factor (TNF) (542), epidermal growth 
factor (EGFR) (532), MYC proto-oncogeneMYC (500), SRC 
proto-oncogeneSRC (497), interleukin 1 beta IL1B (439), 
and fibronectin-1 (FN1)(384) were observed with high 
degree and centrality (Fig.2a). 2) The measure known as 
closeness centrality, or CC, quantifies the potential flow at 

Fig. 2: (a) Top 50 nodes of the network ranked based on the number of node degrees. TNF, IL1B, EGFR and FN1 depicted in bar graphs are the 
highest degree nodes showing their significance in the protein-protein interaction network and (b) the behavior of betweenness centrality 

and (c) closeness centrality as a function of degree for diabetic pathway



Divya Jhinjharia et al.

Int. J. Pharm. Sci. Drug Res., May - June, 2024, Vol 16, Issue 3, 412-425416

Table 1: Protein-protein interaction clusters of diabetic-associated 
proteins along with their predicted cluster score

Clusters Score Proteins

1 26.838 ADIPOQ, LEP, IGF2, SMAD3, SMAD4, EDN1, 
VEGFA, ILIA, FN1

2 22.13 IFNG, IL1B, KCNA5, TNF, SOCS1, C3, BRAF, 
CASP3, EGFR, NLRP3, MYC, C3

3 13.768 ADCY1, ADCY2, ADCY5, GCG, PLCB3, PRKCG, 
SHC1, APC, BCAR1, ALB, SRC, MMP9

4 9.496 IRS1, PFKM, PSMD9, RBP4, GRIK3, GNAS, 
GNAO1

5 6.145 RGS5, ABCC8, KCNN4, TRPM4, PTPRN, CPE, 
G6PC2, GNG2, BRCA1

6 5.204 SOCS4, PIK3R1, MAPK10, SNAP25, SYT7, 
GCNT1, MAPK12, CAMK2

7 5.156 INSR, GYS1, CD36, NCF2, PIK3CG, RASA1, 
GBE1, ARF1, SHC3, GRM4, TMPRSS6, GRK1, 
KCNJ12

8 4.6 PFKFB1, ARV1, UGT8, B4GALT6, GBA, GALC, 
PLD6

9 3.935 PLN, ATP1A1, PDE38, FXYD1, KCNJ3, KCNJ5

which information might move from one node to another. 
It measures the farness, i.e., how far/close the nodes are 
from each other. The closeness centrality value for the 
aforementioned higher-degree nodes lies between 0.48 
to 0.43. ARMH4, CD320, PRRT4, and IGFL3 are among 
the other higher CC values of 1, demonstrating their 
significance with the rest of the network (Fig.2b).
Based on the betweenness centrality (BC) communication 
f low, nodes with high betweenness centrality are 
interesting. As they are on the communication channel 
and have the ability to regulate information flow, nodes 
with high betweenness centrality are interesting. The BC 
value represents important nodes for signaling pathways 
and can form a target for drug discovery. Some important 
nodes with high BC values are ARMH4, EGFR, MYC, SRC, 
TNF, and ALB (Fig. 2c). 

Sub-networks and hub proteins in T2DM
A cluster is a collection of nodes more linked to one 
another than the rest of the network. The complete PPI 
network of 5332 proteins was analyzed for clustering, 
yielding 66 clusters with high-weighted nodes (Table 1). 
These 66 clusters are deduced based on weighting, 
molecular complex prediction, and post-processing. All 
66 clusters were studied individually and examined 
based on their topological parameters and biological 
significance. Enrichment analysis of these sub-networks 
revealed that the proteins (nodes) were present in 
various biological pathways such as the P53 pathway, 
pancreatic cancer, breast cancer, diabetic nephropathy, 
TGFß signaling pathway, AGE-RAGE signaling pathway in 
diabetes IL-17 signaling pathway, and TNF-alpha signaling 
via NF-kB. Based on these findings, we shortlisted nine 
clusters with enrichment p-value >0.05 that had proteins 
enriched in diabetes and diabetes-related disorders and 
had significantly high node degrees and cluster-based 
confidence scores (Table 2). Proteins such as SMAD3 and 
SMAD4 in cluster 1 are critical drivers in diseases such as 
pancreatic cancer. It has been reported that at the time of 
diagnosis, up to 80% of patients with pancreatic cancer 
have either newly diagnosed T2DM or impaired glucose 
tolerance.[16] Cluster 2 proteins such as IL-1β perform a 
variety of other roles in controlling insulin production and 
promoting β cell death, which can ultimately result in type 
2 diabetes.[17] NLRP3 and TNF are also reportedly involved 
in diabetes-related inflammatory response. Complement 
component C3 is also discussed as the biomarker of 
diabetic neuropathy, and diabetes and coronary calcium 
scores have also been linked to C3.[18] Proteins in these 
clusters such as TNF, IL1B, EGFR, SRC, FN1 and INSR were 
also observed in 50 high-degree nodes selected. Therefore, 
we selected these proteins for further analysis.
Another approach to infer this network and identify 
critical proteins was done by implementing five different 
algorithms, including maximum neighborhood component 
(MNC), maximal clique centrality (MCC), edge percolated 

Fig. 3: Identification of top ten bottleneck proteins ranked by five algorithms, namely, (a) MCC, (b) EPC, (c) MNC, (d) stress, and (e) 
bottleneck where edge thickness corresponds to the degree of interaction between the differentially expressed proteins. Proteins like TNF, 

IL1B, FN1 and SRC were strongly interconnected, indicating their significance in the design mechanism
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component (EPC), and bottleneck and stress based on 
shortest paths (Fig. 3). In topology analysis, proteins such 
as EGFR, IL1B, MYC, SRC, and TNF were the highest-degree 
proteins. They were also present in the top sub-networks 
based on the MCODE above analysis. These proteins were 
also seen in the top ten bottleneck proteins. Fibronectin 
1 (FN1), one of the top ten proteins in this analysis, was 
also one of the highest degree nodes per the centrality 
analysis parameter of topology analysis. FN1 is an 
immune-related biomarker of diabetic neuropathy[18] and 
is often upregulated in the case of T2DM. After the network 
analysis, which included topological analysis, MCODE 
sub-networks, and bottleneck proteins, we selected 15 

proteins that were present in all three analyses as hub 
proteins (Table 2). This validates that these proteins play 
a significant role in the pathways of diabetes.

FFAR interacting hubs and their role in the T2DM pathway
Based on network analysis, TNF, IL1B, SRC, MYC, EGFR, 
and FN1 were identified driver nodes/proteins. Gene 
expression markers like FN1 and C3 are often related to a 
signaling pathway and are regulated by a receptor protein. 
To understand the signaling mechanism of diabetes, we 
studied pathways with these high-degree nodes. As per 
the enrichment and network analyses, common nodes of 
these proteins, including FFAR4 were identified. The driver 

Table 2: Identified 15 hub proteins based on centrality, clustering analysis, and selection criteria parameters (node degree, expression) and 
their enrichment studies indicating various biological processes, molecular functions, and pathways involved. 

Gene 
name Gene description Node 

degree
Expression 
value (Logfc) Pathway and processes

EGFR Epidermal Growth Factor 
Receptor

468 -3.213 Regulation of monooxygenase activity, glial cell proliferation, positive 
regulation of BIK/NF-kappa B signalling and positive regulation of 
protein localization to the cell periphery

IL1B Interleukin 1 beta 321 -5.431 Negative regulation of protein secretion, interleukin-10 signaling, 
neuroinflammatory response, regulation of glucose transmembrane 
transport

 TNF tumor necrosis factor 439 -3.008 Type 2 diabetes, neuroinflammatory response, regulation of glucose 
import and regulation of glucose transmembrane transport,

IGF1 insulin-like growth 
factor 1

193 4.180 Neuroinflammatory response, regulation of glucose transmembrane 
transport, regulation of glucose import

NR1H4 nuclear receptor 
subfamily 1 group H 
member 4

88 -3.269 Type 2 diabetes mellitus, bile secretion, inflammation, cellular glucose 
homeostasis, positive regulation of insulin signaling pathway

KCNJ11 potassium voltage-gated 
channel subfamily J 
member 11

68 3.836 Type 2 diabetes mellitus, positive regulation of protein localisation to 
the cell periphery, negative regulation of protein secretion

INSR insulin receptor 81 -1.526 Type 2 diabetes mellitus, regulation of glucose transmembrane 
transport, regulation of glucose import

ABCC8 ATP binding cassette 
subfamily C member 8

72 4.266 Type 2 diabetes mellitus, glial cell proliferation

CCL2 C-C motif chemokine 
ligand 2

191 -2.221 Interleukin-10 signaling, lipopolysaccharide-mediated signaling 
pathway, regulation of synaptic transmission, glutamatergic and positive 
regulation of phagocytosis,

MMP9 Matrix metallopeptidase 
9

218 1.661 Positive regulation of vascular-associated smooth muscle cell 
proliferationIL-17 signaling pathway,
regulation of neuroinflammatory response

PCSK1 proprotein convertase 
subtilisin/Kexin type 1

56 3.236 Response to glucose, positive regulation of protein secretion, response 
to fatty acids, response to calcium ions, obesity

ADCY5 Adenylate cyclase 5 77 1.338 Pancreatic secretion cAMP signaling pathway, phospholipase D signaling 
pathway, insulin secretion

SRC SRC Proto-oncogene, 
non-receptor tyrosine 
kinase

497 -1.74 ERK Signaling Pathway, G-Protein-Coupled Receptors Signaling to 
MAPK/Erk Pathway, Jak/Stat Signaling: IL-6 Receptor Family Pathway

FN1 Fibronectin 1 384 -2.35 Focal adhesion, CCL18 signaling pathway, Epithelial to mesenchymal 
transition in colorectal cancer,
Focal adhesion: PI3K-Akt-mTOR-signaling pathway

BRCA1 Breast and ovarian 
cancer susceptibility 
protein 1

280 1.18 P53 pathway, WNT pathway, Breast cancer pathway, 
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genes served as the missing links interacting with FFAR4. 
FFAR signaling pathway in T2DM showed the involvement 
of these nodes. We created another PPI network to increase 
our understanding of the critical proteins involved in this 
signaling pathway (Fig. 4a). This network was created with 
the parent nodes connecting to FFAR4 in the complete 
network of 5332 proteins and the high-degree hubs we 
identified from the network analysis. Using FFAR4 as the 
seed, the other nodes linking to it were identified (Table 3). 
23 significant nodes, including NR1H4, KCNJ11, CASR, 
INSR, ABCC8, CCL2, MMP9, ADCY5, and PCSK1 were 
identified. The darker lines in the network depicted high 
confidence of interaction between FFAR4 and FFAR3, 
TNF, and IL1B (Fig. 4b). These interacting proteins share 
common pathways, like inflammation, homeostasis, and 
calcium signaling, with FFAR4. They are also reported to 
be co-expressed; for example, FFAR4-dependent release 
of GLP-1 leads to improved glycemic control from the 
entero-endocrine cells. The enrichment studies identify 
four main functional groups to be involved, namely, type 
II diabetes mellitus (ABCC8, INSR, KCNJ11, NR1H4, TNF, 
FN1), negative regulation of protein secretion (ABCC8, 

IL1B, KCNJ11), regulation of glucose transmembrane 
transport (ADCY5, IGF1, IL1B, INSR, MMP9, TNF, FN1) and 
regulation of neuroinflammatory response (ABCC8, CCL2, 
IGF1, IL1B, INSR, MMP9, TNF). The biological processes, 
molecular function, and pathways corresponding to the 
hub proteins and FFAR4 interacting proteins are shown 
in Fig. 5. The final kappa score group for this PPI is 97, 
which defines term-term interactions shown as edges 
on the network and associates terms and pathways into 
functional groups based on shared proteins.

Emerging drivers (NR1H4 and CASR) interacting with 
FFAR4 - giving an insight in the FFAR4 mediated type 2 
diabetic pathway
Proteins such as NR1H4 and CASR show novel interactions 
and linkages in the FFAR-mediated diabetic signaling 
pathway. This interaction has never been reported 
before in direct relation with FFAR4. This association can 
potentially have a significant impact on FFAR4-mediated 
diabetes. 
CASR, while signaling through the Gαi/0 subunit, inhibits 
the cAMP formation. cAMP is essential for calcium 
signaling through protein kinase A (PKA). It inhibits 
insulin secretion and limits the mitogenic action in the 
nucleus (Fig. 6). Gβγ subunit works actively by activating 

Table 3: List of identified 23 FFAR4-interacting proteins involved in 
diabetic and other signaling pathways

Gene 
Symbol p-value logFC Regulation

GPR142 0.022429 4.00172 Upregulated

CASR 0.048276 2.08709 Upregulated

FFAR4 0.018967 2.52194 Upregulated

FFAR3 0.027759 2.91793 Upregulated

TNF 0.045199 -3.00836 Downregulated

IL1B 0.000302 -5.431862 Downregulated

NR1H4 0.008618 -3.26955 Downregulated

PCSK1 0.003408 3.2366 Upregulated

TMSRSS6 0.0068 2.96765 Upregulated

MC3R 0.014839 2.718761415 Upregulated

ADIPOQ 0.034181 -1.806016555 Downregulated

P2RX2 0.035094652 1.015308842 Upregulated

NLRP3 0.032024105 -1.579400022 Downregulated

GCG 0.003195746 1.995321275 Upregulated

CCK 0.003823549 2.548849707 Upregulated

TAS2R1 0.048122311 1.614065789 Upregulated

SLC6A14 0.037189944 -1.913543613 Downregulated

ADRB1 0.021825591 1.123891992 Upregulated

GLP1R 0.017455646 1.829134171 Upregulated

TLR4 0.001640258 2.591891037 Upregulated

GNAQ 0.024097992 -1.311354527 Downregulated

LEP 0.009915991 3.90395877 Upregulated

GNAS 0.018258255 1.80558955 Upregulated

Fig. 4: (a) Network of 15 hub proteins selected from network analysis 
and (b)23 FFAR4 interacting nodes, including proteins TNF, IL1B, and 

NR1H4 from the hub protein network
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Fig. 5: KEGG pathways, biological processes and molecular functions associated with the hub proteins and FFAR4 interacting proteins 
wherein diabetes-associated processes can be observed as per cent terms per group in the pie-chart representation

Fig. 6: Pathway depicting different signaling mechanisms carried out 
by identified drivers, CASR, FFAR4, and NR1H4 in type 2 diabetes

Ras and initiating other signaling cascades like MAPK and 
ERK1/2. Other subunits of CASR, like Gαq/11 and Gα12/13, 
employ conventional signaling pathways. FFAR4 signals 
through Gαq/11 subunit by phosphorylation event at PLC 
dissociating into PIP2, IP3, and DAG, further activating 
protein kinase C (PKC), which increases the calcium 
concentration and in turn triggers pathways like JNK, IKK, 
MAPK. As the disease progresses, the body’s ability to 
produce insulin becomes less responsive, and the outcome 
of insulin resistance also may lead to inflammation. β- 
arrestin bound to the FFAR4 is responsible for exerting 
inflammatory effects. TNF, IL1B, and NLRP3 are proteins 
involved in the inflammatory process. These proteins 
boost the production of several proteins that inhibit the 
insulin signaling pathway. NR1H4 encodes the FXR bile 
acid receptor, which is involved in both bile acid production 
and inflammation. FXR in white adipocytes suppresses 
the inflammatory cytokines that cause insulin resistance.

Kinetic Simulation of the biochemical pathway 
Diabetes is an intricate disease. Multiple processes are 
involved in the occurrence of this disease, leading to 
the involvement of numerous diabetic pathways such as 
the AMP-activated protein kinase (AMPK) pathway, the 
insulin signaling pathway, renin angiotensin aldosterone 
system (R AS) pathway, peroxisome proliferators 
activated receptors (PPAR) regulation and TGFß signaling 
pathway. To decipher the signaling mechanism involved 
in the cellular events associated with FFAR4in type 2 
diabetes, we constructed a biochemical pathway (Fig. 7). 
The ultimate goal of constructing this pathway was to 
understand the effect of insulin secretion, glucose uptake, 
calcium ion concentration and other cellular processes 
on the various species involved in it. The biological 
information of interacting species (gene, protein, and other 
molecules) was collected through the aforementioned PPI 
network analysis, KEGG regulatory pathways of diabetes 
and diabetes-linked disorders, as well as through the 
literature.[19,20]

A mathematical computational framework of the signaling 
pathway of FFAR4 was constructed and visualized in 
COPASI. The pathway consists of 55 metabolites and 60 
reactions. The reactions occur in the pancreatic beta cell, 
nucleus, and cytoplasm. To study the kinetic behavior of the 
components of this pathway, we divided it into individual 
sub-pathways, the FFAR4 signaling pathway and the CASR 
and NR1H4 associated pathway. The concentrations were 
assigned to each component of the biochemical pathway 
in nanomolar. The initial concentrations for species were 
set by referring to the databases and literature. The 
kinetic laws implemented were mass action kinetics (drug-
receptor interactions) and the Michaelis. Menten equation 
(kinases) that could explain the changes in intracellular 
metabolite concentrations within a pancreatic β-cell. 
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Kinetic simulations are plotted as time vs concentration 
and the effect of glucose, insulin, calcium concentration, 
and cAMP levels were monitored.

•	 FFAR4drug-induced effects:
In our earlier study, we identified hit compounds through 
robust high-throughput virtual screening and molecular 

dynamics studies that may be potential agonists for 
FRAR4. Through high-throughput virtual screening 
and machine learning techniques, we screened 4 lakh 
compounds and shortlisted 52 potential hits.[21] The study 
focused on the structure modeling and identification of hit 
compounds, including the ones that are used in the present 
study (comp50, comp35, compN1 and compN2). These 
selected hit compounds were shortlisted based on non-
bonded interactions, binding affinity and pharmacokinetic 
profiling, including Lipinski rule evaluation, protein plasma 
barrier, blood-brain barrier, PAINS and hepatotoxicity 
parameters. Additionally, findings were validated using 
molecular dynamic simulations and analysis such as free 
binding energy calculation, principal component analysis 
and cross-correlation matrices.
In the present study, the kinetic simulation of four 
selected compounds are used to examine the effect of 
these compounds on FFAR4. The compounds selected 
are comp50, comp35, compN1 and compN2, as given in 
Table 4. The kinetic simulations of these test compounds: 
comp50, comp35, compN1 and compN2 were compared 
with the known agonist TUG-891 (44-75nM) for FFAR4 
at different concentrations and time intervals. The initial 
concentrations of comp50, comp35, compN1 and compN2 
were 970, 150, 73 and 9.67 nM, respectively. We analyzed 
the improved effect of insulin secretion, glucose uptake, 
and calcium concentrations at time intervals 25, 50, 100, 
and 120 ns by the presence of drug molecules (Table 5).
We observed the signaling in multiple ways to understand 
the effects and outcomes on the pathway, including (1) 
without the drug (diseased condition), (2) in the presence 
of a known agonist, TUG-891, (Diseased state with the 
reference drug) and (3) Disease conditions with the 

Fig. 7: Biochemical pathway including the components (gene, proteins, 
species, drug, ion, and other molecules) in different compartments 
with the assigned kinetic laws for studying the effect of insulin 

secretion and glucose uptake

Fig. 8: Kinetic simulations of FFAR4-induced signaling pathway to study the effect of insulin secretion (black), glucose uptake (red), and 
calcium concentration (violet), (a) in the absence of drug, i.e., diseased condition, and in the presence of (b) TUG891, (c) comp50, (d) comp35, 

(e) compN1 and (f) compN2
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Table 4: Selected four compounds for kinetic simulations with IUPAC names, molecular formulas and molecular weight for studying their 
effect on FFAR4

Molecule Molecular formula Molecular weight (g/mol) IUPAC Name

Comp50 C20H21NO2 322.4 N-(3-benzamidophenyl)thiophene-2-carboxamide

Comp35 C22H20N2O2 344.4 3-methyl-N-[3-[(3-methyl benzoyl)amino]phenyl]benzamide

CompN1 C22H20N2O3 360.4 N-[3-[(2-methoxybenzoyl)amino]phenyl]-2-methylbenzamide

CompN2 C22H20N2O4 376.4 2-methoxy-N-[3-[(2-methoxybenzoyl)amino]phenyl]benzamide

Table 5: Effect of the drug concentrations (in nM) w.r.t time intervals (in ns) on insulin secretion, glucose uptake, and calcium concentration 
in the biochemical pathway

Drug molecules Concentration (nM) Time interval (ns)
Effect in the presence of drug

Insulin secretion Glucose uptake Calcium conc.

TUG891 75 25 0.72 0.61 1.20

50 0.7 3.03 0.47

100 0.025 4.35 0.025

120 stable stable stable

Comp50 970 25 8.8 6.26 15.18

50 9.8 35.52 6.5

100 0.6 53.43 0.3

120 stable stable stable

Comp35 150 25 1.44 1.164 2.39

50 1.54 5.64 0.99

100 0.05 8.47 6.025

120 stable stable stable

CompN1 73 25 0.95 0.78 1.603

50 1.05 3.86 0.67

100 0.04 5.77 0.015

120 stable stable stable

CompN2 9.67 25 0.81 0.69 1.35

50 0.86 3.27 0.55

100 0.03 4.8 0.03

120 stable stable stable

selected potential hits (comp50, comp35, compN1 and 
compN2). The results are plotted in concentration vs. 
time interval graphs (Fig. 8). The three effects that are 
monitored in these plots are glucose uptake (red), insulin 
secretion (black) and calcium concentration (violet). In 
diseased conditions, the glucose uptake can be observed 
going increasingly high even after simulating it to 
100 ns. Meanwhile, in the presence of TUG-891, the glucose 
is controlled and reaches a plateau phase after 100 ns 
at a concentration of 4.35 nM, showing a stable system 
(Fig. 8a and b). Similarly, the other four novel hits exhibited 
similar responses when simulated with kinetic reactions 
(Fig. 8c-f). Furthermore, comp50, comp35, and compN1 
attained stability at a higher concentration than TUG-891 
and compN2. In contrast, compN2 showed an effect 
equivalent to TUG-891 on glucose uptake. We observed 
that insulin and calcium concentrations were consumed 

adequately after completing the 100ns period in all the 
simulation graphs. Based on this analysis, we conclude 
that compN2 has the potential to show therapeutic effects 
in type 2 diabetes therapy.

Kinetic simulations of driver proteins CASR and NR1H4
Based on the literature, we set the initial concentrations 
of CASR (0.4 nM) and NR1H4 (0.38 nM) and a hypothetical 
concentration for the drug to act at 3.2 nM to induce 
biological effects in the signaling pathway. The CASR 
signals through three subunits: Gαq/11, Gs, and Gαi/o. 
The Gαi/o is responsible for AC’s activation and inhibition, 
affecting cAMP production. Inhibiting AC results in 
reduced cAMP production; hence, not activating PKA, and 
insulin is not secreted enough (Fig. 9a). However, if we 
activate cAMP production by activating AC, it results in the 
activation of PKA. Hence, insulin secretion also increases. 
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