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Introduction
Nonsteroidal anti-inflammatory medicines (NSAIDs) 
are commonly used to relieve pain and inflammation. 
Due to their inseparable gastrointestinal and renal 
adverse effects from their pharmacological actions, the 
majority of NSAIDs now in use have limited therapeutic 
applications. By inhibiting the cyclooxygenase enzyme, 
these substances stop the production of prostaglandins. 
The primary enzymes in the production of prostaglandin 
H2, a precursor to the manufacture of prostaglandins, 
thromboxanes, and prostacyclins, are cyclooxygenases 
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Patients suffering from chronic pain and inflammatory disorders need novel COX-2 inhibitors to be 
developed with minimum toxicity to the kidneys, heart, and gastrointestinal tract and with excellent anti-
inflammatory activity. The current study centers on an array of 1,4,5-trisubstituted pyrazoles produced via 
the reaction of ditosylates of chalcones with hydrochloride salt of phenylhydrazine. Chalcone was reacted 
with HTIB to produce a variety of derivatives of α, β chalcone ditosylates. Phenylhydrazine hydrochloride 
treatment of these chalcone ditosylates produced distinct 1,4,5-trisubstituted pyrazoles. The conversion 
process is mediated by 1,2-aryl migrations. IR, 1H-NMR, and elemental analysis were used to characterize 
the compounds after they had been purified by recrystallization. Using ascorbic acid as a reference, the 
DPPH (1,1-diphenyl-2-picrylhydrazyl) technique was used to assess the compounds’ in-vitro antioxidant 
activity. The paw edema technique caused by carrageenan was utilized to assess the compounds’ in-vivo 
anti-inflammatory properties. The standard medication used was diclofenac sodium. A plethysmograph was 
used to measure the volume of the rats’ paws. When compared to the standard, the compounds V5D5PH5 
and V7D7PH7 showed modest antioxidant activity. When the synthetic pyrazoles were examined for their 
in-vivo anti-inflammatory properties, substances V4D4PH4 and V7D7PH7 outperformed the reference. 
Here, we attempted to create new, safe, and effective drugs for the treatment of inflammatory disorders 
and pain by utilizing synthetic pyrazole moiety derivatives. Simple experimentation is used in the proposed 
study to improve pharmacological activity and yields. In the near future, chalcone ditosylate derivatives 
will be a powerful tool for selective modification.
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A B S T R A C TA R T I C L E  I N F O

(COXs). It was shown that this enzyme has two isomers: 
COX-1, which is constitutive, and COX-2, which is inducible 
in the gastrointestinal tract (GIT).[1-3] The constitutively 
produced enzyme COX-1 protects cells, while the inducible 
COX-2 promotes pain, inflammation, and oncogenesis and 

traditional NSAIDs inhibit both enzymes.[4-6]  
In comparison to COX-2, the majority of them exhibit 
higher selectivity for COX-1. As a result, long-term usage 
of nonselective NSAIDs may result in gastrointestinal 
issues such as bleeding and GI ulcers in addition to stomach 
distress.[7,8]The majority of clinical NSAIDs have an acidic 
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carboxyl (COOH) group, which can irritate the gastroin-
testinal tract when it comes into direct contact with the 
GIT. As part of the new NSAID generation, selective COX-2 
inhibitors with improved safety profiles are also being 
sold. However, coxibs containing thiazole rings have 
shown unanticipated side effects in the cardiovascular 
system.[9, 10] The use of NSAIDs as a safer medication for 
the treatment of pain and inflammation is restricted due 
to these severe adverse effects. Thus, it’s critical to dis-
cover novel anti-inflammatory medications that are safe 
and have the potential for therapeutic application. Among 
the most significant heterocycles are pyrazoles because 
of their unique structures and wide range of biological 
activity. As a synthon, chalcone is a crucial component in 
the synthesis of many bioactive molecules. Due to their 
diverse biological and pharmacological characteristics, 
pyrazoles produced from chalcones have garnered a lot of 
interest. Because of their many uses over the past 30 years, 
pyrazoles have attracted a lot of attention.[11] As a class of 
chemicals with a wide range of biological actions, including 
anti-inflammatory,[12–17] antifungal,[18] anticancer[19–22] 

and antiviral[23] properties, pyrazoles have garnered sig-
nificant attention in the field of novel drug development. 
A3 adenosine receptor antagonists,[25] neuropeptide YY5 
receptor antagonists,[26] kinase inhibitors for the treat-
ment of type 2 diabetes, hyperlipidemia, obesity,[27] and 
thrombopiotinimetics[28] were reported to work as anti-
angiogenic drugs in addition to pyrazole derivatives. It 
has recently been shown that pyrazole urea compounds 
are strong p38 kinase inhibitors.[29] Traditional pyrazole 
dyes,[30] herbicide couplings,[31] luminescent and fluores-
cent substances,[32,33] antiarrhythmic,[34] antipyretic, 
analgesic, anti-inflammatory,[35-37] and activities that 
inhibit cholesterol synthesis[38] are a few of these uses. 
Recently, pyrazoles have drawn interest due to their 
prospective uses as intermediates in the synthesis of 
fused pyrazoles, ligand moieties to enhance regio- and 
stereoselectivity, and chiral catalysts.[39,40] Because of 
the significance of pyrazoles in biology, medicine, and 
industry, organic chemists have devised several synthetic 
methods for their synthesis. [41–42]

In light of the above, the current study aimed to ditosylate 
α-β chalcones in order to produce 1,4,5-trisubstituted 
pyrazole derivatives. α-β chalcone ditosylates (3) 
phenylhydrazine hydrochloride to produce 1,2 aryl 
shift, which offers a novel method for the production of 
1,4,5-trisubstituted pyrazoles. Following the method 
developed by Rebrovic and Koser, chalcones were reacted 
with Koser’s reagent (HTIB) to yield several chalcone 
ditosylates. The versatile Koser’s reagent [Hydroxy 
(tosyloxy)iodo] benzene (HTIB) can produce a variety 
of advantageous conversions. [43] Here, we made use of 
synthetic pyrazole moiety derivatives in an attempt to 
develop novel, secure, and potent medications for the 
management of pain and inflammatory diseases.

Materials And Methods

Synthesis 
The melting points (uncorrected) of compounds were 
ascertained and thin layer chromatography was used to 
track the reaction and verify purity. Using a KBr pallet, 
the Shimadzu FTIR 8400 spectrophotometer was used to 
record the IR spectra. 1H-NMR spectra were collected in 
CDCl3. An internal standard of tetramethylsilane (TMS) 
was taken. In Hertz (Hz), coupling constants (J) are 
expressed. Merck and Sigma Aldrich were the suppliers 
of all the chemicals and reagents utilized. 

General Process for the Synthesis of Compounds 
(V1D1-V7D7)
Hydrox yl (tosylox y)iodobenzene (HTIB) (3.96 g , 
0.01 mol) was added to a solution of corresponding 
Chalcone (0.005 mol) in dichloromethane (40 mL). 
The reaction mixture was agitated for 3 hours at room 
temperature. To get rid of the p-toluenesulphonic acid that 
developed as a byproduct, the solution was gently rinsed 
with water in a separating funnel. Following separation, 
the organic layer evaporated in a vacuum. To get rid of the 
iodobenzene, the gummy substance was triturated using 
petroleum ether. To obtain pure matching α-β Chalcone 
ditosylates, the resulting solid was further recrystallized 
using acetonitrile. (2a-2f)

3-Phenyl-1-naphthyl-2,3-ditosyloxypropanone (V1D1)
Yield 57%, m.p. 124–126°C. IR (νmax/cm-1): 1675 (C=O); 
1H-NMR (DMSO-d6): δ 2.23 (s, 3H, --CH3); 2.26 (s, 3H, 
-CH3); 5.12 (d, 1H, -C-H ); 6.96 (d, 1H, C-H ); 7.16–7.25 (m, 
4H, -C6H5); 7.23-7.55 (m, 2H, -C6H5); 7.39–7.58 (m, 4H, 
-C6H5); 7.58-7.89 (m, 3H, -C6H5); 6.55–6.96 (m,7H,ArH); 
Anal. Calcd. for C40H46O2S2; C 77.12, H 7.44 C 77.13, H 7.45 
Found C 77.13, H 7.45

3-(4-Chlorophenyl)-1-naphthyl-2,3-ditosyloxypropanone 
(V2D2)
Yield 82%, m.p. 110-–112°C. IR (νmax/cm-1): 1690 cm-1 
(C=O stretch); 1H-NMR (DMSO-d6): 2.42 (s, 3H, -CH3); 2.36 
(s, 3H, -CH3); 4.99 (d, 1H, C-H); 7.01 (d, 1H, C-H); 7.31 (d, 
2H, -C6H5); 7.16–7.29 (m, 4H, -C6H5); 7.53 (d, 2H, -C6H5); 
7.62–7.78 (m, 4H, -C6H5); 6.54–6.90 (m,7H, -C6H5); Anal. 
Calcd. for C40H45O2S2Cl; C 73.08, H 6.90 Found C 73.09, H 
6.91

3-(4-Nitrophenyl)-1-naphthyl-2,3-ditosyloxypropanone 
(V3D3)
Yield 64%, m.p. 109–111°C. IR (νmax/cm-1): 1684 cm-1 
(C=O stretch) ; 1H NMR (DMSO-d6): 2.32 (s, 3H, CH3); 2.35 
(s, 3H, -CH3); 4.29 (d, 1H, -C-H); 7.02 (d, 1H, -CH); 7.29 (d, 
2H, -C6H5); 7.12–7.19 (m, 4H, -C6H5); 7.48 (d, 2H, -C6H5); 
7.58–7.69 (m, 4H, -C6H5); 6.59–6.85 (m,7H, -C6H5); Anal. 
Calcd. for C40H45O4S2N ; C 71.93, H 6.79 Found C 71.93, H 
6.80
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3-(4-Methoxyphenyl)-1-naphthyl-2, 3-ditosyloxypropanone 
(V4D4)
Yield 59%, m.p. 196–198°C. IR (νmax/cm-1): 1692 cm-1 
(C=O stretch); 1H NMR (DMSO-d6): 2.41 (s, 3H, -CH3); 2.43 
(s, 3H, -CH3); 3.79 (s, 3H, -O-CH3); 5.29 (d, 1H, -C-H); 7.04 
(d, 1H, -C-H); 7.12–7.22 (m, 4H, -C6H5); 7.41–7.54 (m, 4H, 
-C6H5);7.59–7.68 (m, 4H, -C6H5) 6.62–6.87 (m,7H, -C6H5); 
Anal. Calcd. for C41H48O3S2; C 75.42, H 7.41 Found C 75.42, 
H 7.42

3-(4-Florophenyl)-1-naphthyl-2,3-ditosyloxypropanone 
(V5D5)
Yield 62%, m.p. 125–127°C. IR (νmax/cm-1): 1684 cm-1 
(C=O stretch); 1H NMR (DMSO-d6): 2.42 (s, 3H, -CH3); 2.48 
(s, 3H, -CH3); 5.31 (d, 1H, -CH); 7.01 (d, 1H, -CH); 7.31 (d, 
2H, -C6H5); 7.17–7.27 (m, 4H, -C6H5); 7.63 (d, 2H, -C6H5); 
7.67–7.78 (m, 4H, -C6H5); 6.70–6.89 (m,7H, -C6H5); Anal. 
Calcd. for C40H45O2S2F; C 74.96, H 7.08 Found C 74.97, H 7.08

3-(4-Methylphenyl)-1-naphthyl-2,3-ditosyloxypropanone 
(V6D6)
Yield 62%, m.p. 92-94°C. IR (νmax/cm-1): 1691 cm-1 (C=O 
stretch)
1H NMR (DMSO-d6): 2.32 (s, 3H, -CH3); 2.39 (s, 3H, -CH3); 
2.42 (s, 3H, -CH3); 5.30 (d, 1H, C-H); 6.99 (d, 1H, C-H); 
7.07–7.18 (m, 4H, -C6H5); 7.38–7.55 (m, 4H, -C6H5); 7.59–7.68 
(m, 4H, -C6H5); 6.59-6.89 (m,7H, -C6H5); Anal. Calcd. for 
C41H48O2S2; C 77.31, H 7.60 Found C 77.32, H 7.60

3-(4-Hydroxyphenyl)-1-naphthyl-2,3-ditosyloxypropanone 
(V7D7)
Yield 72%, m.p. 102–104°C. IR (νmax/cm-1): 1690 cm-1 (C=O 
stretch); 1H NMR (DMSO-d6): 2.41 (s, 3H, -CH3); 2.39 (s, 3H, 
-CH3); 5.29 (d, 1H, -C-H); 6.99 (d, 1H, C-H); 7.28 (d, 2H,-C-
H); 7.09–7.17 (m, 4H, -C6H5); 7.43 (d, 2H, -C6H5); 7.57–7.68 
(m, 4H, -C6H5); 6.59–6.89 (m,7H, -C6H5); Anal. Calcd. for 
C40H46O3S2; C 75.19, H 7.26 Found C 75.20, H 7.26

General process for the synthesis of compounds (V1D1PH1-
V7D7PH7)
A three-hour ref lux was performed on a chalcone 
ditosylate (0.566 g) and phenylhydrazine (0.162 g) mixture 
in ethanol. On top of ice-cold water, the mixture was added. 
The mixture that was obtained was then divided into 
three sections using dichloromethane (3×50 mL). A layer 
of anhydrous sodium sulphate was used to dry and filter 
the organic extract. Column chromatography on silica gel 
(100–200 mesh) was used to purify the crude product 
obtained from vacuum-evaporated dichloromethane to 
produce pure pyrazoles (V1D1PH1–V7D7PH7).

5-(2-methoxynaphthalen-6-yl)-1,4-diphenyl-1H-pyrazole 
(V1D1PH1)
Yield 59%, m.p. 124–126°C. IR (νmax/cm-1): Absence of 
peak in C=O region; 1H-NMR (DMSO-d6): δ 3.83 (s, 3H, 
OCH3), 7.15–7.24 (m, 4H, -C6H5); 8.54 (s, 1H, C3-pyrazole); 

7.13–7.23 (m, 10H, -C6H5); 6.70–6.88 (m, 7H, -C6H5); Anal. 
Calcd. for C26H20N2O; C 81.90, H 5.30 Found C 81.60, H 5.20

4-(4-chlorophenyl)-5-(2-methoxynaphthalen-6-yl)-1-
phenyl-1H-pyrazole (V2D2PH2)
Yield 67%, m.p. 109–110°C. IR (νmax/cm-1): Absence of 
peak in C=O region; 1H-NMR (DMSO-d6): δ 3.72 (s, 3H, 
OCH3), 7.02 (d, 2H, -C6H5); 7.22 (d, 2H, -C6H5); 7.29–7.25 
(m, 5H, -C6H5); 8.45 (s, 1H, C3- pyrazole); 6.68–6.88 (m,7H, 
-C6H5); Anal. Calcd. for C26H19ClN2O; C 76.20, H 4.6 Found 
C 76.30, H 4.58

5-(2-methoxynaphthalen-6-yl)-4-(4-nitrophenyl)-1-phenyl-
1H-pyrazole (V3D3PH3)
Yield 75%, m.p. 129–131°C. IR (νmax/cm-1): Absence of 
peak in C=O region; 1H-NMR (DMSO-d6): δ 3.71 (s, 3H, 
OCH3),7.09 (d, 2H, -C6H5); 7.11 (d, 2H, -C6H5); 7.11–7.15 
(m, 5H, -C6H5); 8.68 (s, 1H, C3- pyrazole); 6.8–6.91 (m,7H, 
-C6H5); Anal. Calcd. for C26H19N3O3; C74.10, H 4.54 Found 
C 74.20, H 4.30

5-(2-methoxynaphthalen-6-yl)-4-(4-methoxyphenyl)-1-
phenyl-1H-pyrazole (V4D4PH4)
Yield 87%, m.p. 147–149°C IR (νmax/cm-1): Absence of 
peak in C=O region; 1H-NMR (DMSO-d6): δ 3.69 (s, 3H, 
OCH3),6.90 (d, 2H, ArH); 7.16 (d, 2H, ArH); 7.22–7.30 (m, 5H, 
-C6H5); 8.66 (s, 1H, C3- pyrazole); 6.61–6.58 (m,7H, -C6H5); 
3.80 (s, 3H, OCH3); Anal. Calcd. for C27H22N2O2; C 79.78, H 
5.46 Found C 79.65, H 4.99

4-(4-fluorophenyl)-5-(2-methoxynaphthalen-6-yl)-1-
phenyl-1H-pyrazole (V5D5PH5)
Yield 67%, m.p. 105–107°C. IR (νmax/cm-1): Absence of 
peak in C=O region; 1H-NMR (DMSO-d6): δ 3.68 (s, 3H, 
OCH3) 7.01 (d, 2H, -C6H5); 7.20 (d, 2H, -C6H5); 7.18–7.26 
(m, 5H, -C6H5); 8.54 (s, 1H, C3- pyrazole); 6.57–6.88 (m,7H, 
-C6H5); Anal. Calcd. for C26H19FN2O; C 79.17, H 4.86 Found 
C 79.15, H 4.83

4,5-dihydro-5-(2-methoxynaphthalen-6-yl)-1-phenyl-4-p-
tolyl-1H-pyrazole (V6D6PH6)
Yield 42%, m.p. 177–179°C. IR (νmax/cm-1): Absence of 
peak in C=O region; 1H-NMR (DMSO-d6): δ 3.68 (s, 3H, 
OCH3) ; 7.15 (d, 2H, ArH); 7.16 (d, 2H, -C6H5 ); 7.47–7.55 
(m, 5H, -C6H5); 8.69 (s, 1H, C3- pyrazole); 6.69–6.87 (m,7H, 
-C6H5); 2.43 (s, 3H, CH3); Anal. Calcd. for C27H24N2O; C 
82.62, H 6.16 Found C 82.61, H .10

4-(4,5-dihydro-5-(2-methoxynaphthalen-6-yl)-1-phenyl-
1H-pyrazol-4-yl)phenol (V7D7PH7)
Yield 61%, m.p. 143-145°C. IR (νmax/cm-1): Absence of 
peak in C=O region; 1H-NMR (DMSO-d6): δ 3.78 (s, 3H, 
-OCH3) ;  7.06 (d, 2H, -C6H5); 7.23 (d, 2H, -C6H5); 7.49–7.55 
(m, 5H, -C6H5); 8.85 (s, 1H, C3- pyrazole ); 6.44–6.67 (m,7H, 
-C6H5); Anal. Calcd. for C26H22N2O2; C 79.14, H 5.61 Found 
C 79.12, H 5.59
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Results And Discussion

Chemistry 
Using the open capillary tube method and the Digital 
Melting Point Apparatus, the melting point of the named 
analogues was determined and found to be incorrect. 
The Perkin Elmer RX1 spectrophotometer was used to 
perform infrared spectroscopy. On a Brucker advanced 
300 or 400 MHz spectrometer, nuclear magnetic resonance 
(NMR) spectra were acquired in a CDCl3 solution using 
tetramethylsilane (TMS) as an internal standard. Thin 
layer chromatography (TLC) was used to monitor the 
reactions’ progress. Using a Buchi Rota Evaporator, the 
solvents were extracted, recovered, or distilled under 
reduced pressure before being dried over anhydrous 
sodium sulphate.
Using the Koser method, Chalcone 1 and HTIB were 
reacted to produce a variety of derivatives of α-β chalcone 
ditosylates 3 (Scheme 1).
Phenylhydrazine hydrochloride was used to treat 
these chalcone ditosylates, result ing in various 
1,4,5-trisubstituted pyrazoles (Scheme 2). 1,2-aryl 
migrations are the method through which ditosylates 
are converted to 1,4,5-trisubstituted pyrazoles. Only a 
monochrome product and an excellent yield in the range of 
65 to 72% were the results of the reaction. The compounds 
underwent vacuum drying and recrystallization from 
ethanol to achieve purification.

Antioxidant Activity
Using the 1,1-diphenyl-2-picrylhydrazyl technique, 
the compounds’ antioxidant activity was assessed.[44] 

To create a reserve solution with a concentration of 

100 μg/mL, the provided chemical was combined with 
95% methanol. Various solutions with concentrations of 
10, 20, 40, 60 and 100 μg/mL were made from this solution. 
Various quantities of ascorbic acid were generated in 
relation to the test substance, with ascorbic acid serving as 
the standard. After a 15 minutes incubation time at 37℃, 
2.5 mL solution of varying concentrations was added to the 
final reaction mixture. The combination was then allowed 
to react at ambient temperature. About 517 nm was used 
to compute absorbance. 
Using ascorbic acid as a benchmark, the synthetic 
compounds’ antioxidant properties were assessed based 
on their capacity to quench DPPH. Table 1 displays all of 
the findings. Every synthetic molecule exhibited lower 
potency compared to the reference. When compared to the 
standard, the compounds V5D5PH5 and V7D7PH7 showed 
modest antioxidant activity.

Animals and IAEC
The study involved the collection of adult Wistar rats 
(150–180 g) of both sexes. Under normal lighting and 
temperature settings, the animals had unrestricted access 
to food and drink. Adhering closely to the standards 
set forth by the Maharishi Markendashwar College of 
Pharmacy’s Institutional Animal Ethics Committee, M.M.U 
(Deemed to be University) Mullana, standard experimental 
protocols were used. Protocol was duly authorized by 
the Institutional Animal Ethics Committee (Reg number. 
1355/PO/Re/S/10/CPCSEA with Protocol Ref number. 
MMCP-IAEC-190), and all interventions and animal care 
procedures were carried out in compliance with ethical 
norms. Water displacement was used to assess the increase 
in foot volume with a Plethysmograph, and a sub-plantar 
injection of carrageenan caused rats’ left paw edema.

Anti-inflammatory Activity
The acute carrageenan-induced paw edema standard 
technique in rats was used to assess the anti-inflammatory 
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Product No. Ar Ar’

V1D1 C11H9O C6H5

V2D2 C11H9O 4-ClC6H4

V3D3 C11H9O 4-NO2C6H4

V4D4 C11H9O 4-MeOC6H4

V5D5 C11H9O 4-FC6H4

V6D6 C11H9O 4-MeC6H4

V7D7 C11H9O 4-OHC6H4

Scheme 1: Synthetic scheme of Compounds (V1D1-V7D7) 

Product No. Ar Ar’

V1D1PH1 C11H9O C6H5

V2D2PH2 C11H9O 4-ClC6H4

V3D3PH3 C11H9O 4-NO2C6H4

V4D4PH4 C11H9O 4-MeOC6H4

V5D5PH5 C11H9O 4-FC6H4

V6D6PH6 C11H9O 4-MeC6H4

V7D7PH7 C11H9O 4-OHC6H4

Scheme 2: Synthesis of 1,4,5-trisubstituted pyrazoles (V1D1PH1-
V7D7PH7)
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Table 1: Findings of the 1,4,5 trisubstituted pyrazole’s antioxidant properties

S. No. Product
Percent inhibition

IC50 value
Concentration (μg/mL)

10 20 40 60 100

1 V1D1PH1 3.48 7.89 14.88 19.34 23.78 209.61

2 V2D2PH2 1.27 8.97 13.55 18.98 22.39 216.50

3 V3D3PH3 2.76 3.09 12.80 19.65 22.09 212.57

4 V4D4PH4 24.8 32.98 38.63 43.66 52.76 108.42

5 V5D5PH5 27.7 39.32 45.77 53.98 65.34 55.30

6 V6D6PH6 9.73 13.12 23.57 32.09 37.98 128.25

7 V7D7PH7 21.65 32.73 45.89 52.92 61.23 63.06

8 Ascorbic acid 42.01 59.94 68.76 79.32 91.56 9.541

Table 2: Findings of the 1,4,5-trisubstituted pyrazole derivatives’ anti-inflammatory activity 

Compound
Paw volume (mm) and after time (hours)

%Inhibition
0 hour 1 hour 2 hours 3 hours 4 hours

V1D1PH1 0.90 ± 0.049 1.14 ± 0.080 1.19 ± 0.067 1.25 ± 0.046 1.27 ± 0.024 8.63

V2D2PH2 0.95 ± 0.095 1.17 ± 0.071 1.24 ± 0.051 1.28 ± 0.035 1.35 ± 0.078 2.87

V3D3PH3 0.99 ± 0.038 1.18 ± 0.077 1.26 ± 0.037 1.29 ± 0.015 1.36 ± 0.039 2.15

V4D4PH4 0.86 ± 0.045 0.97 ± 0.034 0.94 ± 0.031 0.83 ± 0.021 0.86 ± 0.045 38.12

V5D5PH5 0.92 ± 0.084 1.11 ± 0.065 1.21 ± 0.052 1.26 ± 0.039 1.33 ± 0.047 4.31

V6D6PH6 0.87 ± 0.022 1.04 ± 0.047 1.10 ± 0.050 1.20 ± 0.056 1.24 ± 0.030 10.79

V7D7PH7 0.90 ± 0.067 1.06 ± 0.036 1.14 ± 0.081 1.15 ± 0.062 1.14 ± 0.083 17.98

Control 0.98 ± 0.001 1.16 ± 0.013 1.26 ± 0.003 1.31 ± 0.076 1.39 ± 0.011 …

Diclofenac 0.88 ± 0.009 0.98 ± 0.007 0.93 ± 0.002 0.84 ± 0.023 0.83 ± 0.008 40.28

Readings expressed as mean ± SEM (standard error mean)
Readings calculated and compared to control using one-way ANOVA followed by Dunnet’s test

activity of seven representative substances in-vivo.[45] A 
comparison of the obtained results (Table 1) indicates 
that several newly produced compounds (V6D6PH6 and 
V7D7PH7) showed stronger anti-inflammatory activities 
(10.79 and 17.98% inhibition of edema), comparable 
to that of diclofenac (40.28% inhibition of edema). 
Moreover, compound V4D4PH4 demonstrated superior 
activity (38.12% inhibition of edema), suggesting that it 
is the most potent prepared anti-inflammatory drug. The 
carrageenan-induced paw edema technique was used to 
assess the compounds’ anti-inflammatory properties. The 
anti-inflammatory effect was assessed in adult male rats 
weighing approximately 250 g. There were nine groups 
of animals. Every group has six creatures in it. Rats with 
paw edema caused by carrageenan were used to evaluate 
the anti-inflammatory properties of test substances. 
The various doses of pretreatment were administered 
to the various groups of rats. Each rat’s left hind paw’s 
sub-plantar region was given 0.1 mL of a 1% carrageenan 
suspension after an hour, and the paw volume was 
measured at 0, 1, 2, 3, and 4 hours using a plethysmometer. 
The standard medication used was diclofenac sodium. 

Overnight, rats were fasted. The usual dosage of the 
medication was 20 mg/kg. The synthesized compounds 
were delivered orally at a dose of 150 mg/kg. Carrageenan 
was produced in a 1% saline suspension. To cause edema, 
0.05 mL of this suspension was injected into the left hind 
paw’s planter tissue. Equal volumes of saline were injected 
into the animals as a control. Rats’ paw volumes were 
measured using a Plethysmograph. Results are shown 
in Table 2. The compound V4D4PH4 shows outstanding 
activity against inflammation.

Conclusion
Compounds (V1D1-V7D7) were synthesized by treating 
of a variety of chalcones with hydroxyl (tosyloxy) 
iodobenzene (HTIB) using dichloromethane as a solvent. 
The melting point of the compounds was determined and 
the %yield of the compounds was in the range 59 to 73%. 
The purity and characterization of structures of all newly 
prepared titled analogs have been elucidated by employing 
elemental analysis, 1H-NMR and IR data.
The IR spectrum of each ditosylate showed band in the 
region 1675 to 1682 cm-1, indicating carbonyl stretching. 
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The 1H-NMR spectra showed two doublets, one at δ 5.30to 
5.36 and other at δ 6.90 to 7.01, each peak integrating to 
one proton having a coupling constant of 8.1 Hz. These 
peaks can be ascribed to two-methine protons of α,β-
chalcone ditosylate. Besides these doublets, the spectra 
also showed two singlets at δ 2.42 and 2.44 that may be 
assigned to two p-methyl groups of tosylate substituent.
Chalcone ditosylates were reacted with phenylhydrazine 
hydrochloride to create a series of 1,4,5-trisubstituted 
pyrazole derivatives (V1D1PH1-V7D7PH7). An acceptable 
yield in the range of 60 to 75% and a colorless product 
were the results of the reaction. Recrystallization from 
ethanol allowed the chemicals to be refined. IR, 1NMR, 
and elemental analysis were used to characterize the 
synthesized chemicals. The IR spectrum of the product 
did not show any peak in the carbonyl region. The 1H-NMR 
spectrum of the product showed a singlet corresponding 
to one proton at δ 7.8 that can be attributed to the C3-H of 
the pyrazole ring in addition to the multiplets for protons 
of phenyl moieties, on the basis of 1H-NMR data the 
possibility of isomeric 1,3,5-trisubstituted pyrazole, which 
was expected to show the singlet of C4-pyrazolyl proton at 
upfield δ 6.9 was excluded. The compounds V5D5PH5 and 
V7D7PH7 displayed considerable antioxidant properties 
compared to the standard substance. In-vivo tests for 
anti-inflammatory effects were conducted on newly 
synthesized pyrazoles, highlighting the favorable activity 
of V4D4PH4 and V7D7PH7 when contrasted with the 
standard compound.
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