

Contents lists available at UGC-CARE

International Journal of Pharmaceutical Sciences and Drug Research

[ISSN: 0975-248X; CODEN (USA): IJPSPP]

journal home page: https://ijpsdronline.com/index.php/journal

Review Article

Printing Health: Revolutionizing Pharmaceuticals through 3D Innovation

Pinki Gupta^{1*}, Komal Bhati¹, Deepak Kajla², Kajal Baisoya¹, Anamika Vats³, Pooja Sinoriya¹

¹Metro College of Health Sciences and Research, Knowledge Park III, Greater Noida, Gautam Budh Nagar, Uttar Pradesh, India.

ARTICLE INFO

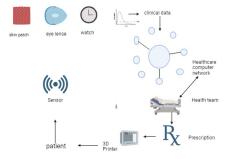
Article history:

Received: 25 July, 2024 Revised: 25 October, 2024 Accepted: 04 November, 2024 Published: 30 November, 2024

Keywords:

3D Printing, Polypills, Additive manufacturing, Drug-delivery, Microneedle.

DOI:


10.25004/IJPSDR.2024.160614

ABSTRACT

The influence of additive manufacturing has grown significantly in the last few years because of the rising awareness and need for customized pharmaceuticals, medical instruments, and equipment. With the innovation in three-dimensional printing (3D-Printing) technology providing a broad scope to explore the infinite dimensions in the pharmaceuticals field, 3D items of diverse geometries may be created. Cost-effectiveness and on-demand printing are two significant advantages of printed drugs over traditional drug production, as is the ability to create very complicated and sophisticated dose forms based on individual needs. This article discusses a few 3D printing processes useful for producing pharmaceuticals as well as how they may be applied to creating effective pharmacological and therapeutical dosage forms, demonstrating the viability of this printing technology for routine industrial production processes. The two main pharmaceutical application areas were covered in this article. First, drug delivery systems, including different medications like controlled release solid dosage form, more than one drug in the form of polypills, gastro-floating mechanism of the drug, in the form of oro-dispersible drug, and printed microneedles, are the subject that has received the most research. Second, 3D-Printing contributed to the creation of pharmaceutical tools, including drug-eluting devices and tools to help chemists dispense medication.

Graphical Abstract

Over the past 20 years, the additive manufacturing process has made remarkable progress. With the aid of 3D printing technology, we can easily print patient-specific medications in various geometries and enhance the medication's potency and dosage form.

Integrating technology with 3D printing

Address: Metro College of Health Sciences and Research, Knowledge Park III, Greater Noida, Gautam Budh Nagar, Uttar Pradesh, India.

Email ⊠: pinki.gupta3087@gmail.com

Tel.: 91-7042872215

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

© The Author(s) 2024. **Open Access**. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

²IIMT College of Pharmacy, Plot No. 19-20A, Knowledge Park-III, Greater Noida, Uttar Pradesh, India.

³NKBR College of Pharmacy and Research Centre, Meerut-Hapur Road, Phaphunda, Uttar Pradesh, India.

^{*}Corresponding Author: Ms. Pinki Gupta

Introduction

Three-dimensional printed drugs by additive manufacturing are creating an item by deposition method of material using a specific print head, nozzle, or different types of other printer technology, as defined by the International Standard Organization (ISO). Printing technology enables the creation of 3D objects with diverse basic and intricate geometries through a sequential layering procedure. [1] 3D printing technology encompasses a range of methods, such as fused deposition modeling (FDM), hot melt extrusion (HME), solid-state extrusion (SSE), stereolithography equipment (SLA), digital light processing (DLP), selective laser sintering (SLS), vat polymerization, and binder jetting. [2] By melting or depositing materials in consecutive layers through the 3D-printing (3D-Printing) technique, 3-dimensional things from digital design models. This methodology processes the layer-to-layer construction of object structures with a variety of geometrical properties. Other names for the technique include rapid prototyping, solid free-form fabrication, porous fabrication of solid dosage form, and additive manufacturing process.[3] 3D-printing technology has been more significant for the pharmaceutical field as well as helpful in engineering and many non-medical industrial sectors, including consumer products, automotive, and aerospace industries, since the late 1980s. [4] However, the development of adaptable biocompatible materials and recent fast advancements in 3D-printing processes have made it viable for 3D-printing technology to be used in the pharmaceutical business.

The pharmaceutical industry has moved one step closer to the age of personalized treatment through the adoption of additive manufacturing (AM).^[5] Even when administered the same dose, in different patients this may be shown as inter-individual variations in medication reactions. [6] Due to these doses being beyond the therapeutic window, personalized medicine may reduce the likelihood of adverse effects or subtherapeutic benefits and promote patient satisfaction and adherence. [7,8] AM enables the production of intricate shapes for solid dosage forms and medical devices. [9] Although it has a comparatively slower manufacturing rate than traditional pharmaceutical mass production, this technique has some benefits over the traditional method, including potent drug individualization and comparatively inexpensive production costs for small batches.[10] Microneedles (MNs), which are drug delivery devices on a microscale, can be manufactured with AM technologies like DLP and SLA because of their ability to make extremely precise goods.[11] Furthermore, despite the fact that additive AM is a new technology in the market that facilitates quick prototyping, there are currently no set regulations governing it. However, it is very probable that challenges related to product quality, ownership, privacy protection, and intellectual property will emerge. [12] The economic benefits of 3D-printing

pharmaceuticals over conventional manufacturing techniques focus on reducing production quantities, cutting waste, eliminating the use of complicated and expensive distribution networks between producers. treatment facilities, and pharmacy networks, and reducing paperwork.[13] 3D printing has shown to be beneficial not just in the pharmaceutical, medical-surgical, and healthcare industries but also in agriculture, education, robotics, food processing, electronics, construction, and jewelry creation.[13] Our current emphasis is on, the drug delivery system is the most extensively studied subject, encompassing microneedles, controlled release, gastrofloating, polypills, and orodispersibles. Furthermore, the utilization of 3D printing has played a significant role in the development of pharmaceutical equipment, including drug-eluting devices and pharmacy dispensing aids. The study conducted searches in the Medical Literature Analysis and Retrieval System Online (MEDLINE) and ExcerptaMedica Database (EMBASE) to find relevant research papers. For an article to be considered for inclusion, it must be published in the English language after 2018. Since several review articles describe the pharmacological usage of AM before 2018, only results from that year onwards were considered. [14] 3D-printing techniques need to be continuously refined and innovated to address the current challenges and eventually offer patient-specific healthcare with customized medications that can be ordered on demand.

History of 3D Printing

In the 1970s, Pierre A. L. Ciraud developed a method that included adding powdered material and then hardening each layer using a powerful laser concept of this technology is based on 3-dimensional printing. The commercialization of selective laser sintering (SLS) was the first successful use of Chunk Hull's invented technology. Ross Housholder obtained the initial patent and provided a description for the concept of combining sand with other substances in a patent titled "A modeling process forming a threedimensional article in layers." Meanwhile, Carl Deckard pioneered a technique for hardening powdered beds using a laser beam. The photopolymerization of liquid resin produced by UV light is the mainstay of this strategy. Scott Crump in the 1980s, submitted a patent application for fused deposition modeling (FDM), a technique that produces things by utilizing thermoplastic material. [15]

Demand for 3D Printing in the Current Scenario

In the present scenario healthcare sector is mainly based on a "one size fits all" paradigm. In this method, the same dose of the same drug applies to most of the patients and frequencies also. [17] Now it came to the focus that "one size fits all" is not appropriate for a wide range of therapies for every patient. The same drug at the same dose does not show the same responses in different

Table 1: The following lists a few 3D printing accomplishments in the biomedical and pharmaceutical fields^[16]

	the biomedical and pharmaceutical helas
Year	Work on 3D-printing
1980	The first patent filed on rapid prototyping technology by Dr. Hideo Kodama
1984	First Invented stereolithography apparatus by Charles Hull
1986	First producing apparatus using SLA technology by Carl Deckard
1989	Carl Deckard Granted a patent for SLA technology
	Scott Crump Filed a patent for FDM technology
1992	The first SLA technique introduced for 3D printing
1993	Emanuel Sachs take patent on 3D-printing technique
1996	Use biochemical ink for tissue generation
2000	Introduced SLM technique
2002	Fabricated functional kidney
2004	Dr. Bowyer Imaginate on RepRap concept for 3D-printing
2005	Z Corp First introduced the color 3D-Printing
2007	Selective layer customized for on-demand industrial part
2009	Release data on bioprinting blood vessels by Oranovo Inc.
2010	First in vivo introduced to use for bio-laser printing
2011	The first time 3D-Printing technology was used for silver and gold
	The first time 3D-printed based cars and robotics-based aircraft were introduced
2012	Artificial liver printed by
	First implant 3D printed prosthetics jaw
2013	3D-Printing metal gun produced by a solid concept
2014	integrated tissue creation using a multi-arm bioprinter.
2015	The first bio-printed kidney was Announced and released data by Organovo
	Spritam is first FDA approved 3D printed drug

individuals. Sometimes, these responses are modest, with less therapeutic response and unsatisfactory or less pharmacological effects, or they are exaggerated and linked to adverse drug reaction effects (ADRs). Both situations create complications for patient compliance. Now, we focus on the initiation of customized and personalized drug delivery of medicines where drugs are adjusted or tailored according to the requirement of patients or tailored particularly according to individual patients who have similar types of genetic, pathological, or physiological characteristics. so for this approach, one size does not fit all, provides the required medicine with correct dose calculation, according to the exact condition of the patient, at a suitable time. Customized and personalized medicine aims to provide more precision

medicines. It is safer for patients and most effective and improves patient compliance, with cost-effective. [19]

Need for Personalized Medicines

- Disease symptoms may be same but the illness of patients may be different.
- The effectiveness of tailor therapy provides the best response.
- It improves medical healthcare approaches.
- Reduce types of adverse and allergic reactions.
- The drug's safety and effectiveness can be enhanced
- Personalizes medication ability to develop medicine by using advanced human genomics sequencing.
- It can reduce the steps of treatment and cost.
- Various types of 3-dimensional drug printing technologies help develop patient-centered (personalized) medicines. It also provides to comfortability for patients to adjust the dosage, frequency of dose, drug dissolution profile, and the physical description of a drug (e.g. size, shape, organoleptic property) for different types of drug delivery systems according to the requirements of the particular types of patients (Table 1).^[20]
- 3D-printed chewable pharmaceuticals provide improved accuracy, precision, and adaptability in terms of dosage and organoleptic qualities such as color and flavor. [21] Various forms this technology can be created 'Polypills' means that it consist of different types of drugs or active pharmaceutical ingredients (APIs) with specified and distinct release pharmacokinetics for each API. This allows for the potential of physically separating the drugs in the event of incompatibility between two or more drugs in a single dose [22] make the possibility of developing various types of flavors of tablets, which could improve patient compliance. [23]
- Researchers are developing the technology, i.e., a combination of printers with software, use of suitable excipients with APIs to get the dose accuracy, release kinetics profile of APIs, stability of drug stability, safety, and efficacy for human beings.^[24] While such kind of technical developments are important for drug safety, efficacy, and the use of technology, it is also important to understand and focus on social aspects and their overall impact
- Social factors play a crucial role in integrating new technology with current technologies in the pharmaceutical business, enabling its practical deployment in the real world. Nevertheless, it is crucial to consider the influence of various legal and regulatory factors, the ethical considerations surrounding its use, the organizational requirements, and make importance of social aspects when analyzing the possible future application of 3D-printing for personalized medicines. This analysis should also include determining the suitable locations for

Fig. 1: Conventional manufacturing

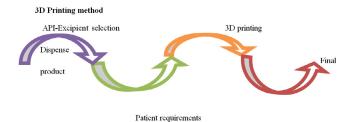
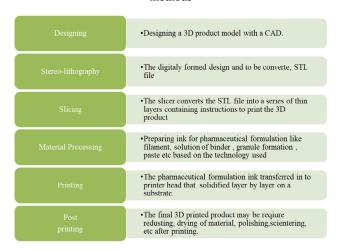



Fig. 2: Key difference between conventional and 3D printing

Fig. 3: General procedure for additive manufacturing printing and evaluating the associated regulatory

Difference between Conventional and 3D-Printing Methods

Conventional manufacturing requires the optimization of several components for batch production or bulk production (Shown in Fig. 1),^[22-25] but the 3D printing process does not need optimization for formulas or components (Shown in Fig. 2).^[25,26] The conventional manufacturing process is time-consuming, requires more resources, and is effort-intensive, whereas 3D-printing is extremely efficient and very cost-effective regarding time, use of resources, and efforts. Furthermore, 3D technologies, are based on customized and personalized drug delivery systems that allow the fast design of drug profiles for specific patients. General important key points of additive manufacturing shown in Fig. 3.^[26]

Types of 3D Printing Techniques

implications.[25]

3D printing processes may be classified based on their energy sources, material sources, and mechanical features of the printers. The creation of medical equipment and

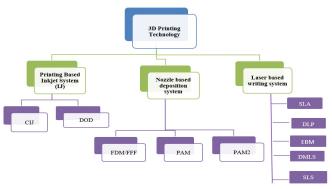


Fig. 4: various types of 3D-printing technologies

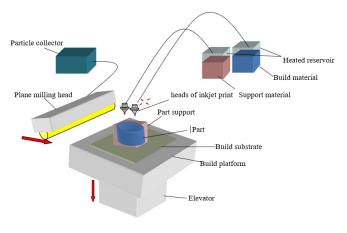


Fig. 5: Inkjet printing

pharmaceutical medications commonly involves three types of 3D printing technologies, as mentioned in Fig. 4 and Table 2 and $3^{[26]}$ and some selected example shown in Table 4.

Inkjet System for 3D-printing (IJ)

Inkjet printing

The 3D printing process is injected based in which dropped ink is jetted out with the help of a nozzle and dispersed on top of a powder surface in the form of one by one to cobble together and create 3D objects. (Shown in Fig. 5A). [21-26] Dose adjustments are achieved by modifying the number of layers printed in the designated region, while the medicine and excipients are formulated in a certain proportion that enables them to be printed as microdots onto an ingestible surface.

One notable benefit is accurately regulating the dosage mix and timing of medication delivery. Inkjet printing necessitates the use of starting materials with certain characteristics: -

- Particle size less than 1-μm to avoid clogging the printer head
- Viscosity less than 20 cP
- surface tension between 30 and 70 nm/m for efficient flow.

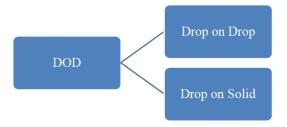


Fig. 5: Types of DOD

The inkjet system is divided into two subtypes of technology

Continuous inkjet printing (CIJ)

This printing method involves the continuous emission of inkjet through a specified number of apertures with a diameter (50–80 μ m). This method employs a pump that operates at high pressure.

Drop on- demand printing (DOD)

This technology is based on producing droplets of size 10 to 50 μm with volume 1 to 7 pl. $^{[26]}$

Drop-on-demand printing systems utilize two distinct types of printer heads.

• Thermal head/bubble jet printing

In this process, when heated ink creates bubbles and then ejects ink on the object. Thermal DOD This method is restricted to volatile liquids.^[3] The main disadvantage of the thermal method sometimes temperature reaches up to 300°C, that's way possibly causes the degradation of the drug.

• Electromagnetic head/piezoelectric crystal

In this technique, a piezoelectric crystal undergoes fast deformation, resulting in a change in its volume and generating a powerful sonic pulse that is sufficient to expel the ink.^[27] The piezoelectric drop-on-demand approach utilizes a different array of liquids. The piezoelectric drop-on-demand method is commonly used for more biocompatible and less volatile liquids at room temperature. For use of the piezoelectric method is more suitable than the thermal method in pharmaceutical applications.

Drop-on-demand printing (DOD)

This method is divided into two sub-types (Fig. 5B). [27]

• Drop-on-drop deposition

This technique is an Inkjet printing approach that is appropriate for producing minuscule drug delivery devices with diverse geometric configurations of medicines. In this approach, the droplet size has a diameter of $100~\mu\text{m}$, and the thickness of a layer is less compared to the droplet size. The surface of wetting and solvent evaporation mostly causes this. $^{[28]}$ In the drop-on-drop deposition method, The formulation must be appropriate for jetting

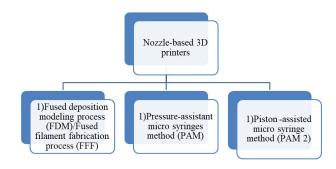
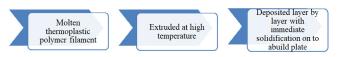


Fig. 6: Types of nozzle-based system

and quick material solidification during usage. ^[23,28] In these techniques, physical properties like viscosity, surface tension, and volatility should be suitable and optimized, reported between 8 to 14 cps^[29] to prevent nozzle clogging, coffee ring effect, and fluid leakage problems. ^[23,29] The drug loading capacity and stability of the product are influenced by both its physicochemical and therapeutic qualities. ^[23,30]

Method of drop-on solid/drop-on powder bed deposition^[30]


A wide range of drugs are used in drop-on solid deposition method. In this method thickness of the powder bed is generally 200 μm and particle size generally ranges from 50 to 100 μm . $^{[30]}$ The spacing and thickness of the layers should be tuned to enhance adhesion. The topological properties and powder bed reactivity that contain binder ink are crucial, and represent significant elements that might impact the overall quality of the end product. $^{[30]}$

Nozzle-based deposition system

The printing-based IJ method is the most general printing method but some drawbacks in this method, like insufficient hardness, rough surface, and low drug loading. The addition of the drug through a binder solution and this solution dropped on a powder bed, but in a nozzle-based system, the addition of the drug in the solid powder earlier to the binder directly deposited mixed material through a nozzle and created a 3D object. Nozzle-based 3D printers are divided into two subtypes, shown in (Fig. 6). [31-32]

• FDM/FFF

This method is used in various fields, including pharmaceutical, food, and bioengineering.^[33] This approach involves utilizing thermoplastic material as a polymer and combining it with medicinal medications through an incubation process using certain solvents or

Fig. 7: Process of FDM technique

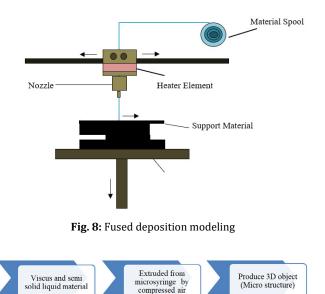


Fig. 9: Process of PAM technique

by melting the polymer and pharmaceuticals together at a precise temperature (Fig. 7). ^[34] The resulting mixture is then extruded in the filament process of FDM. ^[34]

The method of fused deposition modeling (FDM) is an affordable technology for producing intricate shapes and has excellent mechanical durability (Fig. 8). [34] As well as it allows adjustment of the drug releases. Some limitations of the FDM method for pharmaceutical applications such that it operates at high operating temperatures, the chances of degradation of drugs and very few options are provided regarding biodegradable thermoplastic polymers.

• Pressure assistant micro-syringe (PAM)

It is another method of the nozzle-based deposition system process of FDM (Fig. 9). $[^{34}]$

In this technique (PAM) syringe can be moved like an Ink Jet printer head. Pam technology produces 5 to 10 μm or less microstructure. PAM technology can help develop various types of complex types of drug delivery systems, and it can be easily operated at room temperature with a continuous flow, but limitations in this process like drug stability and safety issues for solvent during manufacturing and drying steps at room temperature. $^{[30,36]}$

• Piston-assisted micro syringe (PAM 2)

In the PAM 2 method, a stepper motor is used rather than compressed air to release the printing material. $^{[36]}$ Process of PAM 2 shown in Fig. 10. $^{[36]}$

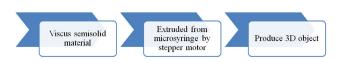


Fig. 10: Process of PAM-2 technique

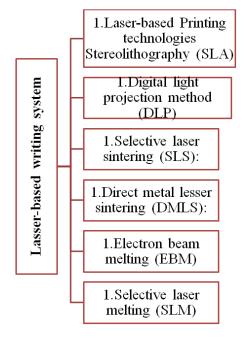


Fig. 11: Lasser-based 3D system

Process of PAM 2

Lasser-based writing system

The technique of direct laser writing is employed, utilizing two-photon polymerization of photopolymers. This method occurs when photosensitive materials are cured spatially using near-infrared (NIR) ultrashort laser pulses, reaching a certain threshold intensity. Laser-based writing systems are primarily categorized into six subcategories. (Fig. 11). [36]

Laser-based printing technologies stereolithography (SLA)

The fabrication of three-dimensional objects using the SLA technique relies on the precise solidification of liquid resin using photo-polymerization. [37] SLA process allows high resolution that is capable of the formation of complex structures and minimizing the heating during the printing procedure and this method applies to highly thermolabile drugs. [26,37] Process of SLA highlighted in Fig. 12. [37] During operating SLA technology (Fig. 13) [38] selection of photopolymer is essential because liquids quickly solidify the liquid with UV light and for the safety of human use should be quality and safety approved as per regulatory guidelines. The FDA prohibits for SLA technique for pharmaceutical purposes. Nevertheless, it is widely employed in the realm of tissue engineering. [38]

Fig. 12: Process of PAM-2 technique

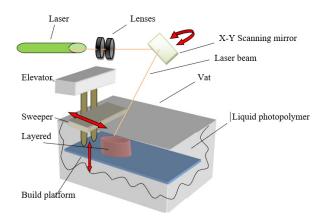


Fig. 13: In the SLA process vessel filled with liquid photopolymer with a movable platform

Fig. 14: Process of SLS technique

Digital light projection technique (DLP)

his approach and the SLA approach are comparable. Using a laser beam and liquid photopolymer resins, this technique solidifies the liquid and produces a three-dimensional object. The primary difference between DLP and SLA is that DLP allows for the simultaneous curing of a single layer by using a digital mirror device. By controlling millions of mirrors simultaneously, a complete layer may be cured all at once, significantly cutting down on the time needed to manufacture layers. The DLP technique is faster than the SLA technique and makes it easy to adjust the layers' thickness.

Selective laser sintering (SLS)

This technology utilizes a source of high-energy laser to sinter a powder photopolymer. This technique involves selectively melting the powder of the photopolymer using a laser. Afterward, the platform that holds the polymer is lowered to be refilled with powder once more. Process of SLS technique shown in Fig. 14.^[39]

The primary benefits of the SLS process are its ability to offer exceptional strength, resistance to chemicals, and rapid production speed. SLS technology diagrammatically shown in Fig. 15.^[39]

Method of Direct Metal Lesser Sintering (DMLS)

This method is the same as the SLS process, but the DMLS technique is applied for metal alloy and the selective laser sintering (SLS) process is utilized for a diverse array of materials, encompassing various types of polymers, metals, and ceramics.^[30,39,40]

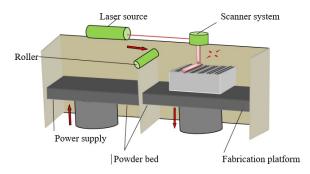


Fig. 15: Selective laser sintering

Fig. 16: Process of PAM-2 technique

Fig. 17: Process of PAM-2 technique

SLM and EBM technique

The EBM and SLM techniques involve the full melting of metal powder and its subsequent deposition in a layer-by-layer fashion. SLM and EBM offer more consistent thermal field distribution in comparison to the SLS process, albeit they have lesser surface quality and precision. [40] SLM and EBM methods are mostly used in drug-loading implants. [41]

Method of Electron Beam Melting (EBM)

The first step in the EBM 3D printing process is to create or obtain a 3D model by using CAD software, scanning, or download. In this process utilizing metal powder, the 3D printer deposits it in thin, heated layers that are fused by an electron beam (Fig. 16).^[40] This process is repeated until the part is finished. This processing takes place in a vacuum to minimize oxidation and leftover powder can be recycled.

Method of Selective Laser Melting (SLM)

Selective laser melting (SLM) technology, metallic particles are melted and fused together layer by layer using a powerful laser (Fig. 17). [40] This method creates products in a layered pattern, making it a form of additive manufacturing.

Drug loading mechanism

In the current scenario, many 3D printing technologies are available, but most things in pharmaceutical applications are loading mechanisms. Many drug-loading mechanisms have been implemented to achieve effective therapeutic doses.

technologies
$\overline{}$
3
$^{\circ}$
a)
~
.=
Ħ
2
(a)
Š
$\underline{}$
Ξ
$\overline{}$
\sim
fsome
7
0 /
>
-
ಡ
п
=
8
=
7
•
4:
~
a)
_
9
ē
<u> </u>

References	[42-44]	[36] [36]	[46]	[40]
Disadvantages	a) Needs postprocessing (like Drying, powder removal b) Show low mechanical properties c) Need appropriate suitable viscosity of ink	d) More powder wastage a) In support requires leave marks removing sanding. b) Using thermoplastic material, limited testing agents available c) Because of using a high temperature of a process starting material chances of deteriorating	e) In this process advanced filament a) Required post printing curing b) High cost of equipment c) More time-consuming process	a) It needs a post-printing process as a finishing procedure b) Limited speed for sintering c) Chances of degradation of starting material due to use of high energy input
Advantages	cost low with a faster rate of production cycle minimum processing steps possibility of on-demand individualized dosing possibility of precise dosing generation	a) Economical 3D-printing that way acceptable for various applications b) Cheaper in cost because use of plastic material c) Physical parameter friability and uniformity of drug is high	a) The object's size is significantly smaller, with layers that are deci-micron and submicron in size. b) This is high accuracy and resolution 3D-printing process	a) Posses' high porosity and internal microstructure b) Easy to maintain and reproducible
Types of mechanism of layering by 3D-printing	Selectively binding agent (liquid) deposited on powder materials	built material is selectively deposited through a nozzle or an orifice, material is released	Selectively light-activated polymerization in Liquid photopolymer through vat	Thermal energy selectively fuses a powder bed's region.
Specific category	Binder jetting Material jetting	extrusion by melting Material	Vat polymerization	Fusion of Powder bed
Types of 3D printing technologies	Powder bed (inkjet printing) Poly-jet or thermo-jet (inkjet	printing) Method of fused deposition modeling (FDM) Method of pressure assistant micro-syringes (PAM) Piston assistant micro-syringe	Laser writing by stereolithography method (SLA) Method of laser digital light projection (DLP) Laser-based method of continuous layer interface production (CLIP)	Method of SLS (Selective laser sintering) Method of DLSM (Direct metal laser sintering) Method of SLM (Selective metal sintering) Method of EBM (Electron beam melting)
3D-printing	Based on printing system (Inkjet)	Based on the deposition system through a nozzle	Based on the Laser writing system	

Generally loading mechanism is divided into two parts:

- Adding pharmaceutical ingredients to the printing matrix either before or after the printing procedure
- Sometimes firstly without drug prepared implant, then drug loaded into implant by HME process:^[41,47]

Procedure for 3D printing, the filament in the FDM can be filled with both the medication and the excipient. In the HME process, medications are either coated onto polymer pellets or combined with polymer beforehand. $^{ ilde{[}48, ilde{5}3,54,59 ilde{]}.}$ The drug dispersed in filament should be homogeneously and uniformly for the controlled form of drug loading into the implant because, during the printing process, no mixing effect occurs. If filaments have a less homogeneous drug distribution produced. [60] Where some part of the pure polymer is first melted by using an extruder then the remaining part of the polymer and calculated amount as per formulation is added gradually in the melted part. The homogeneity of medication mixing mostly relies on the type of extruder used, which can be either a single or twin-screw extruder. [45] The above drug loading processes indicate quality of filament is important for suitable feeding material and, thus for printed implants. Sometimes blending process of starting material also complies with the homogeneous mixing of drugs by another extrusion method of 3D-printing whether heat is supplied or not. [51,61,62]

Drug incorporation by immersing method: Drugs are introduced inside the filament by submerging the filament without the drug into a highly concentrated drug solution. The selection of solvent is important for dissolving enough medication and a choice of polymer material that should not be dissolved in the solvent because it helps to maintain the filament structure. In the diffusion-based technique, achievable drug loading is limited due to the characteristics of polymer, solvent, and drugs.

For example, by impression method PVP, polymer filament loaded 5 ± 1% of ciprofloxacin drug amount in ethanolic solution, but aqueous solution of same drug 3 ± 1% loaded in PP polymer filament. [63] The main advantage of the immersion method, drugs do not come directly to high temperatures like the HME process. However, in the future, this method will not be very useful for the development of pharmaceuticals because using concentrated drug solutions is more costly as well as, the effect of heat exposure also, there are some more limitations on attainable drug loading by this technology. When using DLP process in which drugs are incorporated into the printed matrix in the form of suspended or dissolved in liquid photopolymer furthermore should be examined the impact of crosslinking behavior. [64,65] In the 3D inkjet process Drugs are added into the implant through a powder bed or binder solution of the printing process. $[66-\overline{69}]$

By this process solubility and stability of the drug must be important within the appropriate concentration of binder solution, which typically contains acetone methanol or ethanol. $^{[66-70]}$

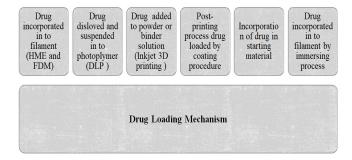


Fig. 18: Drug loading mechanism

Sometimes one or more drugs in to implanted by using multiple cartridges of printer that are independent of binder solution. [71,72] The aforementioned drug loading mechanisms exemplify the advancement of the printing process in comparison to drug inclusion by the manual approach employing the pipetting process, which was already employed in the first research.[73] post-printing procedure drug can be loaded in a drug-free 3D-printed implant by a coating process. [74,75] Sometimes, the solution of the drug may be added drop by drop to the object for the 3D-printing, [76,77] or in the drug solution whole implant can be immersed, often under this creating vacuum, to absorb the drug. [65,74-83] Post-printing process is more time-consuming and needs of the appropriate concentration of drug in the innermost part of the implant. Another, exceptional post-print drug-loading mechanism involves incubating the implant with sublimed iodine. [84] Mainly, drugs loaded with supercritical carbon dioxide or powder drugs are filled manually or sometimes drugs loaded in alginate gel that filled into hollow or reservoir structure of printed material. Some potent and sensitive drug materials were excluded before or during the printing process into printed implant matrix because of their degradation of drug properties. Like, heat-sensitive thermolabile drug material is not suitable for HME & FDM 3D-Printing processes because the polymers need to melt at high temperatures. Drug incorporation of starting materials, achieving homogeneous drug distribution but drug loading by immersion process is based on parameters like temperature and time. Accomplishing a long-term drug release profile depends on the distance of diffusion of drugs from the center of a matrix to the boundary of the neighboring tissues or body fluid, so it is vital for the long-term release of active ingredients depends on the fill quantity of the active ingredients in the entire matrix of implant because it is not easy to achieve by drug loading in post-printing process.

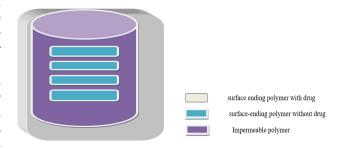
Based on the above points, we can use different drug loading mechanisms (Fig. 18)^[41-83] as per the requirement of formulation but have some limitations due to different drug properties, use of types of printing ink material, as well as required properties, including dissolution profile of implants for the final product.

Application of Additive Manufacturing for Pharmaceutical Dosage Form

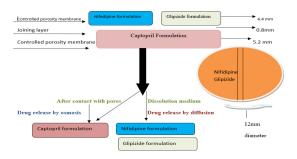
Different types of printing technologies are available at the present scenario, but 3 kinds of 3D printers like inkjet 3D printer (IJ), types of nozzle deposition, and types of laser-based 3D-printing, mainly accessible for manufacturing of pharmaceutical dosage basically in this review focuses on oral solid dosage and pharmaceutical devices that are under process and more fit for a wide range of application.

Solid oral dosage forms

The oral dosage form is one of the popular dosage forms in pharmaceutical drug delivery systems. Typical illustrations of the most used oral solid dosage forms include compressed as tablets and capsule forms of medications. The feasibility of 3D printing should be thoroughly designed for pharmaceutical manufacturing, particularly regarding tablets. 3D printing techniques for tablets can be divided into two categories: tablets with a single API and tablets with numerous APIs. [83,84]


Controlled release

A new technique for producing pharmaceutical tablets that can withstand regulatory testing and match the release of conventional commercial tablets was 3D printing. For a medicine to be absorbed and have a therapeutic effect, it must first be released from its dosage form. Mostly, oral dosage formulations are manufactured for immediate release (IR), which is necessary for the drug to be absorbed and show more therapeutic effects. Contrarily, prolonged or sustained release allows for the progressive release of medication, limiting variations in drug levels in systemic circulation caused by frequently ingesting a variety of IR dosage forms. [85] Traditional sustained-release tablets feature a non-constant drug release due to their total surface area decreasing as they undergo gastrointestinal tract absorption. This problem can be solved by AM by fabricating the tablets with different complex geometries, which enable both individualized release profiles and continuous sustained- release dissolution profiles.[85] A spherical shell was printed with an unfilled internal tetrahedron hollow using polyvinyl alcohol (PVP), then filled with a mixture of drug and PVA. Water caused the tablet to erode the four corners outward, revealing more and more of the tetrahedral-shaped core. Over time, this increased the drug solubility. Patients with hypertension, for example, may find the rapid drug release beneficial as they take this kind of pill at night and have the highest possible drug concentration in their blood by morning. Another illustration occurred when Kadry et al. fabricated tablets in different infill patterns by using an FDM printer.^[86] By using the extrusion method, create the drug-impregnated filament of drug diltiazem and hydroxy propyl methyl cellulose powder, and as a result, show tablets quickly dissolved due to a hexagonal infill pattern. Yang et al. also reported tablet patterns affected


the drug release rate. ^[87] A mixture of Ibuprofen and ethyl cellulose is use in filaments to develop the tablets with an FDM printer. Furthermore, it is known drug release rate depends on the surface area. Based on this, different release profiles of tablets can be designed by Khaled *et al.* for manufacturing tablets in various sizes and shapes by using an extrusion-based 3D technique. ^[88] The medication was released more quickly from the tablets with greater surface surfaces. To improve medication release, the idea of expanding the surface area has been applied. Isreb *et al.* suggested a unique radiator-like construction with a surface area-to-mass ratio that was 7 to 8 times greater than that of conventional tablets. ^[89]

Polypills

A single tablet known as a polypill can have numerous APIs loaded into it to integrate complex treatments into one regimen. Recently, many polypills have been prepared with regulated release characteristics using 3D-printing technologies. [89] A polypill with six active ingredients was developed by Wald and Law in 2003 as a preventative measure for lowering cardiovascular illnesses by more than 80%. The fact that it failed to take into account the various dosage or combination requirements of various persons, or how such needs can change over time, as well as worries regarding chemical incompatibility between components, led to harsh criticism at the time. [90] For the treatment of diabetes and hypertension, polypills with controlled release characteristics using 3D-printing technology, 3D extrusion-based printing was first used to create a polypill containing captopril, nifedipine, and glipizide (Fig. 19A). [89] A drug captopril osmotic pump compartment, connecting layer, and sustained release of drug nifedipine and glipizide compartments made up this polypill. Following ingestion, the connecting layer immediately breaks down, resulting in the polypill separating into two compartments, one captopril and the other for sustained release compartment. The drug nifedipine and glipizide (sustained release compartment) are released by diffusion through the gel layer and the compartment of captopril drug is osmotically released in zero order through a controlled porosity shell. [91] Also, they created a polypill containing five APIs using 3D-printing technology.[91] This polypill has two compartments,

 $\textbf{Fig. 19:} \ \textbf{A)} \ \textbf{The polypill illustrating the usage of various polymers}$

Fig. 19 B): Diagram representing multi-drug and multifunctional polypill (The Polypill contains three drugs in one tablet)

one for immediate release and the other for prolonged release, each with its own controlled release profile. In the compartment of immediate release, present aspirin and hydrochlorothiazide drugs, whereas drugs ramipril, atenolol, and pravastatin were in the sustained release compartment.

Use of 3D printed polypills to regulate more intricate release profiles to develop a multi-action release profile, many types of drug carrier molds or templates are made. This allows for the acquisition of a more complex release profile rather than only zero or first-order releases.

Specifically, the drug-containing surface eroding polymer (Fig. 19B)^[89-91] fabricated with a particularly complex shape that allows the desired dissolution of the drug release profile. By altering the form and design of the surface-eroding polymer that contains a pharmaceutical medication, many drug release profiles can be achieved, including steady release, increasing or decreasing release, and pulse release (drug release synchronised with the patient's biological cycle).

Gastro floating tablet

Orally administered drugs show better absorption in different parts of the gastrointestinal tract depending on their physiochemical properties. One such medication, dipyridamole, was designed for gastrofloating tablets through an extrusion-based 3D printing method that enhances the gastric retention period and also enhances the bioavailability and therapeutic effect. To extend the gastric retention period of drugs, there are designed primarily two types of gastric floating devices (Fig. 20.)^[92] One type uses CO2 gas to sustain buoyancy, whereas the other type uses non-effervescent systems that are designed to reduce bulk density to float gastro-floating tablets. A technique created by Huanbutta and Sangnim where a 3D-printed container consisting body and cap that carries drug loaded tablet core. Drug release is done by pore in the container. [92] The printing ink is made of a mixture of microcrystalline cellulose as the extrusion molding agent and HPMCs for its hydrophilic properties. It is printed using an extrusion-based printer at room temperature.

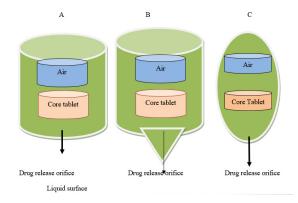


Fig. 20: Housing design of the 3D printed floating tablet, A) cylinder B) top, and C) Sphere

Various infill rates were employed to investigate buoyancy and drug release rate features. [93] The tablet descended as lattice density rose, and by the rise in weight, the faster rate of drug release. A hot melt extruder was used to incorporate the medication, domperidone, into HPC filaments. The low density and stiff shells caused the observed prolonged floating and release. Another study created tablets with various interior architectures using a novel AM technology called pressure-aided micro-syringe (PAM). [94] A range of typical pharmaceutical excipients, including lactose, microcrystalline cellulose, PVP, and HPMC, can be printed using PAM. As these excipients must adhere to laws for pharmaceutical applications, it is advantageous to utilize them as printing inks.

Oro-dispersible

Patients tend to use oral forms of medication since they find them to be the most convenient. [93,94] Oro-dispersible tablets can be taken without the use of water as they are made to dissolve in the mouth. Oro-dispersible tablets often have a kind of special porous structure, which enhances the drug release dissolution profile. The traditional manufacturing process needs particular compaction forces for punching tablets, but in the additive manufacturing process, no need for any compaction for that's why the 3D-printing tablet's final structure is significantly more porous and disintegrates more quickly. Spritam™ (FDA-approved drug) was printed via a 3D printing binder jetting method that dissolves in 2 to 27 seconds and it is the first 3D-Printing medicine approved by the US Food and Drug Administration (FDA). [30,43,93,94,] preparation of oro-dispersible warfarin tablets with the same method; the tablets were dissolved in one minute. [95] Additionally, it proved that SLS could make oro-dispersible paracetamol tablets with various dissolution rates^[43,95]

Pediatrics preparations

Due to changes in physical features and pharmacokinetics, dosage requirements for young individuals can be noticeably different from those for other patients. [96] As

a result, doses for such a group must be carefully tailored to minimize toxic consequences. Although syrups can be used as pediatric formulations and are dose-adjustable, they are prone to dosage errors. [10,90,93,96] A 3D-printed miniature tablet is a creative solution to this issue. A micro tablet may be simpler to administer than syrups because of its smaller size and milder flavor. Additionally, AM can be utilized to change doses by regulating the amount of material employed. [97] Scoutaris *et al.* suggested a different dose form for young children, which included chewable tablets with amusing shapes and flavor masking. This study used drug-polymer H-bonding interactions, which were made possible by hot melt extrusion, to conceal the disagreeable taste of indomethacin. To appeal to younger children, the drug-loaded filament was then put into a 3D printer and created into a playful shape second. [10,98]

Implant

An implant is a sustained-release drug delivery matrix containing active drugs. For long-term treatment of patients, this technique become helpful. Traditional approaches for implants only focus on prolonged and extended drug delivery systems, but recent use of new advanced technologies of 3D printing-based implants, printed to complex forms of macro and micro structures implants in single one device that are useful to achieving multi-drug loading and sophisticated drug release characteristics. Such as fabricated levofloxacin implants with a predetermined microstructure, that release profile exhibits in a single implant. [66,96,97]

Recent studies have proved that multiple API-loaded 3D-printed implants helped to increase the additional therapeutic properties of drugs. [98] 3D-printed scaffolds having the combination of calcium phosphate cement along with vascular endothelial growth factor (VEGF) loaded hydrogel strands helped in bone defect recovery. [99,67] 3D-printed implants that are designed with multiple drugs used in the treatment of tuberculosis disease transdermal microneedle (MN) patches.

Microneedles have an array of micro-sized needles that are used for transdermal drug delivery systems to increase penetration of biologically active chemicals in the skin. Because of its microstructure, microneedles may deliver the macromolecules of substances via the skin more effectively than conventional patches. Recent advancements in 3D printing techniques with high resolution are beneficial in the manufacturing of microneedles. To achieve this, AM technologies, particularly SLA and DLP, offer microneedle manufacturing alternatives. The biocompatible liquid resin was printed using an SLA printer onto microneedle patches, which were subsequently cleaned by using alcohol to get rid of any leftovers. [100] After that, place tiny layers of insulin sugar onto the MN surface by inkjet printing. Similar to this, Uddin et al., using an SLA printer, created polymeric MNs and then coated the MN with formulations containing cisplatin.^[101] It has been demonstrated that crucial factors to take into account when printing MNs using SLA 3D printers are that MNs have mechanical strength, buckling load, and the force necessary to puncture human skin. [102]

Pharmaceutical devices

Different kinds of 3D-printed devices used in the pharmaceutical field are given below:

Aids for dose dispensing

The creation of prototypes is one of the primary uses of AM outside the pharmaceutical business. In the past use of customized dies or molds was called prototyping, which was time-consuming and expensive to acquire. We can quickly and easily create and reprint customized and personalized models with AM. Printing of drugs is a comparatively cost-effective procedure that does not require various types of specialized equipment.[118] Additionally, a variety of biodegradable and ecologically friendly materials are readily accessible on the market today, reducing the environmental effect. Recently, additive manufacturing has verified a powerful printing technology for pharmacy dispensing equipment that is suitable for personalized and customized medicines. Niese et al., formed the pharmacy dispensing device for active ingredients-containing continuous film to provide customized medicine and adjustable dosage. [119]

Drug-eluting devices

Drug-eluting dosage forms reduce the patient's requirement for frequent dosing by providing the sustained release of therapeutic substances for a considerably prolonged time than oral dosage forms. This considerably reduces issues with non-adherence, whether deliberate or accidental. [120] Using the local method can decrease the exposure limit of healthy tissues and reduce the side effects compared to the systemic distribution of drugs. [121] When compared to other delivery methods, using an implanted device might sometimes offer extra benefits. Particularly, sustainedrelease devices do not have the same risks related to increased eye pressure as intraocular injections do. [59] Drug-eluting implants are available in different varieties of their use, including opioid addiction, cardiovascular illness, ocular delivery, and contraception. [59] By adjusting various dosage, geometry, and dissolution release profiles of the dosage forms, AM can be employed to get around this. The most recent advancements in this field include drug-eluting catheters, implants for cancer therapy, and hormone-containing dosage forms for gynecological uses. FDM has been utilized to create constructions that elute hormones. Utilizing biodegradable polymers of polycaprolactone (PCL), Tappa et al. created adaptable devices. [122] The medications, which included progesterone and estrogen, were forced into the filaments. In this investigation, three different dosage forms like, implants (subcutaneous), devices (intrauterine), and vaginal

Pinki Gupta et al.

Table 3: Representing some pharmaceutical Dosage forms that are fabricated by a 3D-printer

Dosage form	3D technologies	API	Polymer	References
Single API oral dosage form				
Tablet	FDM	API (Drug)	Thermoplastic polyurethane	[103]
IR cablets	Extrusion based 3D-printing	Paracetamol	excipients	[104]
Extended-release tablet (release up to 24 hours)	FDM	Prednisolone	Polyvinyl alcohol filament	[105]
ER tablets	FDM	API (Drug)	Use of Tween 80, polyethylene glycol (PEG), Polyethylene oxide with either Eudragit (EPO) or POLYOX TM	[33,105]
Approximate near zero- order controlled release leveloped	3D printer technology	Pseudoephedrine hydrochloride	Hydroxypropyl methylcellulose (HPMC)	[106]
Linear release profile Tablet Doughnut shape)	3D printing technology	multilayered acetaminophen	Excipients	[107]
Enteric tablets	FDM	API (Drug)	Hypromellose acetate succinate	[108]
Gastro-floating tablet	Extrusion based printing	API (Drug)	Excipients	[109]
ER tablets	SLA and ink-jet 3D printer	APIs Paracetamol (PCM) or 4-aminosalicylic acid	At various compositions 2,4,6-trimethyl benzoyl, polyethylene glycol and phosphine oxide	[110,111]
ablets	IJ with UV photo- initiation	Ropinirole hydrochloride	Excipients	[112]
Complex geometry solid losage form (honeycomb architecture	Hot melt 3D ink-jet printer	AIPS	Excipients	[110,111,112]
Polypills	3D-printing based on extrusion	Immediate release (captopril) and sustained release nifedipine and glipizide	Not available	[22]
Polypills (5 APIS)	3D-printing	Ramipril, atenolol, pravastatin (sustained release Aspirin, hydrochlorothiazide (IR)	Not available	[104]
Sustained release tablets	Extrusion based 3D-printing	API +HPMC Aspirin and hydrochlorothiazide	Cellulose acetate shell formation for API filling	[104]
Multiple drug-containing levices (Duo caplet lesign)	Multi-nozzle 3D printer	Acetaminophen and caffeine	Excipients	[108]
Modified release drug oral losage form (caplet)	FDM method fluid bed coating with hot melt extrusion)	Budesonide	Excipients	[34]
Modified release	SLA	4 -Amino-salicylic acid (Thermolabile +paracetamol)	NA	[111]
mplant	3D-printing	Levofloxacin	NA	[66]
caffolds for bone defect	3D-printing	endothelial growth factor loaded hydrogel strands (VEGF) and calcium phosphate cement	NA	[99]
oreparing implant (for hronic osteomyelitis)	3D-printing	Combination of levofloxacin (LVFX) and tobramycin	NA	[68]

Patch-like implant (extended-release for chronic disease)	3D-printing	Polylactic-glycolic acid, polycaprolactone and 5-fluorouracil	NA	[62]
Microneedles				
Microneedle	3D-printing	Dacarbazine	NA	[116]
Microneedle	3D-printing	Diclofenac	NA	[117]
Microneedle	3D-printing	Insulin	NA	[98]

pessaries, were created. To melt the filaments during the printing process a high temperature is required. The FDM method can be utilized to print drug-filled filaments. In a different investigation, Fu *et al.* developed various type of controlled-release progesterone vaginal rings in various doses and types of shapes using FDM. [122]

Challenges of 3D Printing

The adoption of personalized medicines by healthcare system stakeholders, including patients, is one of the major concerns. It is quite difficult to train and educate the personnel in the practices of personalized medicine. This is because personalized medicine differs from standard practice in that physicians must further assess each patient's unique characteristics based on biomedical, genetic, and behavioral aspects, among other genomic, before deciding which medicine is best for them. Sometimes chances of personal data may be used for fraudulent purposes, which raises privacy and legal issues; however millions of variants need to be identified before the use of personalized therapy. Consequently, it may be costly and time-consuming to search patients' problems on the basis of genetic profiles and their mapping. Pharmacogenomics is still difficult in routine medical practices to improve healthcare. Furthermore, there are still problems with how test results should be understood and shared despite ongoing improvements in the validity and accuracy of genomic testing. [135-137]

The development and administration of customized medicine dosages need regulatory agency approval, which is another major barrier to the successful use of personalized medication.

These concerns need significant proof that makes printed medication superior to conventional medicine strategies, which is also important to consider the possibility of the higher cost associated with customized therapies. Furthermore, suitable strategies should be developed to meet the specific parameters for specific patients as practices progress. The adaptation of health insurance plans with regard to regulatory and legal manufacturing of personalized medication presents another hurdle to the realization of personalized medication for healthcare professionals, hospital management, and health plan sponsors. Due to the above issues need to rethink the current healthcare structures and insurance policies to accommodate personalized medicine practices, especially to genetic testing and customized therapies. [44,138]

3D printing challenges for industries

The following are some common obstacles (Fig. 21). [138,139] those various industries face when establishing additive manufacturing:

Regulatory aspects for 3D-printing in the present scenario

In the present scenario use of various 3D-printing technologies is a rapidly prototyping novel technology in the healthcare field. The first approved 3D-printed tablet spritam (Fast disintegrating tablet) was made by Aprecia Pharmaceutical and it is the only one 3D printed drug to date approved by the Food and Drug Administration (FDA) in the year 2015. [139] Only Spritam 3D printed drug are accessible as the marketed product. [139] Due to some drawbacks like complexity, small manufacturing, and unfeasible standardization, 3D-printed tablets are not feasible if personalization is attempted. [140,141] Numerous problems with 3D printed tablets lead to regulatory challenges. These have been addressed in reviews of the literature Food and Drug Administration. [139-143] Although 3D-printed technology has advanced quickly in recent years, 3D-printed medications do not yet comply with current regulatory standards. As a result, future regulatory changes will be necessary for 3D-printed medications because of the combined nature of the product. 3D-printed drug-eluting implants have certain challenges, such as being assigned to the appropriate product category (medical vs medical products).[143] Establishing a regulatory framework and manufacturing standards for 3D printed and non-additive products is crucial for the advancement of 3D technology, as it ensures product efficacy and safety.[140]

In 2017, the FDA released a guideline letter in which it acknowledged the paucity of prior research and clinical expertise in the area. They talked about the material, printing the validation design, and the post-printing procedure. The factors and features of printing are the evaluation of the finished product's mechanical and physical quantities as well as biological factors like biocompatibility, sterility, and cleanliness. [142] For instance, the quality of a printed object may be affected by its orientation, position, or removal of support structure or leftover material during the printing process. It is also impractical to mechanically test a product for a single patient. [142] The primary regulatory obstacles facing 3D printing dosage forms and medical devices are those

Table 4: Representing some selective drug eluting devices

Drug eluting devices	Objectives	Printer type	Implant shape	Drug loading	Drug	Polymer material	References
Gynaecological devices	Preparing vaginal ring in different shape for release profile of drug like personalized and controlled release	FDM	Particular in shape of O/Y/M vaginal ring and Pessaries	Perfused HME	Progesterone	PLA PCL PEG PCL	[54]
	Biodegradable long- lasting implant with various drug load for sustained release profile	FDM	T-shaped IUS	НМЕ	Indomethacin	PCL	[60]
	Antibacterial vaginal mesh with suitable mechanical properties	FDM	Vaginal mesh	НМЕ	Levofloxacin	TPU	[58]
	Implant of different grades of EVA	FDM	T-Shaped IUD S.C rod	НМЕ	Indomethacin	EVA	[123]
Stunts and catheters	Bioactive laden bioabsorbable catheter	FDM	Catheter	НМЕ	Gentamycin sulfate, methotrexate	PLA	[124]
	Preparing 3D-Printing Catheter for incorporation of anti- infective catheters	FDM	Catheter	НМЕ	Tetracycline hydrochloride	TPU	[125]
	For antimicrobial and increased visibility of CT images	FDM	Mesh Y- stent	Post-print (gaseous incubation	Iodine	PVP	[74]
	For specific nasal support with bioactive agents	FDM	Nasal stent	Post printing (Dip coating)	Penicillin	PLA PVP	[74]
	3D model printed for antibiotic and chemotherapeutic -eluting filament	FDM	Disc, bead, catheter	НМЕ	Gentamycin sulphate, methotrexate	PLA	[53]
	Preparing 3D Model and incorporate antimicrobial to inhibit biofilms	FDM	Disc	НМЕ	Nitrofurantoin	PLA	[126]
Antitumoral devices	Multilayer drug implant for osteosarcoma treatment that tested in-vitro and in-vivo	INK	Sphere shaped	embedding	Cisplatin, ifosfamide, Methotrexate, durorubicin	PLA	[81]
	Bullet shaped hollow implant with modified release properties	FDM	Bullet shaped	Post print immersion	Cytoxan	PLA	[127]
	Biodegradable patch, with high concentration anticancer drug with modified release	Heat EXT	patch	Melt mixing	5-fluorouracil	PLGA, PCL	[62]
	Enhance bone osseointegration by 3D printed alloy implant with rough surface	SLM	Wafer	Post print droplet	Doxorubicin	Titanium	[76]

surgical meshes geometry	Surgical meshes imprengement with contrast agent and characterization of tomography properties	Heat EXT	Mesh	Embedding	Iodine. Gadolinium, Bariba	PCL	[128]
	Surgical meshes with antibiotic encapsulated in alginate	FDM	Mesh	Post print droplets	Gentamycin	PCL	[78]
	Meshes loaded with antibiotic with various pore size, shape & thread thickness between two different materials	FDM	mesh	Preprint filament soaking	Ciprofloxacin hydrochloride	PP, PVA	[63]
	3D-Printing at room temperature and UV crosslinking of silicon in to different structure and drug loads resultant in different release profile	Semi-solid (EXT+UV)	Mesh	Embedding	Prednisolone	Silicon	[129]
	3D-Printing antibacterial surgical mesh and potential as on-demand manufacturing	FDM	Mesh	НМЕ	Gentamycin	PLA	[51]
implant with simple geometry	Preparing scaffold by leaching method Combination of 3D-Printing and salt	Heat EXT	Scaffold	Post-print coating	Cefazolin	PCL	[130]
	DLP 3D printed construct Influences relatively increased drug loading on printability & mechanical properties of drug	DLP	Disc cylinder	embedding	Dexamethasone	PEGDA	[64]
	Implantable 3D printed drug carriers, In-vitro testing		Cylinder	Powder filling during printing	Diclofenac sodium	PLA PETG	[131]
Complex geometry	Different implant design of biodegradable material for sustained drug release	FDM	Window implant	Post-print powder filling	Methylene blue, Ibuprofen sodium	PLA. PVP, PEG, PCL	[132]
	By DLP Method improves the additives, printing parameters and internal and external structured 3D printed model design	DLP	Multiple shape	Embedding	Diclofenac sodium, ibuprofen	PEGDA DPPO PEG	[65]
	Design implant with gel core that coaxial coextrusion of drug	EXT	Rod, scaffold, spiral	Embedding, injected	Bevacizumab, dexamethasone	PCL Poloxamer alginate	[39]

Implant for bone treatment and surgical screws	3D-Printing of antibacterial scaffold for osteomyelitis treatment	INK	Scaffold	Powder mixture	Rifampicin, sitafloxacin	Ceramic, PLGA- Coating	[133]
	3D-Printing of scaffold with antibiofilm and osteogenic properties	FDM	Scaffold	Post-print immersion	Minocycline	PLA	[50]
	Patient specific fixation implants for localized drug delivery	FDM	Screw, Pin, Plate	НМЕ	Gentamycin sulphate	PLA	[50]
	At low temperature create scaffold for 3D printed antimicrobial drug	Heat EXT	Disc	embedding	Rifampicin	PCL	[134]
	3D printed stainless steel implant coated to create a mechanism of the slow-release drug profile	SLM	Cuboid	Post print airbrush coating	Dexamethasone	Stainless steel	[75]
	With the help of solution technique influence the drug eluting printing parameter	EXT	screw	embedding	Vancomycin, ceftazidime	PCL, Nha	[61]

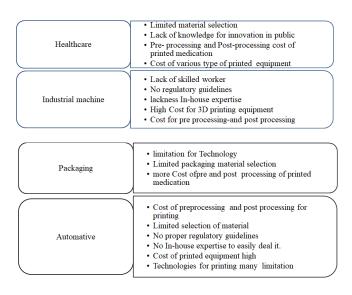


Fig. 21: Industrial challenges

related to process validation, which includes patient-specific acceptance criteria implementation, parameter testing, and printing parameter monitoring. [141] An FDA investigational new drug (IND) approval was recently granted to TRIASTEK for their chronotherapeutic drug delivery system T19, which is made using a melt extrusion-based 3D printing method and has an internal geometric structure to govern drug release. [137,140,142] A year after the spiritam approval, this highlights the continuous process of developing 3D-printed human pharmaceutical products that meet approved regulatory standards. Expecting

positive results from the clinical trials. Soon, T19 might be the second authorized 3D-printed medication, and there might be more. [144]

Future Prospective for 3D-Printing Technologies

Research employing various forms of 3D-printing is growing. Nonetheless, the capacity to develop personalized medication is a primary benefit of all forms of 3D-printing currently in use.[144] Because additive manufacturing is quick, simple and accessible, it encourages the manufacturing of pharmaceutical and medical devices based on patient requirements in a clinical setting. [137] In the medical field versatility in 3D-Printing is demonstrated by altering the release profile and amount of dose of tablets with the help of CAD, which changes their geometry, as well as by using HME to insert medication into FDM manufactured injectable devices or mesh implants. [145] Before the manufacturing of personalized and customized 3D printed products must be understood in a clinical context, further research is important to understand which process parameters effect on print quality and how to improve repeatability in 3D printing. [145] The quantity of medications that may be placed into filaments using FDM is likewise restricted because these substances must be able to endure high temperatures during the procedure. However, if research in 3D printing keeps going up, make it past the proof-of-concept stage due to the diversity in 3D printed products and the numerous benefits offered for manufacturing.[145] guidelines released by the US FDA for producing medical devices using 3D-Printing technology to increase the adaptation of this technology. Therefore,

in the upcoming year, we expect to witness a rise in the quantity of 3D-printed pharmaceutical and medical products available for purchase.^[56]

CONCLUSION

To create personalized pharmaceutical solutions, 3D-printing of medical equipment & drug delivery systems is a potent tool. Studies on oral, oro mucosal, and topical dose forms developed quite quickly after the first medicine made using 3D printing technology received FDA approval. By their underlying operating principles, many 3D printing methodologies have been created and divided into subgroups. Pharmaceutical application of 3D-printing technology is very intricate and complicated the flexibility to adjust the shape and microstructures of pharmacological dosage forms has increased. In contrast to traditional pharmaceutical manufacture, With the help of additional manufacturing, a wide variety of dosage forms can be prepared with high accuracy regarding the ratio of API to excipients. Regulations and standards must be created in advance of AM being the new standard to address concerns that are certain to arise.

REFERENCES

- Lim SH, Kathuria H, Tan JJ, Kang L. 3D printed drug delivery and testing systems—a passing fad or the future. Advanced drug delivery reviews. 2018 Jul 1; 132:139-68. Doi: 10.1016/j. addr.2018.05.006
- Dumitrescu IB, Lupuliasa D, DRĂGOI C, NICOLAE AC, Pop A, ȚARAMET G, DRĂGĂNESCU D. The Age of Pharmaceutical 3D Printing. Technological and Therapeutical Implications of Additive Manufacturing. Farmacia. 2018 May 1;66(3). doi:10.31925/ FARMACIA.2018.3.1
- 3. Goole J, Amighi K. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. International journal of pharmaceutics. 2016 Feb 29;499(1-2):376-94. doi.org/10.1016/j. ijpharm.2015.12.071
- Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharmaceutical research. 2016 Aug; 33:1817-32. doi. org/10.1007/s11095-016-1933-1
- Drăgănescu DO, Lupuliasa D, Burcea Dragomiroiu GT, Roșca AC, Hincu L, Cioacă DA. 3D printing pharmaceutical formulation of drugs in personalized therapy. Farmacia. 2019 Jan 1;67(1):1-9. doi. org/10.31925/farmacia.2019.1.1
- Zeeshan F, Madheswaran T, Pandey M, Gorain B. Three-dimensional (3-D) printing technology exploited for the fabrication of drug delivery systems. Current Pharmaceutical Design. 2018 Nov 1;24(42):5019-28. doi.org/10.2174/1381612825666190101111525
- Alruwaili NK, Rizwanullah M, Abbas Bukhari SN, Amir M, Ahmed MM, Fazil M. 3D printing technology in design of pharmaceutical products. Current pharmaceutical design. 2018 Nov 1;24(42):5009-18. doi.org/10.2174/1381612825666190116104620
- Narkevich IA, Flisyuk EV, Terent'eva OA, Semin AA. Additive manufacturing technologies for pharmaceutics. Pharmaceutical Chemistry Journal. 2018 Feb;51(11):1025-9. doi.org/10.1007/ s11094-018-1733-5
- Liang K, Brambilla D, Leroux JC. Is 3D printing of pharmaceuticals a disruptor or enabler. Advanced Materials. 2019 Feb;31(5):1805680. doi.org/10.1002/adma.201805680
- 10. Palekar S, Nukala PK, Mishra SM, Kipping T, Patel K. Application of 3D printing technology and quality by design approach for development of age-appropriate pediatric formulation of baclofen.

- International journal of pharmaceutics. 2019 Feb 10; 556:106-16. doi.org/10.1016/j.ijpharm.2018.11.062
- 11. Robles Martinez P, Basit AW, Gaisford S. The history, developments and opportunities of stereolithography. 3D Printing of Pharmaceuticals. 2018:55-79. doi.org/10.1007/978-3-319-90755-0-4
- 12. Aimar A, Palermo A, Innocenti B. The role of 3D printing in medical applications: a state of the art. Journal of healthcare engineering. 2019;2019(1):5340616. doi.org/10.1155/2019/5340616
- 13. Daly R, Harrington TS, Martin GD, Hutchings IM. Inkjet printing for pharmaceutics—a review of research and manufacturing. International journal of pharmaceutics. 2015 Oct 30;494(2):554-67. doi.org/10.1016/j.ijpharm.2015.03.017
- 14. Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: A new branch of digital healthcare. International journal of pharmaceutics. 2018 Sep 5;548(1):586-96. doi.org/10.1016/j.ijpharm.2018.07.024
- 15. Osouli-Bostanabad K, Adibkia K. Made-on-demand, complex and personalized 3D-printed drug products. BioImpacts: BI. 2018;8(2):77. doi:10.15171/bi.2018.09.
- 16. Ahmad N, Gopinath P, Vinogradov A. 3D printing in medicine: Current challenges and potential applications. In3D Printing Technology in Nanomedicine 2019 (pp. 1-22). doi.org/10.1016/ B978-0-12-815890-6.00001-3
- 17. Litman T. Personalized medicine—concepts, technologies, and applications in inflammatory skin diseases. Apmis. 2019 May;127(5):386-424. doi.org/10.1111/apm.12934
- 18. Prodan Žitnik I, Černe D, Mancini I, Simi L, Pazzagli M, Di Resta C, Podgornik H, Repič Lampret B, Trebušak Podkrajšek K, Sipeky C, Van Schaik R. Personalized laboratory medicine: a patient-centered future approach. Clinical Chemistry and Laboratory Medicine (CCLM). 2018 Nov 27;56(12):1981-91. doi.org/10.1515/cclm-2018-0181
- 19. Mathur S, Sutton J. Personalized medicine could transform healthcare. Biomedical reports. 2017 Jul 1;7(1): 3-5.doi. org/10.3892/br.2017.922
- 20. Raijada D, Wac K, Greisen E, Rantanen J, Genina N. Integration of personalized drug delivery systems into digital health. Advanced drug delivery reviews. 2021 Sep 1; 176:113857. doi.org/10.1016/j. addr.2021.113857
- 21. Goyanes A, Madla CM, Umerji A, Piñeiro GD, Montero JM, Diaz MJ, Barcia MG, Taherali F, Sánchez-Pintos P, Couce ML, Gaisford S. Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First single-centre, prospective, crossover study in patients. International Journal of Pharmaceutics. 2019 Aug 15; 567:118497. doi.org/10.1016/j.ijpharm.2019.118497
- 22. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. Journal of controlled release. 2015 Nov 10; 217:308-14. doi.org/10.1016/j.jconrel.2015.09.028
- 23. Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Advanced drug delivery reviews. 2017 Jan 1; 108:39-50. doi.org/10.1016/j.addr.2016.03.001
- 24. Ervasti T, Simonaho SP, Ketolainen J, Forsberg P, Fransson M, Wikström H, Folestad S, Lakio S, Tajarobi P, Abrahmsén-Alami S. Continuous manufacturing of extended-release tablets via powder mixing and direct compression. International journal of pharmaceutics. 2015 Nov 10;495(1):290-301. doi.org/10.1016/j.ijpharm.2015.08.077
- 25. Lind J, Kälvemark Sporrong S, Kaae S, Rantanen J, Genina N. Social aspects in additive manufacturing of pharmaceutical products. Expert Opinion on Drug Delivery. 2017 Aug 3;14(8):927-36. doi.org /10.1080/17425247.2017.1266336
- 26. Konta AA, García-Piña M, Serrano DR. Personalized 3D printed medicines: which techniques and polymers are more successful. Bioengineering. 2017 Sep 22;4(4):79. doi.org/10.3390/ bioengineering4040079
- $27.\ De\ Gans\ BJ, Duine veld\ PC, Schubert\ US.\ Inkjet\ printing\ of\ polymers:$

- state of the art and future developments. Advanced materials. 2004 Feb 3;16(3):203-13.doi.org/10.1002/adma.200300385
- Moulton SE, Wallace GG. 3-dimensional (3D) fabricated polymerbased drug delivery systems. Journal of Controlled Release. 2014 Nov 10; 193:27-34. doi.org/10.1016/j.jconrel.2014.07.005
- Sumerel J, Lewis J, Doraiswamy A, Deravi LF, Sewell SL, Gerdon AE, Wright DW, Narayan RJ. Piezoelectric ink jet processing of materials for medicaland biological applications. Biotechnology Journal: Healthcare Nutrition Technology. 2006 Sep;1(9):976-87. doi.org/10.1002/biot.200600123
- 30. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. doi.org/10.1021/ac403397r
- 31. Tofail SA, Koumoulos EP, Bandyopadhyay A, Bose S, O'Donoghue L, Charitidis C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materials today. 2018 Jan 1;21(1):22-37. doi.org/10.1016/j.mattod.2017.07.001
- 32. Vaezi M, Seitz H, Yang S. A review on 3D micro-additive manufacturing technologies. The International Journal of Advanced Manufacturing Technology. 2013 Jul; 67:1721-54. doi.org/10.1007/s00170-012-4605-2
- 33. Alhijjaj M, Belton P, Qi S. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. European Journal of Pharmaceutics and Biopharmaceutics. 2016 Nov 1; 108:111-25. doi.org/10.1016/j. ejpb.2016.08.016
- 34. Goyanes A, Martinez PR, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. International journal of pharmaceutics. 2015 Oct 30;494(2):657-63. doi. org/10.1016/j.ijpharm.2015.04.069
- 35. Vozzi G, Flaim C, Ahluwalia A, Bhatia S. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials. 2003 Jun 1;24(14):2533-40. doi.org/10.1016/S0142-9612(03)00052-8
- 36. Tirella A, Vozzi F, Vozzi G, Ahluwalia A. PAM2 (piston assisted microsyringe): a new rapid prototyping technique for bio fabrication of cell incorporated scaffolds. Tissue Engineering Part C: Methods. 2011 Feb 1;17(2):229-37. doi.org/10.1089/ten.tec.2010.0195
- Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. Journal of biological engineering. 2015 Dec; 9:1-4. doi.org/10.1186/ s13036-015-0001-4
- 38. Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010 Aug 1;31(24):6121-30. doi.org/10.1016/j.biomaterials.2010.04.050
- 39. Won JY, Kim J, Gao G, Kim J, Jang J, Park YH, Cho DW. 3D printing of drug-loaded multi-shell rods for local delivery of bevacizumab and dexamethasone: A synergetic therapy for retinal vascular diseases. Acta Biomaterialia. 2020 Oct 15; 116:174-85. doi.org/10.1016/j. actbio.2020.09.015
- 40. Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: a critical review. The International Journal of Advanced Manufacturing Technology. 2016 Mar; 83:389-405. doi.org/10.1007/s00170-015-7576-2
- Bezuidenhout MB, Dimitrov DM, Van Staden AD, Oosthuizen GA, Dicks LM. Titanium-Based Hip Stems with Drug Delivery Functionality through Additive Manufacturing. BioMed research international. 2015;2015(1):134093. doi.org/10.1155/2015/134093
- Sen K, Manchanda A, Mehta T, Ma AW, Chaudhuri B. Formulation design for inkjet-based 3D printed tablets. International journal of pharmaceutics. 2020 Jun 30; 584:119430. doi.org/10.1016/j. ijpharm.2020.119430
- 43. Rahman Z, Barakh Ali SF, Ozkan T, Charoo NA, Reddy IK, Khan MA. Additive manufacturing with 3D printing: progress from bench to bedside. The AAPS journal. 2018 Nov; 20:1-4. doi.org/10.1208/s12248-018-0225-6
- 44. Park BJ, Choi HJ, Moon SJ, Kim SJ, Bajracharya R, Min JY, Han HK.
 Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. Journal of Pharmaceutical

- Investigation. 2019 Nov; 49:575-85. doi.org/10.1007/s40005-018-00414-y
- 45. Tan DK, Maniruzzaman M, Nokhodchi A. Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modelling (FDM) 3D printing for personalised drug delivery. Pharmaceutics. 2018 Oct 24;10(4):203. doi.org/10.3390/pharmaceutics10040203
- 46. Park J, Kwon T, Kim J, Jin H, Kim HY, Kim B, Joo SH, Lee K. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chemical Society Reviews. 2018;47(22):8173-202. doi: 10.1039/C8CS00336J
- 47. Charoo NA, Barakh Ali SF, Mohamed EM, Kuttolamadom MA, Ozkan T, Khan MA, Rahman Z. Selective laser sintering 3D printing-an overview of the technology and pharmaceutical applications. Drug development and industrial pharmacy. 2020 Jun 2;46(6):869-77. doi. org/10.1080/03639045.2020.1764027
- 48. Sandler N, Salmela I, Fallarero A, Rosling A, Khajeheian M, Kolakovic R, Genina N, Nyman J, Vuorela P. Towards fabrication of 3D printed medical devices to prevent biofilm formation. International journal of pharmaceutics. 2014 Jan 1;459(1-2):62-4. doi.org/10.1016/j. ijpharm.2013.11.001
- 49. Genina N, Holländer J, Jukarainen H, Mäkilä E, Salonen J, Sandler N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. European Journal of Pharmaceutical Sciences. 2016 Jul 30; 90:53-63. doi.org/10.1016/j.ejps.2015.11.005
- 50. Tappa K, Jammalamadaka U, Weisman JA, Ballard DH, Wolford DD, Pascual-Garrido C, Wolford LM, Woodard PK, Mills DK. 3D printing custom bioactive and absorbable surgical screws, pins, and bone plates for localized drug delivery. Journal of functional biomaterials. 2019 Apr 1;10(2):17. doi.org/10.3390/jfb10020017
- 51. Ballard DH, Weisman JA, Jammalamadaka U, Tappa K, Alexander JS, Griffen FD. Three-dimensional printing of bioactive hernia meshes: In vitro proof of principle. Surgery. 2017 Jun 1;161(6):1479-81. Doi: 10.1016/j.surg.2016.08.033
- 52. Water JJ, Bohr A, Boetker J, Aho J, Sandler N, Nielsen HM, Rantanen J. Three-dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material. Journal of pharmaceutical sciences. 2015 Mar 1;104(3):1099-107. doi. org/10.1002/jps.24305
- 53. Weisman JA, Nicholson JC, Tappa K, Jammalamadaka U, Wilson CG, Mills DK. Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications. International journal of nanomedicine. 2015 Jan 9:357-70. doi.org/10.2147/IJN.S74811
- 54. Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. International journal of pharmaceutics. 2018 Mar 25;539(1-2):75-82. doi.org/10.1016/j. ijpharm.2018.01.036
- 55. Mills D, Tappa K, Jammalamadaka U, Weisman J, Woerner J. The use of 3D printing in the fabrication of nasal stents. Inventions. 2017 Dec 23;3(1):1. doi.org/10.3390/inventions3010001
- 56. Mathew E, Domínguez-Robles J, Stewart SA, Mancuso E, O'Donnell K, Larraneta E, Lamprou DA. Fused deposition modeling as an effective tool for anti-infective dialysis catheter fabrication. ACS Biomaterials Science & Engineering. 2019 Sep 23;5(11):6300-10. doi.org/10.1021/acsbiomaterials.9b01185
- 57. Tappa K, Jammalamadaka U, Ballard DH, Bruno T, Israel MR, Vemula H, Meacham JM, Mills DK, Woodard PK, Weisman JA. Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof-of-concept study. PLoS One. 2017 Aug 10;12(8): e0182929. doi.org/10.1371/journal.pone.0182929
- 58. Domínguez-Robles J, Mancinelli C, Mancuso E, García-Romero I, Gilmore BF, Casettari L, Larrañeta E, Lamprou DA. 3D printing of drug-loaded thermoplastic polyurethane meshes: A potential material for soft tissue reinforcement in vaginal surgery. Pharmaceutics. 2020 Jan 13;12(1):63. doi.org/10.3390/pharmaceutics12010063
- 59. Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW,

- Woodruff TK, Shah RN. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 8: 15261. doi.org/10.1038/ncomms15261
- 60. Holländer J, Genina N, Jukarainen H, Khajeheian M, Rosling A, Mäkilä E, Sandler N. Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery. Journal of pharmaceutical sciences. 2016 Sep 1;105(9):2665-76. doi. org/10.1016/j.xphs.2015.12.012
- 61. Chou PY, Chou YC, Lai YH, Lin YT, Lu CJ, Liu SJ. Fabrication of drug-eluting nano-hydroxylapatite filled polycaprolactone nanocomposites using solution-extrusion 3D printing technique. Polymers. 2021 Jan 20;13(3):318. doi.org/10.3390/polym13030318
- 62. Yi HG, Choi YJ, Kang KS, Hong JM, Pati RG, Park MN, Shim IK, Lee CM, Kim SC, Cho DW. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. Journal of controlled release. 2016 Sep 28; 238:231-41. doi.org/10.1016/j.jconrel.2016.06.015
- 63. Qamar N, Abbas N, Irfan M, Hussain A, Arshad MS, Latif S, Mehmood F, Ghori MU. Personalized 3D printed ciprofloxacin impregnated meshes for the management of hernia. Journal of Drug Delivery Science and Technology. 2019 Oct 1; 53:101164. doi.org/10.1016/j.jddst.2019.101164
- 64. Mau R, Reske T, Eickner T, Grabow N, Seitz H. DLP 3D printing of Dexamethasone incorporated PEGDA-based photopolymers: compressive properties and drug release. Current Directions in Biomedical Engineering. 2020 Sep 1;6(3):406-9. doi.org/10.1515/cdbme-2020-3105
- 65. Yang Y, Zhou Y, Lin X, Yang Q, Yang G. Printability of external and internal structures based on digital light processing 3D printing technique. Pharmaceutics. 2020 Mar;12(3):207. doi.org/10.3390/pharmaceutics12030207
- 66. Huang W, Zheng Q, Sun W, Xu H, Yang X. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. International journal of pharmaceutics. 2007 Jul 18;339(1-2):33-8. doi.org/10.1016/j.ijpharm.2007.02.021
- 67. Wu W, Zheng Q, Guo X, Sun J, Liu Y. A programmed release multidrug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy. Biomedical Materials. 2009 Nov 9;4(6):065005. Doi: 10.1088/1748-6041/4/6/065005
- 68.Wu W, Ye C, Zheng Q, Wu G, Cheng Z. A therapeutic delivery system for chronic osteomyelitis via a multi-drug implant based on three-dimensional printing technology. Journal of Biomaterials Applications. 2016 Aug;31(2):250-60. doi. org/10.1177/0885328216640660
- 69. Wu G, Wu W, Zheng Q, Li J, Zhou J, Hu Z. Experimental study of PLLA/ INH slow-release implant fabricated by three-dimensional printing technique and drug release characteristics in vitro. Biomedical engineering online. 2014 Dec; 13:1-1. doi.org/10.1186/1475-925X-13-97
- 70.Li J, Hsu Y, Luo E, Khadka A, Hu J. Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy. Aesthetic plastic surgery. 2011 Aug; 35:636-40. doi.org/10.1007/s00266-010-9602-y
- Inzana JA, Trombetta RP, Schwarz EM, Kates SL, Awad HA. 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. European cells & materials. 2015; 30:232. Doi: 10.22203/ecm. v030a16
- 72. Vorndran E, Klammert U, Ewald A, Barralet JE, Gbureck U. Simultaneous immobilization of bioactives during 3D powder printing of bioceramic drug-release matrices. Advanced Functional Materials. 2010 May 25;20(10):1585-91. doi.org/10.1002/adfm.200901759
- 73. Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ. Solid free-form fabrication of drug delivery devices. Journal of Controlled Release. 1996 Jun 1;40(1-2):77-87. doi.org/10.1016/0168-3659(95)00173-5
- 74. Boyer CJ, Woerner JE, Galea C, Gatlin CA, Ghali GE, Mills DK,

- Weisman JA, McGee DJ, Alexander JS. Personalized bioactive nasal supports for postoperative cleft rhinoplasty. Journal of Oral and Maxillofacial Surgery. 2018 Jul 1;76(7):1562-e1. doi.org/10.1016/j. joms.2018.03.029
- 75. Poudel I, Annaji M, Arnold RD, Kaddoumi A, Shamsaei N, Lee S, Pegues J, Ahmadi Z, Samani MM, Corriveau K, Babu RJ. Dexamethasone eluting 3D printed metal devices for bone injuries. Therapeutic Delivery. 2020 Jun 1;11(6):373-86. doi.org/10.4155/tde-2020-0014
- 76. Maher S, Kaur G, Lima-Marques L, Evdokiou A, Losic D. Engineering of micro-to nanostructured 3D-printed drug-releasing titanium implants for enhanced osseointegration and localized delivery of anticancer drugs. ACS Applied Materials & Interfaces. 2017 Sep 6;9(35):29562-70. doi: 10.1021/acsami.7b09916
- 77. Visscher LE, Dang HP, Knackstedt MA, Hutmacher DW, Tran PA. 3D printed Polycaprolactone scaffolds with dual macro-microporosity for applications in local delivery of antibiotics. Materials science and engineering: C. 2018 Jun 1; 87:78-89. doi.org/10.1016/j. msec.2018.02.008
- 78. Calero Castro FJ, Yuste Y, Pereira S, Garvín MD, López García MÁ, Padillo FJ, de la Portilla F. Proof of concept, design, and manufacture via 3-D printing of a mesh with bactericidal capacity: Behaviour in vitro and in vivo. Journal of Tissue Engineering and Regenerative Medicine. 2019 Nov;13(11):1955-64. doi.org/10.1002/term.2944
- 79. Zhao C, Wang Z, Hua C, Ji J, Zhou Z, Fang Y, Weng D, Lu L, Pang Y, Sun W. Design, modeling and 3D printing of a personalized cervix tissue implant with protein release function. Biomedical Materials. 2020 May 29;15(4):045005. doi: 10.1088/1748-605X/ab7b3b
- 80. Gbureck U, Vorndran E, Müller FA, Barralet JE. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. Journal of Controlled Release. 2007 Sep 26;122(2):173-80. doi.org/10.1016/j.jconrel.2007.06.022
- 81. Wang Y, Sun L, Mei Z, Zhang F, He M, Fletcher C, Wang F, Yang J, Bi D, Jiang Y, Liu P. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma. Materials & Design. 2020 Jan 15; 186:108336. doi. org/10.1016/j.matdes.2019.108336
- 82. Leong KF, Phua KK, Chua CK, Du ZH, Teo KO. Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2001 Feb 1;215(2):191-2. doi.org/10.1243/0954411011533751
- 83. Martin V, Ribeiro IA, Alves MM, Gonçalves L, Claudio RA, Grenho L, Fernandes MH, Gomes P, Santos CF, Bettencourt AF. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanohydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Materials science and engineering: C. 2019 Aug 1; 101:15-26. doi.org/10.1016/j. msec.2019.03.056
- 84. Boyer CJ, Ballard DH, Weisman JA, Hurst S, McGee DJ, Mills DK, Woerner JE, Jammalamadaka U, Tappa K, Alexander JS. Three-dimensional printing antimicrobial and radiopaque constructs. 3D printing and additive manufacturing. 2018 Mar 1;5(1):29-36. doi. org/10.1089/3D-Printing.2017.0099
- 85. Zhao J, Xu X, Wang M, Wang L. A new model of a 3D-printed shell with convex drug release profile. Dissolute Technol. 2018 Feb 1;25(1):24-8. doi.org/10.14227/DT250118P24
- 86. Kadry H, Al-Hilal TA, Keshavarz A, Alam F, Xu C, Joy A, Ahsan F. Multipurposely filaments of HPMC for 3D printing of medications with tailored drug release and timed-absorption. International journal of pharmaceutics. 2018 Jun 10;544(1):285-96. doi.org/10.1016/j. ijpharm.2018.04.010
- 87. Yang Y, Wang H, Li H, Ou Z, Yang G. 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release. European Journal of Pharmaceutical Sciences. 2018 Mar 30;115:11-8. doi.org/10.1016/j.ejps.2018.01.005
- 88. Isreb A, Baj K, Wojsz M, Isreb M, Peak M, Alhnan MA. 3D printed oral theophylline doses with innovative 'radiator-like'design: Impact of polyethylene oxide (PEO) molecular weight. International journal of pharmaceutics. 2019 Jun 10; 564:98-105. doi.org/10.1016/j.

- ijpharm.2019.04.017
- Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. Journal of controlled release. 2015 Nov 10; 217:308-14. doi.org/10.1016/j.jconrel.2015.09.028
- 90. Pereira BC, Isreb A, Forbes RT, Dores F, Habashy R, Petit JB, Alhnan MA, Oga EF. 'Temporary Plasticiser': A novel solution to fabricate 3D printed patient-centred cardiovascular 'Polypill'architectures. European Journal of Pharmaceutics and Biopharmaceutics. 2019 Feb 1; 135:94-103. doi.org/10.1016/j.ejpb.2018.12.009
- 91. Li Q, Guan X, Cui M, Zhu Z, Chen K, Wen H, Jia D, Hou J, Xu W, Yang X, Pan W. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. International journal of pharmaceutics. 2018 Jan 15;535(1-2):325-32. doi.org/10.1016/j. ijpharm.2017.10.037
- 92. Huanbutta K, Sangnim T. Design and development of zero-order drug release gastroprotective floating tablets fabricated by 3D printing technology. Journal of Drug Delivery Science and Technology. 2019 Aug 1; 52:831-7. doi.org/10.1016/j.jddst.2019.06.004
- 93. Wen H, He B, Wang H, Chen F, Li P, Cui M, Li Q, Pan W, Yang X. Structure-based gastro-retentive and controlled-release drug delivery with novel 3D printing. AAPS Pharm SciTech. 2019 Feb; 20:1-2. doi.org/10.1208/s12249-018-1237-3
- 94. Fina F, Goyanes A, Madla CM, Awad A, Trenfield SJ, Kuek JM, Patel P, Gaisford S, Basit AW. 3D printing of drug-loaded gyroid lattices using selective laser sintering. International journal of pharmaceutics. 2018 Aug 25;547(1-2):44-52. doi.org/10.1016/j. ijpharm.2018.05.044
- 95. Breitkreutz J, Boos J. Paediatric and geriatric drug delivery. Expert opinion on drug delivery. 2007 Jan 1;4(1):37-45. doi. org/10.1517/17425247.4.1.37
- 96. Scoutaris N, Ross SA, Douroumis D. 3D printed "Starmix" drug loaded dosage forms for paediatric applications. Pharmaceutical research. 2018 Feb; 35:1-1. doi.org/10.1007/s11095-017-2284-2
- Chen G, Xu Y, Kwok PC, Kang L. Pharmaceutical applications of 3D printing. Additive Manufacturing. 2020 Aug 1; 34:101209. doi. org/10.1016/j.addma.2020.101209
- 98. Economidou SN, Pere CP, Reid A, Uddin MJ, Windmill JF, Lamprou DA, Douroumis D. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Materials Science and Engineering: C. 2019 Sep 1; 102:743-55. doi. org/10.1016/j.msec.2019.04.063
- 99. Ahlfeld T, Akkineni AR, Förster Y, Köhler T, Knaack S, Gelinsky M, Lode A. Design and fabrication of complex scaffolds for bone defect healing: combined 3D plotting of a calcium phosphate cement and a growth factor-loaded hydrogel. Annals of biomedical engineering. 2017 Jan; 45:224-36. doi.org/10.1007/s10439-016-1685-4
- 100. Uddin MJ, Scoutaris N, Economidou SN, Giraud C, Chowdhry BZ, Donnelly RF, Douroumis D. 3D printed microneedles for anticancer therapy of skin tumours. Materials Science and Engineering: C. 2020 Feb 1; 107:110248. doi.org/10.1016/j.msec.2019.110248
- 101. Xenikakis I, Tzimtzimis M, Tsongas K, Andreadis D, Demiri E, Tzetzis D, Fatouros DG. Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro. European Journal of Pharmaceutical Sciences. 2019 Sep 1; 137:104976. doi. org/10.1016/j.ejps.2019.104976
- 102. Niese S, Breitkreutz J, Quodbach J. Development of a dosing device for individualized dosing of orodispersible warfarin films. International Journal of Pharmaceutics. 2019 Apr 20; 561:314-23. doi.org/10.1016/j.ijpharm.2019.03.019
- 103. Verstraete G, Samaro A, Grymonpré W, Vanhoorne V, Van Snick B, Boone MN, Hellemans T, Van Hoorebeke L, Remon JP, Vervaet C. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. International journal of pharmaceutics. 2018 Jan 30;536(1):318-25. doi.org/10.1016/j.ijpharm.2017.12.002
- 104. Khaled SA, Alexander MR, Wildman RD, Wallace MJ, Sharpe S, Yoo J, Roberts CJ. 3D extrusion printing of high drug loading immediate release paracetamol tablets. International journal of

- pharmaceutics. 2018 Mar 1;538(1-2):223-30. doi.org/10.1016/j. ijpharm.2018.01.024
- 105. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. European Journal of Pharmaceutical Sciences. 2015 Feb 20; 68:11-7. doi.org/10.1016/j.ejps.2014.11.009
- 106. Wang CC, Tejwani MR, Roach WJ, Kay JL, Yoo J, Surprenant HL, Monkhouse DC, Pryor TJ. Development of near zero-order release dosage forms using three-dimensional printing (3-DP™) technology. Drug development and industrial pharmacy. 2006 Jan 1;32(3):367-76. doi.org/10.1080/03639040500519300
- 107. Yu DG, Branford-White C, Ma ZH, Zhu LM, Li XY, Yang XL. Novel drug delivery devices for providing linear release profiles fabricated by 3D-Printing. International journal of pharmaceutics. 2009 Mar 31;370(1-2):160-6. doi.org/10.1016/j.ijpharm.2008.12.008
- 108. Goyanes A, Fina F, Martorana A, Sedough D, Gaisford S, Basit AW. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. International journal of pharmaceutics. 2017 Jul 15;527(1-2):21-30. doi.org/10.1016/j.ijpharm.2017.05.021
- 109. Li Q, Guan X, Cui M, Zhu Z, Chen K, Wen H, Jia D, Hou J, Xu W, Yang X, Pan W. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. International journal of pharmaceutics. 2018 Jan 15;535(1-2):325-32. doi.org/10.1016/j. ijpharm.2017.10.037
- 110. Kyobula M, Adedeji A, Alexander MR, Saleh E, Wildman R, Ashcroft I, Gellert PR, Roberts CJ. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. Journal of Controlled release. 2017 Sep 10; 261:207-15. doi. org/10.1016/j.jconrel.2017.06.025
- 111. Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. International journal of pharmaceutics. 2016 Apr 30;503(1-2):207-12. doi. org/10.1016/j.ijpharm.2016.03.016
- 112. Clark EA, Alexander MR, Irvine DJ, Roberts CJ, Wallace MJ, Sharpe S, Yoo J, Hague RJ, Tuck CJ, Wildman RD. 3D printing of tablets using inkjet with UV photoinitiation. International Journal of Pharmaceutics. 2017 Aug 30;529(1-2):523-30. doi.org/10.1016/j. ijpharm.2017.06.085
- 113. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. Journal of controlled release. 2015 Nov 10; 217:308-14. doi.org/10.1016/j.jconrel.2015.09.028
- 114. Goyanes A, Wang J, Buanz A, Martínez-Pacheco R, Telford R, Gaisford S, Basit AW. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Molecular pharmaceutics. 2015 Nov 2;12(11):4077-84. doi: 0.1021/acs.molpharmaceut.5b00510
- 115. Goyanes A, Chang H, Sedough D, Hatton GB, Wang J, Buanz A, Gaisford S, Basit AW. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. International journal of pharmaceutics. 2015 Dec 30;496(2):414-20. doi.org/10.1016/j. ijpharm.2015.10.039
- 116. Lu Y, Mantha SN, Crowder DC, Chinchilla S, Shah KN, Yun YH, Wicker RB, Choi JW. Micro stereolithography and characterization of poly (propylene fumarate)-based drug-loaded microneedle arrays. Bio fabrication. 2015 Sep 30;7(4):045001. Doi: 10.1088/1758-5090/7/4/045001
- 117. Lim SH, Ng JY, Kang L. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger. Bio fabrication. 2017 Jan 10;9(1):015010. Doi: 10.1088/1758-5090/9/1/015010
- 118. Lim SH, Kathuria H, Tan JJ, Kang L. 3D printed drug delivery and testing systems—a passing fad or the future. Advanced drug delivery reviews. 2018 Jul 1; 132:139-68. doi.org/10.1016/j. addr.2018.05.006
- 119. Bloomquist CJ, Mecham MB, Paradzinsky MD, Janusziewicz R, Warner SB, Luft JC, Mecham SJ, Wang AZ, DeSimone JM. Controlling release from 3D printed medical devices using CLIP and drug-loaded

- liquid resins. Journal of Controlled Release. 2018 May 28; 278:9-23. doi.org/10.1016/j.jconrel.2018.03.026
- 120. Al-Kinani AA, Zidan G, Elsaid N, Seyfoddin A, Alani AW, Alany RG. Ophthalmic gels: Past, present and future. Advanced drug delivery reviews. 2018 Feb 15; 126:113-26. doi.org/10.1016/j. addr.2017.12.017
- 121. Lipp R. Novel drug delivery systems for steroidal hormones. Expert Opinion on Therapeutic Patents. 2001 Aug 1;11(8):1291-9. doi.org/10.1517/13543776.11.8.1291
- 122. Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. International journal of pharmaceutics. 2018 Mar 25;539(1-2):75-82. doi.org/10.1016/j. ijpharm.2018.01.036
- 123. Genina N, Holländer J, Jukarainen H, Mäkilä E, Salonen J, Sandler N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. European Journal of Pharmaceutical Sciences. 2016 Jul 30; 90:53-63. doi.org/10.1016/j.ejps.2015.11.005
- 124. Weisman JA, Ballard DH, Jammalamadaka U, Tappa K, Sumerel J, D'Agostino HB, Mills DK, Woodard PK. 3D printed antibiotic and chemotherapeutic eluting catheters for potential use in interventional radiology: in vitro proof of concept study. Academic radiology. 2019 Feb 1;26(2):270-4. doi.org/10.1016/j. acra.2018.03.022
- 125. Mathew E, Domínguez-Robles J, Stewart SA, Mancuso E, O'Donnell K, Larraneta E, Lamprou DA. Fused deposition modeling as an effective tool for anti-infective dialysis catheter fabrication. ACS Biomaterials Science & Engineering. 2019 Sep 23;5(11):6300-10. Doi: 10.1021/acsbiomaterials.9b01185
- 126. Sandler N, Salmela I, Fallarero A, Rosling A, Khajeheian M, Kolakovic R, Genina N, Nyman J, Vuorela P. Towards fabrication of 3D printed medical devices to prevent biofilm formation. International journal of pharmaceutics. 2014 Jan 1;459(1-2):62-4. doi.org/10.1016/j.ijpharm.2013.11.001
- 127. Yang N, Chen H, Han H, Shen Y, Gu S, He Y, Guo S. 3D printing and coating to fabricate a hollow bullet-shaped implant with porous surface for controlled cytoxan release. International journal of pharmaceutics. 2018 Dec 1;552(1-2):91-8. doi.org/10.1016/j. ijpharm.2018.09.042
- 128. Ballard DH, Jammalamadaka U, Tappa K, Weisman JA, Boyer CJ, Alexander JS, Woodard PK. 3D printing of surgical hernia meshes impregnated with contrast agents: in vitro proof of concept with imaging characteristics on computed tomography. 3D Printing in Medicine. 2018 Dec; 4:1-6. doi.org/10.1186/s41205-018-0037-4
- 129. Holländer J, Hakala R, Suominen J, Moritz N, Yliruusi J, Sandler N. 3D printed UV light cured polydimethylsiloxane devices for drug delivery. International journal of pharmaceutics. 2018 Jun 15;544(2):433-42. doi.org/10.1016/j.ijpharm.2017.11.016
- 130. Kempin W, Franz C, Koster LC, Schneider F, Bogdahn M, Weitschies W, Seidlitz A. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. European Journal of Pharmaceutics and Biopharmaceutics. 2017 Jun 1; 115:84-93. doi.org/10.1016/j.ejpb.2017.02.014
- 131. Arany P, Papp I, Zichar M, Csontos M, Elek J, Regdon Jr G, Budai I, Béres M, Gesztelyi R, Fehér P, Ujhelyi Z. In vitro tests of FDM 3D-printed diclofenac sodium-containing implants. Molecules. 2020 Dec 13;25(24):5889. doi.org/10.3390/molecules25245889

- 132. Stewart SA, Domínguez-Robles J, McIlorum VJ, Mancuso E, Lamprou DA, Donnelly RF, Larrañeta E. Development of a biodegradable subcutaneous implant for prolonged drug delivery using 3D printing. Pharmaceutics. 2020 Jan 28;12(2):105. doi. org/10.3390/pharmaceutics12020105
- 133. Trombetta, R.P., Ninomiya, M.J., El-Atawneh, I.M., Knapp, E.K., de Mesy Bentley, K.L., Dunman, P.M., Schwarz, E.M., Kates, S.L. and Awad, H.A., 2019. Calcium phosphate spacers for the local delivery of sitafloxacin and rifampin to treat orthopedic infections: efficacy and proof of concept in a mouse model of single-stage revision of device-associated osteomyelitis. *Pharmaceutics*, 11(2), p.94. doi. org/10.3390/pharmaceutics11020094
- 134. Lee JH, Baik JM, Yu YS, Kim JH, Ahn CB, Son KH, Kim JH, Choi ES, Lee JW. Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis. Scientific reports. 2020 May 5;10(1):7554. doi.org/10.1038/s41598-020-64573-5
- 135. Amekyeh H, Tarlochan F, Billa N. Practicality of 3D printed personalized medicines in therapeutics. Frontiers in Pharmacology. 2021 Apr 12; 12:646836. doi.org/10.3389/fphar.2021.646836
- 136. Kassem T, Sarkar T, Nguyen T, Saha D, Ahsan F. 3D printing in solid dosage forms and organ-on-chip applications. Biosensors. 2022 Mar 22;12(4):186. doi.org/10.3390/bios12040186
- 137. Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021 Feb 5;21(4):1109. doi.org/10.3390/s21041109
- 138. Domsta V, Seidlitz A. 3D-printing of drug-eluting implants: an overview of the current developments described in the literature. Molecules. 2021 Jul 2;26(13):4066. doi.org/10.3390/molecules26134066
- 139. Morrison RJ, Kashlan KN, Flanangan CL, Wright JK, Green GE, Hollister SJ, Weatherwax KJ. Regulatory considerations in the design and manufacturing of implantable 3D-printed medical devices. Clinical and translational science. 2015 Oct;8(5):594-600. doi. org/10.1111/cts.12315
- 140. Reddy CV, Venkatesh MP, Kumar P. First FDA approved 3D printed drug paved new path for increased precision in patient care. Applied Clinical Research, Clinical Trials and Regulatory Affairs. 2020 Aug 1;7(2):93-103. doi.org/10.2174/2213476X07666191226145027
- 141. Ricles LM, Coburn JC, Di Prima M, Oh SS. Regulating 3D-printed medical products. Science translational medicine. 2018 Oct 3;10(461): eaan6521. Doi: 10.1126/scitranslmed. aan65
- 142. Di Prima M, Coburn J, Hwang D, Kelly J, Khairuzzaman A, Ricles L. Additively manufactured medical products—the FDA perspective. 3D printing in medicine. 2016 Dec; 2:1-6. doi.org/10.1186/s41205-016-0005-9
- 143. Horst A, McDonald F. Uncertain but not unregulated: medical product regulation in the light of three-dimensional printed medical products. 3D Printing and Additive Manufacturing. 2020 Oct 1;7(5):248-57. doi.org/10.1089/3D-Printing.2020.007
- 144. Cardoso PH, Araújo ES. An Approach to 3D Printing Techniques, Polymer Materials, and Their Applications in the Production of Drug Delivery Systems. Compounds. 2024 Jan 17;4(1):71-105. doi. org/10.3390/compounds4010004
- 145. Mirza M, Iqbal Z. 3D printing in pharmaceuticals: Regulatory perspective. Current Pharmaceutical Design. 2018 Nov 1;24(42):5081-3. doi.org/10.2174/1381612825666181130163027

HOW TO CITE THIS ARTICLE: Gupta P, Bhati K, Baisoya K. Printing Health: Revolutionizing Pharmaceuticals through 3D Innovation. Int. J. Pharm. Sci. Drug Res. 2024;16(6):1032-1053. **DOI:** 10.25004/IJPSDR.2024.160614