Biogenic Fabrication of CuO Nanoparticles by Oxalis corniculata L. to Evaluate Antibacterial and Hypoglycemic Activity on Diabetic Mice
Abstract
Plant-based synthesis techniques of nanoparticles are interested because of their cheap production cost, non-toxic nature and eco-friendliness. Metal oxide nanomaterials combined with plant metabolites have synergistic effects on antibacterial and antidiabetic potential. Biogenic fabricated nanoparticles of copper oxide has been accomplished with Oxalis corniculata L. leaf extract. For the characterization of nanomaterial XRD, UV-visible spectroscopy and FTIR Spectroscopy were used. The size and morphology of the NPs were measured using FESEM and HRTEM. The antibacterial potential of synthesized CuO NP has been studied upon Gram (+ve) Staphylococcus aureus and Gram (-ve) Escherichia coli bacteria. Ameliorative action of CuO NPs was tested against streptozotocin-induced diabetes in Swiss albino mice. Synthesized CuO NPs were well crystalline and 20-36 nm sized spherical particles. A strong peak at A298 using UV-Vis was verified the synthesis of CuO NP. Synthesized nanomaterial exhibits satisfactory antibacterial efficacy on both bacterial strains. Data from biochemical, inflammatory and non-inflammatory cytokine profiles of the mice justify its ameliorative action and mode of anti-diabetic activity on Swiss albino mice.
Keywords:
Biogenic fabrication; CuO NP; antibacterial; antidiabetic; streptozotocin; cytokineDOI
https://doi.org/10.25004/IJPSDR.2024.160402References
Faisal S, Jan H, Alam I, Rizwan M, Hussain Z, Sultana K, Ali Z, Uddin MN. In Vivo Analgesic, Anti-Inflammatory, and Anti-Diabetic Screening of Bacopa monnieri Synthesized Copper Oxide Nanoparticles. ACS Omega. 2022;7(5):4071-4082. Available from: doi.org/10.1021/acsomega.1c05410
Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances. 2015;5(7):4993-5003. Available from: doi.org/10.1039/C4RA12784F
Nagajyothi PC, Muthuraman P, Sreekanth TV, Kim DH, Shim J. Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arabian journal of chemistry. 2017;10(2):215-25. Available from: doi.org/10.1016/j.arabjc.2016.01.011
Bala N, Sarkar M, Maiti M, Nandy P, Basu R, Das S. Phenolic compound-mediated single-step fabrication of copper oxide nanoparticles for elucidating their influence on anti-bacterial and catalytic activity. New Journal of Chemistry. 2017;41(11):4458-67. Available from: doi.org/10.1039/C6NJ04008J
Madkour LH, Nanoelectronic Materials: Fundamentals and Applications. Vol. 116, Springer, 2019, pp. 247-67. Available from: doi.org/10.1007/978-3-030-21621-4
Xiong TT, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M, Pierart A, Sobanska S. Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environmental Science & Technology. 2017;51(9):5242-51. Available from: doi.org/10.1021/acs.est.6b05546
Collins JF, Prohaska JR, Knutson MD. Metabolic crossroads of iron and copper. Nutrition reviews. 2010;68(3):133-47. Available from: doi.org/10.1111/j.1753-4887.2010.00271.x
Klotz LO, Kröncke KD, Buchczyk DP, Sies H. Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. The Journal of nutrition. 2003; 133(5):1448S-51S. Available from: doi.org/10.1093/jn/133.5.1448S
Dollwet, HHA and Sorenson, JRJ. Historic Uses of Copper Compounds in Medicine. Trace Elements in Medicine. 2nd Edition, The Humana Press Inc., Arkansas, 2001, pp. 80-87.
Hassan SE, Fouda A, Radwan AA, Salem SS, Barghoth MG, Awad MA, Abdo AM, El-Gamal MS. Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. JBIC Journal of Biological Inorganic Chemistry. 2019;24:377-93. Available from: doi.org/10.1007/s00775-019-01654-5
Priya M, Venkatesan R, Deepa S, Sana SS, Arumugam S, Karami AM, Vetcher AA, Kim SC. Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract. Scientific Reports. 2023; 13(1):18838. Available from: doi.org/10.1038/s41598-023-46002-5
Iqbal J, Andleeb A, Ashraf H, Meer B, Mehmood A, Jan H, Zaman G, Nadeem M, Drouet S, Fazal H, Giglioli-Guivarc'h N. Potential antimicrobial, antidiabetic, catalytic, antioxidant and ROS/RNS inhibitory activities of Silybum marianum mediated biosynthesized copper oxide nanoparticles. RSC advances. 2022;12(22):14069-83. Available from: doi.org/10.1039/d2ra01929a
Naz S, Gul A, Zia M, Javed R. Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Applied microbiology and biotechnology. 2023;107(4):1039-61. Available from: doi.org10.1007/s00253-023-12364-z
Ingle PU, Biswas JK, Mondal M, Rai MK, Kumar PS, Gade AK. Assessment of in vitro antimicrobial efficacy of biologically synthesized metal nanoparticles against pathogenic bacteria. Chemosphere. 2022;291:132676. Available from: doi.org/10.1016/ j.chemosphere.2021.132676
Kalaiyan G, Suresh S, Prabu KM, Thambidurai S, Kandasamy M, Pugazhenthiran N, Kumar SK, Muneeswaran T. Bactericidal activity of Moringa oleifera leaf extract assisted green synthesis of hierarchical copper oxide microspheres against pathogenic bacterial strains. Journal of Environmental Chemical Engineering. 2021;9(1):104847. Available from: doi.org/10.1016/j.jece.2020.104847
Faisal S, Jan H, Abdullah, Alam I, Rizwan M, Hussain Z, Sultana K, Ali Z, Uddin MN. In vivo analgesic, anti-inflammatory, and anti-diabetic screening of Bacopa monnieri-synthesized copper oxide nanoparticles. ACS omega. 2022;7(5):4071-82. Available from: doi.org/10.1021/acsomega.1c05410
Selvan DS, Kumar RS, Murugesan S, Shobana S, Rahiman AK. Antidiabetic activity of phytosynthesized Ag/CuO nanocomposites using Murraya koenigii and Zingiber officinale extracts. Journal of Drug Delivery Science and Technology. 2022;67:102838. Available from: doi.org/10.1016/j.jddst.2021.102838
Lee AP. Edible Wild Plants, Houghton Mifflin Company, New York City, 1977, pp. 104.
Arya VS. Indian Medicinal Plants, Edn 1, Vol. IV, Orient Longman Ltd. Publication, Hyderabad, 1995.
Kirtikar KR & Basu BD, Indian Medicinal Plants. Edn 2, Vol. I, International Book Distributors, Dehradun, India 1935.
Sreejith G, Jayasree M, Latha PG, Suja SR, Shyamal S, Shine VJ, Anuja GI, Sini S, Shikha P, Krishnakumar NM, Vilash V. Hepatoprotective activity of Oxalis corniculata L. ethanolic extract against paracetamol induced hepatotoxicity in Wistar rats and its in vitro antioxidant effects. Indian J Exp Biol. 2014;52(2):147-52.
Gusrizal G, Santosa SJ, Kunarti ES, Rusdiarso B. Dual function of p-hydroxybenzoic acid as reducing and capping agent in rapid and simple formation of stable silver nanoparticles. Int. J. ChemTech Res. 2016; 9(9):472-82.
Srikanth M, Swetha T, Veeresh B. Phytochemistry and pharmacology of Oxalis corniculata Linn.: A review. International journal of pharmaceutical sciences and research. 2012;3(11):4077. Available from: doi.org/10.13040/IJPSR.0975-8232.3(11).4077-85
Mahmoud AE, Al-Qahtani KM, Alflaij SO, Al-Qahtani SF, Alsamhan FA. Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Scientific Reports. 2021;11(1):12547. Available from: doi.org/10.1038/s41598-021-91093-7
Bhattacharjee S, Bardhan M, Ghosh S, Banerjee A, Pal K, Guha A, Mondal D, Basu R, Das S, Sinha SK. An in-vivo interpretation for validating the ameliorative efficacy of green synthesized MnO2 nano-conjugate using Carica Papaya (Papaya) leaf extract against acute hepatic damage. Journal of Drug Delivery Science and Technology. 2021;66:102774. Available from: doi.org/10.1016/j.jddst.2021.102774
Bala N. ZnO Nanoparticles bio-synthesized using Hibiscus subdariffa Leaf extract for Potential Medicinal Application in hyperbilirubinemia. Biological Forum-An International Journal. 2023;15(3):326-330.
Jillani S, Jelani M, Hassan NU, Ahmad S, Hafeez M. Synthesis, characterization and biological studies of copper oxide nanostructures. Materials Research Express. 2018; 5(4):045006. Available from: doi.org/10.1088/2053-1591/aab864
Yin M, Wu CK, Lou Y, Burda C, Koberstein JT, Zhu Y, O'Brien S. Copper oxide nanocrystals. Journal of the American Chemical Society. 2005;127(26):9506-11. Available from: doi.org/10.1021/ja050006u
Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Applied nanoscience. 2014;4:571-6. Available from: doi.org/10.1007/s13204-013-0233-x
Varughese A, Kaur R, Singh P. Green synthesis and characterization of copper oxide nanoparticles using Psidium guajava leaf extract. InIOP Conference Series: Materials Science and Engineering 2020;961(1):012011. IOP Publishing. Available from: doi.org/10.1088/1757-899X/961/1/012011
Karuppuchamy S, Jeong JM. Synthesis of nano-particles of TiO2 by simple aqueous route. Journal of Oleo Science. 2006;55(5):263-6. Available from: doi.org/10.5650/jos.55.263
Paczkowska M, Lewandowska K, Bednarski W, Mizera M, Podborska A, Krause A, Cielecka-Piontek J. Application of spectroscopic methods for identification (FT-IR, Raman spectroscopy) and determination (UV, EPR) of quercetin-3-O-rutinoside. Experimental and DFT based approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;140:132-9. Available from: doi.org/10.1016/j.saa.2014.12.050
Patel M, Rajhans S, Pandya HA, Mankad AU. FTIR spectroscopic studies on latex of Plumeria rubra comparative analysis of functional group after extraction. World Journal of Pharmaceutical and Medical Research. 2020;6(3):128-131.
Kumar R, Bhuvana T, Mishra G, Sharma A. A polyaniline wrapped aminated graphene composite on nickel foam as three-dimensional electrodes for enzymatic microfuel cells. RSC advances. 2016;6(77):73496-505. Available from: doi.org/10.1039/C6RA08195A
Plastun IL, Agandeeva KE, Bokarev AN, Zenkin NS. Diamond-like nanoparticles influence on flavonoids transport: molecular modelling. InSaratov Fall Meeting 2016: Optical Technologies in Biophysics and Medicine XVIII 2017;10336:131-138. SPIE. Available from: doi.org/10.1117/12.2267905
Pharmawati M, Wrasiati LP. Phytochemical screening and FTIR spectroscopy on crude extract from Enhalus acoroides leaves. Malaysian journal of analytical sciences. 2020; 24(1):70-7.
Sahoo S, Chakraborti CK, Behera PK, Mishra SC. FTIR and Raman spectroscopic investigations of a norfloxacin/carbopol934 polymerie suspension. Journal of Young Pharmacists. 2012;4(3):138-45. Available from: doi.org10.4103/0975-1483.100017
Carlini L, Chiarinelli J, Mattioli G, Castrovilli MC, Valentini V, De Stefanis A, Bauer EM, Bolognesi P, Avaldi L. Insights into the thermally activated cyclization mechanism in a linear phenylalanine-alanine dipeptide. The Journal of Physical Chemistry B. 2022; 126(16):2968-78. Available from: doi.org/10.1021/acs.jpcb.1c10736
Mekap SK, Mishra SK, Panda PK, Panda SS, Sarangi DK. A systematic review on Oxalis corniculata linn. A crop field weed with promising pharmacological activities. Asian J Pharm Clin Res. 2022;15(8):4-8. Available from: doi.org/10.22159/ajpcr. 2022.v15i8.45017
Dobrucka R. Antioxidant and catalytic activity of biosynthesized CuO nanoparticles using extract of Galeopsidis herba. Journal of Inorganic and Organometallic Polymers and Materials. 2018;28:812-9. Available from: doi.org/10.1007/s10904-017-0750-2
Bhattacharjee A, Ahmaruzzaman M. CuO nanostructures: facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase. RSC advances. 2016;6(47):41348-63. Available from: doi.org/10.1039/C6RA03624D
Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA. Synthesis and antimicrobial activity of copper nanoparticles. Materials letters. 2012;71:114-6. Available from: doi.org/10.1016/j.matlet.2011.12.055
Kruk T, Szczepanowicz K, Stefańska J, Socha RP, Warszyński P. Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids and surfaces B: Biointerfaces. 2015;128:17-22. Available from: doi.org/10.1016/j.colsurfb.2015.02.009
Priya M, Venkatesan R, Deepa S, Sana SS, Arumugam S, Karami AM, Vetcher AA, Kim SC. Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract. Scientific Reports. 2023; 13(1):18838. Available from: doi.org/10.1038/s41598-023-46002-5
Letchumanan D, Sok SP, Ibrahim S, Nagoor NH, Arshad NM. Plant-based biosynthesis of copper/copper oxide nanoparticles: an update on their applications in biomedicine, mechanisms, and toxicity. Biomolecules. 2021;11(4):564. Available from: doi.org/10.3390/biom11040564
Rehman A, Rehman A, Ahmad I. Antibacterial, antifungal, and insecticidal potentials of Oxalis corniculata and its isolated compounds. International journal of analytical chemistry. 2015;2015:842468. Available from: doi.org/10.1155/2015/842468
Beveridge TJ, Murray RG. Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of bacteriology. 1980;141(2):876-87. Available from: doi.org/10.1128/jb.141. 2.876-887.1980
Liang X, Sun M, Li L, Qiao R, Chen K, Xiao Q, Xu F. Preparation and antibacterial activities of polyaniline/Cu 0.05 Zn 0.95 O nanocomposites. Dalton Transactions. 2012; 41(9):2804-11. Available from: doi.org/10.1039/C2DT11823H
Tong G, Yulong M, Peng G, Zirong X. Antibacterial effects of the Cu (II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis. Veterinary microbiology. 2005;105(2):113-22. Available from: https://doi.org/10.1016/ j.vetmic.2004.11.003
Hassan MS, Amna T, Yang OB, El-Newehy MH, Al-Deyab SS, Khil MS. Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloids and Surfaces B: Biointerfaces. 2012;97:201-6. Available from: doi.org/10.1016/j.colsurfb.2012.04.032
Madkour LH. Ecofriendly green biosynthesized of metallic nanoparticles: bio-reduction mechanism, characterization and pharmaceutical applications in biotechnology industry. Global Drugs and Therapeutics. 2017;3:1-11. Available from: doi.org/10.15761/GDT.1000144
Umar MB, Daniel AI, Tijani JO, Akinleye RO, Smith E, Keyster M, Klein A. Hypoglycaemic activity of biosynthesized copper oxide nanoparticles in alloxan‐induced diabetic Wister rats. Endocrinology, Diabetes & Metabolism. 2023;6(3):e423. Available from: doi.org/10.1002/edm2.423
Rendell MS. Current and emerging gluconeogenesis inhibitors for the treatment of Type 2 diabetes. Expert Opinion on Pharmacotherapy. 2021;22(16):2167-79. Available from: doi.org/10.1080/14656566.2021.1958779
Lushchak O, Zayachkivska A, Vaiserman A. Metallic nanoantioxidants as potential therapeutics for type 2 diabetes: a hypothetical background and translational perspectives. Oxidative medicine and cellular longevity. 2018;2018:3407375. Available from: doi.org/10.1155/2018/3407375
Panchal SK, Wanyonyi S, Brown L. Selenium, vanadium, and chromium as micronutrients to improve metabolic syndrome. Current hypertension reports. 2017;19:1-11. Available from: doi.org/10.1007/s11906-017-0701-x
Necyk C, Zubach-Cassano L. Natural health products and diabetes: a practical review. Canadian journal of diabetes. 2017;41(6):642-7. Available from: doi.org/10.1016/j.jcjd.2017.06.014
Pansare K, Upasani C, Upangalwar A, Sonawane G, Patil C. Streptozotocin and alloxan induced diabetic nephropathy: protective role of natural products. Journal of the Maharaja Sayajirao University of Baroda. 2021;55(1):86-102.
jørklund G, Dadar M, Pivina L, Doşa MD, Semenova Y, Aaseth J. The role of zinc and copper in insulin resistance and diabetes mellitus. Current medicinal chemistry. 2020 Dec 1;27(39):6643-57. Available from: doi.org/10.2174/0929867326666190902122155
Roseline VP, Priya V. Antidiabetic Potential of Copper Oxide Nanoparticles Using Biological and Polymer Functionalized Method Mediated by Sarcostemma acidum Stem Extract. Oriental Journal of Chemistry. 2023;39(2):387-92. Available from: doi.org/10.13005/ojc/390218
Peungvicha P, Thirawarapan SS, Watanabe H. Possible mechanism of hypoglycemic effect of 4-hydroxybenzoic acid, a constituent of Pandanus odorus root. Japanese journal of pharmacology. 1998;78(3):395-8. Available from: doi.org/10.1254/jjp.78.395
Dutta A, Lahkar M, Handique C. Evaluation of antidiabetic activity of Oxalis corniculata in streptozotocin induced diabetic rats. Int J Basic Clin Pharmacol. 2016;5(5):2178-83. Available from: doi.org/10.18203/2319-2003.ijbcp20163258
Bopanna KN, Kannan J, Gadgil S, Balaraman R, Rathod SP. Antidiabetic and antihyperlipaemic effects of neem seed kernel powder on alloxan diabetic rabbits. Indian journal of Pharmacology. 1997;29(3):162-7.
Davern TJ, Scharschmidt BF. Biochemical liver tests. In: Sleisenger and Fordtran’s Gastrointestinal and liver disease: pathophysiology, diagnosis, management. Feldman M, Friedman LS, Sleisenger MH. Edn 7, Saunders, Philadelphia, 2002, pp.1227-1228.
Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocrine reviews. 2004;25(4):612-28. Available from: doi.org/10.1210/er.2003-0019
Mauer SM, Steffes MW, Michael AF, Brown DM. Studies of diabetic nephropathy in animals and man. Diabetes. 1976;25(2 SUPPL):850-7. PMID: 823065
Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102-10. Available from: doi.org/10.2337/diabetes.52.1.102
Navarro-Gonzalez JF, Mora-Fernandez C. The role of inflammatory cytokines in diabetic nephropathy. Journal of the American Society of Nephrology. 2008;19(3):433-42. Available from: doi.org/10.1681/ASN.2007091048
Gao X, Belmadani S, Picchi A, Xu X, Potter BJ, Tewari-Singh N, Capobianco S, Chilian WM, Zhang C. Tumor necrosis factor-α induces endothelial dysfunction in Leprdb mice. Circulation. 2007;115(2):245-54. Available from: doi.org/10.1161/ CIRCULATIONAHA.106.650671
Published


How to Cite
Issue
Section
Copyright (c) 2024 Niranjan Bala

This work is licensed under a Creative Commons Attribution 4.0 International License.