From Traditional Practices to Modern Interventions: Exploring Herbs Role in Treating Liver Cancer Following Its Signalling Pathways
Abstract
The foremost hepatocellular carcinoma is a primary reason for cancer-causing death globally. It ranks as the second main factor in male cancer-related mortality and the fourth nearly prevalent neoplasm overall. Compared to women, men are more likely to acquire hepatoma. Many risk factors have been related to liver cancer which include Cirrhosis, NAFLD, NASH, viral hepatitis, Intake of Alcohol, Aflatoxins, Obesity & Diabetes, Iron overload, Tobacco use, Exposure to certain chemicals, Family history, etc. Any chronic inflammatory liver disease can cause HCC, but cirrhosis is the pathophysiological process that is present in cases of the disease. There are several treatments approaches available for hepatocellular carcinoma (HCC), including surgery, immunotherapy, liver transplantation, and chemotherapy. However, these treatments have not significantly improved outcomes for HCC patients. An herbal medicine containing natural compounds has become a viable therapeutic choice for various diseases, including cancer. Among these, some herbal components are interested in treating HCC. All these below-mentioned plants have anticancer properties. They work against cancer cells through various pathways and are responsible for apoptosis, Antiproliferation, cytotoxicity, etc. All this study has been conducted on multiple cell lines in vitro studies. Herbal medicine is often more affordable and accessible than conventional cancer treatments, particularly in regions where access to healthcare is limited. Growing attention has been shown in researching and developing herbal medication used to treat cancer, leading to the discovery of new compounds and formulations with potential therapeutic benefits. In this aspect, we are highlighting various expected pathways to cure HCC.
Keywords:
Hepatocarcinogenesis, Cytotoxicity, NASH, Nanoemulsion, RT-PCRDOI
https://doi.org/10.25004/IJPSDR.2024.160422References
Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. E cancer medical science [Internet]. 2019 ;13(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753017/
Abdul Wahab SM, Jantan I, Haque MdA, Arshad L. Exploring the Leaves of Annona muricata L. as a Source of Potential Anti-inflammatory and Anticancer Agents. Frontiers in Pharmacology. 2018;9. Available from: http://dx.doi.org/10.3389/fphar.2018.00661
World Health Organization: WHO. Cancer [Internet]. Who. int. World Health Organization: WHO; 2019. Available from: https://www.who.int/health-topics/cancer
Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules. 2020 Nov 14;25(22):5319. Available from: http://dx.doi.org/10.3390/molecules25225319
YANG H, LIU N, LEE S. Ethanol Extract of Annona muricata. L Induces Liver Cancer Cell Apoptosis through ROS Pathway. Biomedical and Pharmacology Journal. 2016 Dec 22;9(3):919–25. Available from: http://dx.doi.org/10.13005/bpj/1030
Dehelean CA, Marcovici I, Soica C, Mioc M, Coricovac D, Iurciuc S, et al. Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules. 2021 Feb 19;26(4):1109. Available from: http://dx.doi.org/10.3390/molecules26041109
Kim DB, Lee DK, Cheon C, Ribeiro RIMA, Kim B. Natural Products for Liver Cancer Treatment: From Traditional Medicine to Modern Drug Discovery. Nutrients [Internet]. 2022 Oct 12;14(20):4252. Available from: https://pubmed.ncbi.nlm.nih.gov/36296934/
Mutakin M, Fauziati R, Fadhilah FN, Zuhrotun A, Amalia R, Hadisaputri YE. Pharmacological Activities of Soursop (Annona muricata Lin.). Molecules [Internet]. 2022 Feb 10;27(4):1201. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878098/
Zein N, Yassin F, Hassan A. The potential effect of Annona muricata and Cisplatin as antioxidants and antitumors in rats with liver cancer by induction of apoptosis through P13K AKT signaling pathway. Deleted Journal. 2023 Dec 1;19(1):37–51.
Nayak Y, Thomas S, Paul J, Shrungeswara A, Biswas S, Shah A, et al. Annona muricata fruit extract protects against diethylnitrosamine-induced hepatocellular cancer in rats. Asian Pacific Journal of Tropical Medicine. 2019;12(6):272. Available from: http://dx.doi.org/10.4103/1995-7645.261274
Siwan D, Nandave D, Nandave M. Artemisia vulgaris Linn: an updated review on its multiple biological activities. Future Journal of Pharmaceutical Sciences. 2022 Nov 18;8(1). Available from: http://dx.doi.org/10.1186/s43094-022-00436-2
Hardanto GR, Budijitno S, Hardian H. Effect of Artemisia vulgaris Extract on Granzyme Expression and Tumor Mass Diameter (Study of Adriamycin Cyclophosphamide Chemotherapy in Adenocarcinoma Mammae C3H Mice Model). Jurnal Kedokteran Brawijaya (e-journal). 2021 Aug 31;31(4):205–10. Available from: http://dx.doi.org/10.21776/ub.jkb.2021.031.04.1
Sugiharto J, Hardian, Budijitno S. Effect of Artemisia vulgaris Extract on P53 Expression and Caspase-8 Expression (Study on Adenocarcinoma Mammae C3H Mice Given Adriamycin- Cyclophosphamide Chemotherapy Regimen. Biomedical Journal of Indonesia. 2021 Apr 6;7(2):345–56. Available from: http://dx.doi.org/10.32539/bji.v7i2.300
Kamarya Y, Lijie X, Jinyao L. Chemical Constituents and their Anti-Tumor Mechanism of Plants from Artemisia. Anti-Cancer Agents in Medicinal Chemistry. 2021 Jul 8;21. Available from: http://dx.doi.org/10.2174/1871520621666210708125230
Lemmon MA, Schlessinger J. Cell Signaling by Receptor Tyrosine Kinases. Cell [Internet]. 2010 Jun;141(7):1117–34. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914105/
Sharmila K, Padma P. Activity of Artemisia Vulgaris on Hepatocellular Carcinoma (Hepg2) Cells. International Journal of Pharmacy and Pharmaceutical Sciences. 2013; 5:479–83.
Ali S, Ejaz M, Dar KK, S. Nasreen, Ashraf N, Gillani SF, et al. Evaluation of the chemopreventive and chemotherapeutic effect of Artemisia vulgaris extract against diethylnitrosamine-induced hepatocellular carcinogenesis in Balb C mice. Brazilian Journal of Biology. 2020 Sep 1;80(3):484–96. Available from: http://dx.doi.org/10.1590/1519-6984.185979.
Shekokar S, Nayak SU. A Phytopharmacological Review of Prospective of Bhrungaraj (Eclipta alba Hassk.). International Journal of Ayurvedic Medicine. 2017 Mar 26;8(1). Available from: http://dx.doi.org/10.47552/ijam.v8i1.892
Graham JG, Quinn ML, Fabricant DS, Farnsworth NR. Plants used against cancer – an extension of the work of Jonathan Hartwell. Journal of Ethnopharmacology [Internet]. 2000 Dec 1;73(3):347–77. Available from: https://www.sciencedirect.com/science/article/abs/pii/S037887410000341X
Yadav NK, Arya RK, Dev K, Sharma C, Hossain Z, Meena S, et al. Alcoholic Extract of Eclipta alba shows in vitro antioxidant and anticancer Activity without Exhibiting Toxicological Effects. Oxidative Medicine and Cellular Longevity. 2017; 2017:1–18. Available from: http://dx.doi.org/10.1155/2017/9094641
Pan B, Pan W, Lu Z, Xia C. Pharmacological Mechanisms Underlying the Hepatoprotective Effects of Eclipte herba on Hepatocellular Carcinoma. Evidence-based complementary and alternative medicine. 2021 Jul 16; 2021:1–17. Available from: http://dx.doi.org/10.1155/2021/5591402
Chaudhary H, Prasant Kumar Jena, Seshadri S. In Vivo Evaluation of Eclipta alba Extract as Anticancer and Multidrug Resistance Reversal Agent. Nutrition and cancer. 2014 Jun 4;66(5):904–13. Available from: http://dx.doi.org/10.1080/01635581.2014.916324
Suleria HAR, Butt MS, Khalid N, Sultan S, Raza A, Aleem M, et al. Garlic (Allium sativum): diet-based therapy of 21st century–a review. Asian Pacific Journal of Tropical Disease. 2015 Apr;5(4):271–8. Available from: http://dx.doi.org/10.1016/s2222-1808(14)60782-9
Ali M, Thomson M, Afzal M. Garlic and onions: their effect on eicosanoid metabolism and its clinical relevance. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA). 2000 Feb;62(2):55–73. Available from: http://dx.doi.org/10.1054/plef.1999.0124
Behzadi M, Fallah-Rostami F, Tabari M, Esfandiari B, Aghajanzadeh H. Immunomodulatory activity of aged garlic extract against implanted fibrosarcoma tumor in mice. North American Journal of Medical Sciences. 2013;5(3):207. Available from: http://dx.doi.org/10.4103/1947-2714.109191
Ng KTP, Guo DY, Cheng Q, Geng W, Ling CC, Li CX, et al. A Garlic Derivative, S-allylcysteine (SAC), Suppresses Proliferation and Metastasis of Hepatocellular Carcinoma. PLoS ONE [Internet]. 2012 Feb 28;7(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289621/
Wu CC, Sheen LY, Chen HW, Kuo WW, Tsai SJ, Lii CK. Differential Effects of Garlic Oil and Its Three Major Organosulfur Components on the Hepatic Detoxification System in Rats. Journal of Agricultural and Food Chemistry. 2002 Jan;50(2):378–83. Available from: http://dx.doi.org/10.1021/jf010937z
Ogar GO, Minari JB, Bello AJ, Chiwetalu J, Omogunwa OE, Oshikoya OS, Otaru MT, Anyanele CA. Influence of ethanolic extract of Allium sativum on TP53 gene and its anticancer potential in N-Nitrosodiethylamine (NDEA)-induced hepatocellular carcinoma in male albino rats. Iran J Basic Med Sci. 2022 Apr;25(4):497-505. doi: 10.22038/IJBMS.2022.62295.13787. PMID: 35656070; PMCID: PMC9150801.
Shahin YR, Elguindy NM, Amany Abdel Bary, Mahmoud Balbaa. The protective mechanism of Nigella sativa against diethylnitrosamine‐induced hepatocellular carcinoma through its antioxidant effect and EGFR/ERK1/2 signaling. Environmental Toxicology. 2018 Jun 19;33(8):885–98. Available from: http://dx.doi.org/10.1002/tox.22574
Haron AS, Syed Alwi SS, Saiful Yazan L, Abd Razak R, Ong YS, Zakarial Ansar FH, Roshini Alexander H. Cytotoxic Effect of Thymoquinone-Loaded Nanostructured Lipid Carrier (TQ-NLC) on Liver Cancer Cell Integrated with Hepatitis B Genome, Hep3B. Evid Based Complement Alternat Med. 2018 Aug 16;2018:1549805. doi: 10.1155/2018/1549805. PMID: 30186351; PMCID: PMC6116464.
Abd-Rabou AA, Edris AE. Cytotoxic, apoptotic, and genetic evaluations of Nigella sativa essential oil nanoemulsion against human hepatocellular carcinoma cell lines. Cancer Nanotechnology. 2021 Nov 4;12(1). Available from: http://dx.doi.org/10.1186/s12645-021-00101-y
Jehan S, Zhong C, Li G, Syed, Li D, Sui G. Thymoquinone Selectively Induces Hepatocellular Carcinoma Cell Apoptosis in Synergism with Clinical Therapeutics and Dependence of p53 Status. 2020 Sep 15;11. Available from: http://dx.doi.org/10.3389/fphar.2020.555283
1.Ahmad N, Basri A, Taha H. A review on the pharmacological activities and phytochemicals of Alpinia officinarum (Galangal) extracts derived from bioassay-guided fractionation and isolation. Pharmacognosy Reviews. 2017;11(21):43. Available from: http://dx.doi.org/10.4103/phrev.phrev_55_16
Fang D, Xiong Z, Xu J, Yin J, Luo R. Chemopreventive mechanisms of galangin against hepatocellular carcinoma: A review. Biomedicine & Pharmacotherapy. 2019 Jan; 109:2054–61. Available from: http://dx.doi.org/10.1016/j.biopha.2018.09.154
Abass SA, Abdel-Hamid NM, Abouzed TK, El-Shishtawy MM. Chemosensitizing effect of Alpinia officinarum rhizome extract in cisplatin-treated rats with hepatocellular carcinoma. Biomedicine & Pharmacotherapy. 2018 May; 101:710–8. Available from: http://dx.doi.org/10.1016/j.biopha.2018.02.128
Seemaisamy T, Hakkim F L, Sampath Gattu, Rameshkumar Neelamegam, Hamid A Bakshi, Luay Rashan, Mohammed Al-Buloshi, Sidgi Syed Anwar Abdo Hasson, Nagarajan K. Anti-Microbial and Anti-Cancer Activity of Aegle Marmelos and Gas Chromatography Coupled Spectrometry Analysis of Their Chemical Constituents International Journal of Pharmaceutical Sciences and Research 2019; 10:373-80
Husain Khan T, Sultana S. Effect of Aegle marmelos on DEN initiated and 2-AAF promoted hepatocarcinogenesis: a chemopreventive study. Toxicology Mechanisms and Methods. 2011 Mar 21;21(6):453–62. Available from: http://dx.doi.org/10.3109/15376516.2011.564677
Verma S, Theeshan Bahorun, Ranjan Kumar Singh, Aruoma OI, Kumar A. Effect ofAegle marmelos leaf extract on N-methylN-nitrosourea-induced hepatocarcinogensis in Balb/c mice. Pharmaceutical biology. 2013 Jul 16;51(10):1272–81. Available from: http://dx.doi.org/10.3109/13880209.2013.786100
Iweala EJ, Uche ME, Dike ED, Etumnu LR, Dokunmu TM, Oluwapelumi AE, et al. Curcuma longa (Turmeric): Ethnomedicinal uses, phytochemistry, pharmacological activities and toxicity profiles—A review. Pharmacological Research - Modern Chinese Medicine. 2023 Mar; 6:100222. Available from: http://dx.doi.org/10.1016/j.prmcm.2023.100222
Xu MX, Zhao L, Deng C, Yang L, Wang Y, Guo T, Li L, Lin J, Zhang L. Curcumin suppresses proliferation and induces apoptosis of human hepatocellular carcinoma cells via the wnt signaling pathway. Int J Oncol. 2013 Dec;43(6):1951-9. doi: 10.3892/ijo.2013.2107. Epub 2013 Sep 23. PMID: 24064724.
Elmansi AM, El-Karef AA, Shishtawy MMEl, Eissa LA. Hepatoprotective Effect of Curcumin on Hepatocellular Carcinoma Through Autophagic and Apoptic Pathways. Ann Hepatol. 2017 Jul-Aug;16(4):607-618. doi: 10.5604/01.3001.0010.0307. PMID: 28611265.
Li Y, Shi X, Zhang J, Zhang X, Martin RCG. Hepatic protection and anticancer activity of curcuma: A potential chemopreventive strategy against hepatocellular carcinoma. International Journal of Oncology [Internet]. 2013 Nov 21;44(2):505–13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898719/
Pan Z, Zhuang J, Ji C, Cai Z, Liao W, Huang Z. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncology Letters. 2018 Feb 7; Available from: http://dx.doi.org/10.3892/ol.2018.7988
Tan JW, Israf DA, Tham CL. Major Bioactive Compounds in Essential Oils Extracted from the Rhizomes of Zingiber Zerumbet (L) Smith: A Mini-Review on the Anti-allergic and Immunomodulatory Properties. Frontiers in Pharmacology [Internet]. 2018 Jun 20;9. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2018.00652/full
Ali H, Hasi RY, Islam M, Haque MS, Alkhanani MF, Almalki AH, et al. Antioxidant, cytotoxic and apoptotic activities of the rhizome of Zingiber zerumbet Linn. in Ehrlich ascites carcinoma bearing Swiss albino mice. Scientific Reports. 2022 Jul 15;12(1). Available from: http://dx.doi.org/10.1038/s41598-022-15498-8
Samad N, Abdul A, Rahman H, Abdullah R, Tengku Ibrahim T, Othman H. Antiproliferative and antiangiogenic effects of zerumbone from Zingiber zerumbet L. Smith in sprague dawley rat model of hepatocellular carcinoma. Pharmacognosy Magazine. 2019;15(61):277. Available from: http://dx.doi.org/10.4103/pm.pm_118_18
Rebouissou S, Nault JC. Advances in molecular classification and precision oncology in hepatocellular carcinoma. Journal of Hepatology. 2020 Feb;72(2):215–29. Available from: http://dx.doi.org/10.1016/j.jhep.2019.08.017
Juaid N, Amin A, Abdalla A, Reese K, Alamri Z, Moulay M, et al. Anti-Hepatocellular Carcinoma Biomolecules: Molecular Targets Insights. International Journal of Molecular Sciences. 2021 Oct 6;22(19):10774. Available from: http://dx.doi.org/10.3390/ijms221910774
Yu LX, Ling Y, Wang HY. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. npj Precision Oncology. 2018 Feb 23;2(1). Available from: http://dx.doi.org/10.1038/s41698-018-0048-z
Hernandez–Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the Microenvironment in the Pathogenesis and Treatment of Hepatocellular Carcinoma. Gastroenterology. 2013; 144:512–27. Available from: http://dx.doi.org/10.1053/j.gastro.2013.01.002
Toh TB, Lim JJ, Chow EKH. Epigenetics of hepatocellular carcinoma. Clinical and Translational Medicine [Internet]. 2019 May 6; 8:13. Available from: Available from: http://dx.doi.org/10.1186/s40169-019-0230-0
Manning G. The Protein Kinase Complement of the Human Genome. Science. 2002 Dec 6;298(5600):1912–34. Available from: http://dx.doi.org/10.1126/science.1075762
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer Genome Landscapes. Science. 2013 Mar 28;339(6127):1546–58. Available from: http://dx.doi.org/10.1126/science.1235122
Lemmon MA, Schlessinger J. Cell Signaling by Receptor Tyrosine Kinases. Cell [Internet]. 2010 Jun;141(7):1117–34. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914105/
Li E, Hristova K. Role of Receptor Tyrosine Kinase Transmembrane Domains in Cell Signaling and Human Pathologies†. Biochemistry. 2006 May;45(20):6241–51. Available from: http://dx.doi.org/10.1021/bi060609y
Hubbard SR, Miller WT. Receptor tyrosine kinases: mechanisms of activation and signaling. Current Opinion in Cell Biology [Internet]. 2007 Apr;19(2):117–23. Available from: http://dx.doi.org/10.1016/j.ceb.2007.02.010
Hubbard SR. Juxtamembrane autoinhibition in receptor tyrosine kinases. Nature Reviews Molecular Cell Biology. 2004 Jun;5(6):464–71. Available from: http://dx.doi.org/10.1038/nrm1399
Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990 Apr;61(2):203–12. Available from: http://dx.doi.org/10.1016/0092-8674(90)90801-k
Ayati A, Moghimi S, Salarinejad S, Safavi M, Pouramiri B, Foroumadi A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorganic Chemistry. 2020 Jun; 99:103811. Available from: http://dx.doi.org/10.1016/j.bioorg.2020.103811
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Molecular Oncology. 2017 Nov 27;12(1):3–20. Available from: http://dx.doi.org/10.1002/1878-0261.12155
Schlessinger J. Receptor Tyrosine Kinases: Legacy of the First Two Decades. Cold Spring Harbor Perspectives in Biology. 2014 Mar 1;6(3):a008912–2. Available from: http://dx.doi.org/10.1101/cshperspect.a008912
Liu S, Wang Y, Han Y, Xia W, Zhang L, Xu S, et al. EREG-driven Head and Neck Squamous Cell Carcinoma oncogenesis exhibits higher sensitivity to Erlotinib therapy. Theranostics. 2020 Jan 1;10(23):10589–605. Available from: http://dx.doi.org/10.7150/thno.47176
Dong Z, Sun D, Yang Y, Zhou W, Wu R, Wang X, et al. TMPRSS4 Drives Angiogenesis in Hepatocellular Carcinoma by Promoting HB‐EGF Expression and Proteolytic Cleavage. Hepatology. 2020 Jun 30;72(3):923–39. Available from: http://dx.doi.org/10.1002/hep.31076
Liu Q, Huang J, Yan W, Liu Z, Liu S, Fang W. FGFR families: biological functions and therapeutic interventions in tumors. MedComm. 2023 Sep 23;4(5). Available from: http://dx.doi.org/10.1002/mco2.367
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, et al. FGF/FGFR signaling in health and disease. Signal Transduction and Targeted Therapy. 2020 Sep 2;5(1). Available from: http://dx.doi.org/10.1038/s41392-020-00222-7
Qiu WH. Over-expression of fibroblast growth factor receptor 3 in human hepatocellular carcinoma. World Journal of Gastroenterology. 2005;11(34):5266. Available from: http://dx.doi.org/10.3748/wjg.v11.i34.5266
Nissen LJ, Cao R, Hedlund EM, Wang Z, Zhao X, Wetterskog D, et al. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. Journal of Clinical Investigation. 2007 Oct 1;117(10):2766–77. Available from: http://dx.doi.org/10.1172/jci32479
Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harbor perspectives in medicine [Internet]. 2012;2(7): a006502. Available from: http://dx.doi.org/10.1101/cshperspect.a006502
Chen TT, Luque A, Lee S, Anderson SM, Segura T, Iruela-Arispe ML. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. Journal of Cell Biology. 2010 Feb 22;188(4):595–609. Available from: http://dx.doi.org/10.1083/jcb.200906044
Schoenleber SJ, Kurtz DM, Talwalkar JA, Roberts LR, Gores GJ. Prognostic role of vascular endothelial growth factor in hepatocellular carcinoma: systematic review and meta-analysis. British Journal of Cancer. 2009 Apr 28;100(9):1385–92. Available from: http://dx.doi.org/10.1038/sj.bjc.6605017
Woo Sung Moon, Ki Hoon Rhyu, Myoung Jae Kang, Dong Geun Lee, Hee Chul Yu, Jung Ho Yeum, et al. Overexpression of VEGF and Angiopoietin 2: A Key to High Vascularity of Hepatocellular Carcinoma? Modern Pathology. 2003 Jun 1;16(6):552–7. Available from: http://dx.doi.org/10.1097/01.mp.0000071841.17900.69
Miura H, Miyazaki T, Kuroda M, Oka T, Rikuo Machinami, Kodama T, et al. Increased expression of vascular endothelial growth factor in human hepatocellular carcinoma. 1997 Nov 1;27(5):854–61. Available from: http://dx.doi.org/10.1016/s0168-8278(97)80323-6
Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nature Reviews Molecular Cell Biology. 2020 Jun 23;21(10):607–32. Available from: http://dx.doi.org/10.1038/s41580-020-0255-7
Yue J, López JM. Understanding MAPK Signaling Pathways in Apoptosis. International Journal of Molecular Sciences. 2020 Mar 28;21(7):2346. Available from: http://dx.doi.org/10.3390/ijms21072346
Li L, Zhao GD, Shi Z, Qi LL, Zhou LY, Fu ZX. The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncology Letters. 2016 Sep 9;12(5):3045–50. Available from: http://dx.doi.org/10.3892/ol.2016.5110
Lenormand P, Sardet C, Pagès G, L’Allemain G, Brunet A, Pouysségur J. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. Journal of Cell Biology [Internet]. 1993 Sep 1;122(5):1079–88. Available from: Available from: http://dx.doi.org/10.1083/jcb.122.5.1079
Manning BD, Cantley LC. AKT/PKB Signaling: Navigating Downstream. Cell. 2007 Jun;129(7):1261–74. Available from: http://dx.doi.org/10.1016/j.cell.2007.06.009
Sever R, Brugge JS. Signal Transduction in Cancer. Cold Spring Harbor Perspectives in Medicine. 2015 Apr 1;5(4):a006098–8. Available from: http://dx.doi.org/10.1101/cshperspect.a006098
Chen J, Chen J, Huang J, Li Z, Gong Y, Zou B, et al. HIF-2α upregulation mediated by hypoxia promotes NAFLD-HCC progression by activating lipid synthesis via the PI3K-AKT-mTOR pathway. Aging. 2019 Dec 4;11(23):10839–60. Available from: http://dx.doi.org/10.18632/aging.102488
Bamodu OA, Chang HL, Ong JR, Lee WH, Yeh CT, Tsai JT. Elevated PDK1 Expression Drives PI3K/AKT/MTOR Signaling Promotes Radiation-Resistant and Dedifferentiated Phenotype of Hepatocellular Carcinoma. Cells. 2020 Mar 18;9(3):746. Available from: http://dx.doi.org/10.3390/cells9030746
Liu D, Chen LX, Zhao H, Vaziri ND, Ma S, Zhao YY. Small molecules from natural products targeting the Wnt/β-catenin pathway as a therapeutic strategy. Biomedicine & Pharmacotherapy. 2019 Sep 1; 117:108990–0. Available from: http://dx.doi.org/10.1016/j.biopha.2019.108990
He S, Tang S. WNT/β-catenin signaling in the development of liver cancers. Biomedicine & Pharmacotherapy. 2020 Dec; 132:110851. Available from: http://dx.doi.org/10.1016/j.biopha.2020.110851
Harold CM, Buhagiar AF, Cheng Y, Baserga SJ. Ribosomal RNA Transcription Regulation in Breast Cancer. Genes [Internet]. 2021; 12:502. Available from: http://dx.doi.org/10.3390/genes12040502
Grainger S, Nguyen N, Richter J, Setayesh J, Lonquich B, Oon CH, et al. EGFR is required for Wnt9a–Fzd9b signalling specificity in haematopoietic stem cells. Nature Cell Biology [Internet]. 2019; 21:721–30. Available from: https://www.nature.com/articles/s41556-019-0330-5
Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. β-Catenin signaling in hepatocellular carcinoma. Journal of Clinical Investigation. 2022 Feb 15;132(4). Available from: http://dx.doi.org/10.1172/jci154515
Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. Journal of Hematology & Oncology. 2020 Dec;13(1). Available from: http://dx.doi.org/10.1186/s13045-020-00990-3
Harada N, Oshima H, Masahiro Katoh, Tamai Y, Oshima M, Taketo MM. Hepatocarcinogenesis in Mice with β-Catenin and Ha-Ras Gene Mutations. Cancer research. 2004 Jan 1;64(1):48–54. Available from: http://dx.doi.org/10.1158/0008-5472.can-03-2123
Pfister AS, Kühl M. Of Wnts and Ribosomes. Progress in Molecular Biology and Translational Science [Internet]. 2018;131–55. Available from: https://www.sciencedirect.com/science/article/pii/S1877117317301849
Luo X, He X, Zhang X, Zhao X, Zhang Y, Shi Y, et al. Hepatocellular carcinoma: signaling pathways, targeted therapy, and immunotherapy. MedComm [Internet]. 2024; 5(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838672
Hin Tang JJ, Hao Thng DK, Lim JJ, Toh TB. JAK/STAT signaling in hepatocellular carcinoma. Hepatic Oncology. 2020; 7: HEP18. Available from: http://dx.doi.org/10.2217/hep-2020-0001
Rah B, Rather RA, Bhat GR, Baba AB, Mushtaq I, Farooq M, et al. JAK/STAT Signaling: Molecular Targets, Therapeutic Opportunities, and Limitations of Targeted Inhibitions in Solid Malignancies. Frontiers in Pharmacology. 2022 Mar 24;13. Available from: http://dx.doi.org/10.3389/fphar.2022.821344
Published


How to Cite
Issue
Section
Copyright (c) 2024 Manswi R. Deore, Devendra S. Shirode, Vaishnavi P. Patil, Gunjansing Rajput

This work is licensed under a Creative Commons Attribution 4.0 International License.