The Multifaceted Role of Iron Oxide Nanoparticles in Advancing Modern Pharmaceutical Technology and Drug Delivery Systems
Abstract
Iron oxide nanoparticles (IONPs) have emerged as versatile tools in modern pharmaceutical technology, significantly impacting drug delivery systems, diagnostics, and therapeutic interventions. These nanoparticles possess unique physicochemical properties, including high surface area, biocompatibility, and magnetic reactivity, making them ideal candidates for various biomedical applications. The incorporation of IONPs in pharmaceutical formulations has opened new avenues for precise drug delivery, imaging, and theranostics, addressing the limitations of traditional drug administration and diagnostics. Recent years have seen intensified research efforts focused on harnessing the capabilities of IONPs to enhance the efficacy, specificity, and safety of pharmaceutical interventions. The versatility of IONPs allows their use in combination therapies, as contrast agents for diagnostic imaging, and as carriers for targeted drug delivery to diseased sites. Additionally, their magnetic properties enable precise control over their movement within the body, facilitating targeted drug delivery and imaging with minimal side effects. This paper reviews the diverse applications of IONPs in modern pharmaceutical technology, emphasizing their role in advancing drug delivery systems and diagnostic techniques. By examining recent advancements and case studies, we aim to provide a comprehensive understanding of the potential benefits and challenges associated with the integration of IONPs in pharmaceutical research and development.
Keywords:
Iron oxide nanoparticles (IONPs), Pharmaceutical technology, Drug delivery systems, Diagnostics, TheragnosticDOI
https://doi.org/10.25004/IJPSDR.2024.160423References
Kvitek L, Vanickova M, Panacek A, Soukupova J, Dittrich M, Valentova E, Prucek R, Bancirova M, Milde D, Zboril R. Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. The Journal of Physical Chemistry C. 2009 Mar 19;113(11):4296-300. https://doi.org/10.1021/jp808645e
Khan M, Khan MS, Borah KK, Goswami Y, Hakeem KR, Chakrabartty I. The potential exposure and hazards of metal-based nanoparticles on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: a review. Environmental Advances. 2021 Dec 1;6:100128. https://www.sciencedirect.com/science/article/pii/S2666765721000995
Panacek A, Prucek R, Safarova D, Dittrich M, Richtrova J, Benickova K, Zboril R, Kvitek L. Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environmental science & technology. 2011 Jun 1;45(11):4974-9. https://pubs.acs.org/doi/abs/10.1021/es104216b
Vadlapudi V, Kaladhar DS, Behara M, Sujatha B, Naidu GK. Synthesis of green metallic nanoparticles (NPs) and applications. Orient. J. Chem. 2013;29(4):1589-95. https://pdfs.semanticscholar.org/e6fd/c2f13119a57f0977b6f653056f09641c0335.pdf
Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE transactions on magnetics. 1981 Mar;17(2):1247-8. https://ieeexplore.ieee.org/abstract/document/1061188/
Sugimoto T, Matijević E. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. Journal of Colloid and Interface Science. 1980 Mar 1;74(1):227-43. https://www.sciencedirect.com/science/article/pii/0021979780901873
Brinker CJ, Scherer GW. Sol-gel science: the physics and chemistry of sol-gel processing. Academic press; 2013 Oct 22.
Byrappa K, Yoshimura M. Handbook of hydrothermal technology. William Andrew; 2012 Dec 31. Available from: https://books.google.com/books?hl=en&lr=&id=vA5tXzLsHioC&oi=fnd&pg=PP1&dq=Byrappa,+K.,+%26+Yoshimura,+M.+(2001).+Handbook+of+Hydrothermal+Technology.+William+Andrew+Publishing.&ots=czlg8Yflpe&sig=9-RwO6lPCcy_j2S46YcXDc0Zae8
Reetz MT, Helbig W. Size-selective synthesis of nanostructured transition metal clusters. Journal of the American Chemical Society. 1994 Aug;116(16):7401-2. https://doi.org/10.1021/ja00095a051
Mafune F, Kohno JY, Takeda Y, Kondow T. Formation of stable platinum nanoparticles by laser ablation in water. The Journal of Physical Chemistry B. 2003 May 8;107(18):4218-23. https://doi.org/10.1021/jp021580k
Rockenberger J. A new non-hydrolic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. https://escholarship.org/uc/item/01d7g8zv
Pileni MP. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature materials. 2003 Mar 1;2(3):145-50. Available from: https://www.nature.com/articles/nmat817
Caruso F, Caruso RA, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science. 1998 Nov 6;282(5391):1111-4. https://www.science.org/doi/abs/10.1126/science.282.5391.1111
Matsumura Y. A new concept for macromolecular therapies in cancer chemotherapy: mechanisms of tumor tropic accumulation of proteins and the antitumor agents smancs. Cancer Res. 1986;6:6397-2. https://aacrjournals.org/cancerres/article-abstract/46/12_Part_1/6387/490212
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nano-enabled medical applications. 2020 Nov 23:61-91.
Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lubbe AS. Locoregional cancer treatment with magnetic drug targeting. Cancer research. 2000 Dec 1;60(23):6641-8. https://aacrjournals.org/cancerres/article-abstract/60/23/6641/506899
Gomte SS, Agnihotri TG, Khopade S, Jain A. Exploring the potential of pH-sensitive polymers in targeted drug delivery. Journal of Biomaterials Science, Polymer Edition. 2024 Jan 22;35(2):228-68.
Aghanejad A, Abdollahiyan P, Barar J, Omidi Y. Multifunctional Graphene‐Based Nanocomposites for Cancer Diagnosis and Therapy. Carbon Nanomaterials for Bioimaging, Bioanalysis, and Therapy. 2019 Jan 9:289-308. https://doi.org/10.1002/9781119373476.ch11
Ting CY, Fan CH, Liu HL, Huang CY, Hsieh HY, Yen TC, Wei KC, Yeh CK. Concurrent blood–brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials. 2012 Jan 1;33(2):704-12. https://www.sciencedirect.com/science/article/pii/S0142961211012348
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. biomaterials. 2005 Jun 1;26(18):3995-4021. https://www.sciencedirect.com/science/article/pii/S0142961204009317
Hao N, Yang H, Li L, Li L, Tang F. The shape effect of mesoporous silica nanoparticles on intracellular reactive oxygen species in A375 cells. New Journal of Chemistry. 2014;38(9):4258-66. https://pubs.rsc.org/en/content/articlehtml/2014/nj/c4nj00736k
Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society. 2006 Feb 15;128(6):2115-20. https://pubs.acs.org/doi/abs/10.1021/ja057254a
Chen YS, Hung YC, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale research letters. 2009 Aug;4:858-64. https://link.springer.com/article/10.1007/s11671-009-9334-6
Lu AH, Salabas EE, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte chemie international edition. 2007 Feb 12;46(8):1222-44. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200602866
Zhao Z, Li M, Zeng J, Huo L, Liu K, Wei R, Ni K, Gao J. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioactive Materials. 2022 Jun 1;12:214-45. https://www.sciencedirect.com/science/article/pii/S2452199X21004783
Pillarisetti S, Uthaman S, Huh KM, Koh YS, Lee S, Park IK. Multimodal composite iron oxide nanoparticles for biomedical applications. Tissue Engineering and Regenerative Medicine. 2019 Oct;16:451-65. https://link.springer.com/article/10.1007/s13770-019-00218-7
Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, Muldoon LL, Neuwelt EA. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. Journal of Cerebral Blood Flow & Metabolism. 2010 Jan;30(1):15-35. https://journals.sagepub.com/doi/abs/10.1038/jcbfm.2009.192
Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, Muldoon LL, Neuwelt EA. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. Journal of Cerebral Blood Flow & Metabolism. 2010 Jan;30(1):15-35. https://doi.org/10.1038/jcbfm.2009.192
Alphandéry E. Iron oxide nanoparticles as multimodal imaging tools. RSC advances. 2019;9(69):40577-87. https://pubs.rsc.org/en/content/articlehtml/2019/ra/c9ra08612a
Miao Q, Mengjie X, Di Huang YW, Yanfeng M, Weiyi C. Iron oxide nanoparticles in the application of magnetic resonance imaging. Progress in Chemistry. 2020 Sep 24;32(9):1264. https://manu56.magtech.com.cn/progchem/EN/abstract/abstract12408.shtml
Jeon M, Halbert MV, Stephen ZR, Zhang M. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and prospectives. Advanced Materials. 2021 Jun;33(23):1906539. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201906539
Teng Y, Du Y, Shi J, Pong PW. Magnetic iron oxide nanoparticle-hollow mesoporous silica Spheres: Fabrication and potential application in drug delivery. Current Applied Physics. 2020 Feb 1;20(2):320-5. https://www.sciencedirect.com/science/article/pii/S1567173919303025
Fu X, Wang X, Zhou S, Zhang Y. IONP-doped nanoparticles for highly effective NIR-controlled drug release and combination tumor therapy. International Journal of Nanomedicine. 2017 May 16:3751-66. https://www.tandfonline.com/doi/abs/10.2147/IJN.S113963
Hola K, Markova Z, Zoppellaro G, Tucek J, Zboril R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnology advances. 2015 Nov 1;33(6):1162-76. https://www.sciencedirect.com/science/article/pii/S0734975015000282
Abdulwahid FS, Haider AJ, Al-Musawi S. Iron oxide nanoparticles (IONPs): synthesis, surface functionalization, and targeting drug delivery strategies: mini-review. Nano. 2022 Oct 13;17(11):2230007. https://doi.org/10.1142/S1793292022300079
Ajinkya N, Yu X, Kaithal P, Luo H, Somani P, Ramakrishna S. Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future. Materials. 2020 Oct 18;13(20):4644. https://www.mdpi.com/1996-1944/13/20/4644
Stanicki D, Vangijzegem T, Ternad I, Laurent S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opinion on Drug Delivery. 2022 Mar 4;19(3):321-35. https://www.tandfonline.com/doi/abs/10.1080/17425247.2022.2047020
Chen Z, Lu A, Zhao Y, Zhu L. Preparation of HR magnetic IONPs for drug delivery. Micro & Nano Letters. 2019 Jan;14(1):38-41. https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/mnl.2018.5263
Kreuzer P, Landgrebe M, Wittmann M, Schecklmann M, Poeppl TB, Hajak G, Langguth B. Hypothermia associated with antipsychotic drug use: a clinical case series and review of current literature. The Journal of Clinical Pharmacology. 2012 Jul;52(7):1090-7. https://doi.org/10.1177/0091270011409233
Karnatovskaia LV, Wartenberg KE, Freeman WD. Therapeutic hypothermia for neuroprotection: history, mechanisms, risks, and clinical applications. The Neurohospitalist. 2014 Jul;4(3):153-63. https://doi.org/10.1177/1941874413519802
Wagner CL, Eicher DJ, Katikaneni LD, Barbosa E, Holden KR. The use of hypothermia: a role in the treatment of neonatal asphyxia?. Pediatric neurology. 1999 Jul 1;21(1):429-43. https://www.sciencedirect.com/science/article/pii/S088789949900020X
Polderman KH. Induced hypothermia and fever control for prevention and treatment of neurological injuries. The Lancet. 2008 Jun 7;371(9628):1955-69. https://www.thelancet.com/article/S0140-6736(08)60837-5/abstract
Polderman KH. Application of therapeutic hypothermia in the ICU: opportunities and pitfalls of a promising treatment modality. Part 1: Indications and evidence. Intensive care medicine. 2004 Apr;30:556-75. https://link.springer.com/article/10.1007/s00134-003-2152-x
Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. International Journal of Hyperthermia. 2018 Nov 17;34(8):1316-28. https://www.tandfonline.com/doi/abs/10.1080/02656736.2018.1430867
Kreuzer P, Landgrebe M, Wittmann M, Schecklmann M, Poeppl TB, Hajak G, Langguth B. Hypothermia associated with antipsychotic drug use: a clinical case series and review of current literature. The Journal of Clinical Pharmacology. 2012 Jul;52(7):1090-7. https://accp1.onlinelibrary.wiley.com/doi/abs/10.1177/0091270011409233
Nadeem M, Khan R, Shah N, Bangash IR, Abbasi BH, Hano C, Liu C, Ullah S, Hashmi SS, Nadhman A, Celli J. A review of microbial mediated iron nanoparticles (IONPs) and its biomedical applications. Nanomaterials. 2021 Dec 31;12(1):130. https://www.mdpi.com/2079-4991/12/1/130
Tian T, Shi X, Cheng L, Luo Y, Dong Z, Gong H, Xu L, Zhong Z, Peng R, Liu Z. Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS applied materials & interfaces. 2014 Jun 11;6(11):8542-8. https://pubs.acs.org/doi/abs/10.1021/am5022914
Shi L, Chen J, Teng L, Wang L, Zhu G, Liu S, Luo Z, Shi X, Wang Y, Ren L. The antibacterial applications of graphene and its derivatives. Small. 2016 Aug;12(31):4165-84. https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201601841
George C, JR NK, Prasad P. Recent Advances in Enhancing Antibacterial Property by Nanoparticles. International Journal of Applied Engineering and Management Letters (IJAEML). 2018 Aug 25;2(2):43-52. https://supublication.com/index.php/ijaeml/article/view/514
Saqib S, Munis MF, Zaman W, Ullah F, Shah SN, Ayaz A, Farooq M, Bahadur S. Synthesis, characterization and use of iron oxide nano particles for antibacterial activity. Microscopy research and technique. 2019 Apr;82(4):415-20. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jemt.23182
Martínez-Ramírez J, Toldos-Torres M, Benayas E, Villar-Gómez N, Fernández-Méndez L, Espinosa FM, García R, Veintemillas-Verdaguer S, del Puerto Morales M, Serrano MC. Hybrid hydrogels support neural cell culture development under magnetic actuation at high frequency. Acta Biomaterialia. 2024 Mar 1;176:156-72. https://www.sciencedirect.com/science/article/pii/S1742706124000424
Luo S, Ma C, Zhu MQ, Ju WN, Yang Y, Wang X. Application of iron oxide nanoparticles in the diagnosis and treatment of neurodegenerative diseases with emphasis on Alzheimer’s disease. Frontiers in cellular neuroscience. 2020 Feb 28;14:21. https://www.frontiersin.org/articles/10.3389/fncel.2020.00021/full
Joris F, Valdepérez D, Pelaz B, Wang T, Doak SH, Manshian BB, Soenen SJ, Parak WJ, De Smedt SC, Raemdonck K. Choose your cell model wisely: the in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling. Acta Biomaterialia. 2017 Jun 1;55:204-13. https://www.sciencedirect.com/science/article/pii/S1742706117302246
Jeon M. Iron Oxide Nanoparticles for Targeted Cellular Imaging and Drug Delivery (Doctoral dissertation). https://digital.lib.washington.edu/researchworks/handle/1773/44848
Sun Z, Worden M, Thliveris JA, Hombach-Klonisch S, Klonisch T, van Lierop J, Hegmann T, Miller DW. Biodistribution of negatively charged iron oxide nanoparticles (IONPs) in mice and enhanced brain delivery using lysophosphatidic acid (LPA). Nanomedicine: Nanotechnology, Biology and Medicine. 2016 Oct 1;12(7):1775-84. https://www.sciencedirect.com/science/article/pii/S1549963416300363
Ansari SA, Ficiarà E, Ruffinatti FA, Stura I, Argenziano M, Abollino O, Cavalli R, Guiot C, D’Agata F. Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Functionalization for. https://www.mdpi.com/1996-1944/12/3/465
Soenen SJ, De Cuyper M, De Smedt SC, Braeckmans K. Investigating the toxic effects of iron oxide nanoparticles. InMethods in enzymology 2012 Jan 1 (Vol. 509, pp. 195-224). Academic Press. https://www.sciencedirect.com/science/article/pii/B9780123918581000113
Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chemical Society Reviews. 2015;44(23):8576-607. https://pubs.rsc.org/en/content/articlehtml/2015/cs/c5cs00541h
Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Scientific reports. 2018 Feb 1;8(1):1-3. https://www.nature.com/articles/s41598%20018%2019628%20z
Popov AL, Savintseva IV, Kozlova TO, Ivanova OS, Zhukov IV, Baranchikov AE, Yurkovskaya AV, Savelov AA, Ermakov AM, Popova NR, Ivanov KL. Heavily Gd-Doped Non-Toxic Cerium Oxide Nanoparticles for MRI Labelling of Stem Cells. Molecules. 2023 Jan 24;28(3):1165. https://doi.org/10.3390/molecules28031165
Published


How to Cite
Issue
Section
Copyright (c) 2024 Sonali Mahaparale, Amruta Patil

This work is licensed under a Creative Commons Attribution 4.0 International License.