Isolation and characterization of a phenolic derivative (flavonoid) from Crassocephalum crepidioides with antiangiogenic, anti-inflammatory and antioxidant activities

Authors

  • Naziya Habeeb M Department of Biotechnology, St. Philomena’s College (Autonomous), Bannimantap, Mysore-570019, Karnataka, India
  • N Vijendra Kumar PG Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru-25, Karnataka, India
  • Mahesh B Department of Chemistry, JSS Academy of Technical Education (Affiliated to Visvesvaraya Technological University, Belagavi), Dr. Vishnuvardhan Road, Bengaluru-560060, Karnataka, India
  • Rashmi Ramesh Department of Studies in Microbiology, University of Mysore, Mysuru-570006, Karnataka, India
  • N D Rekha Department of studies in Biotechnology, JSS College of Arts, Commerce and Science, Ooty road, Mysore-570025, Karnataka, India https://orcid.org/0000-0001-8259-8568

Abstract

A phenolic compound was successfully isolated from the methanolic extract of the aerial parts of Crassocephalum crepidioides. Structural elucidation was carried out using spectroscopic techniques including UV-Vis, IR, mass spectrometry, and nuclear magnetic resonance (NMR). Based on the combined spectral data, the compound was identified as 3-(dimethylamino)-2-hydroxy-5-(3,5,7-trihydroxychroman-2-yl)benzaldehyde. The bioactivity of the isolated compound was evaluated for antiangiogenic, anti-inflammatory, and antioxidant properties. In the shell-less chorioallantoic membrane (CAM) assay, the compound exhibited significant inhibition of angiogenesis. Furthermore, it demonstrated inhibitory activity against phospholipase A₂ enzyme derived from Daboia russelii (Russell’s viper), suggesting potential anti-inflammatory effects. The compound also displayed notable antioxidant activity, supporting its therapeutic potential in conditions associated with oxidative stress and aberrant angiogenesis. These findings warrant further investigation into its pharmacological applications.

Keywords:

Crassocephalum crepidioide, Antiangiogenic, Anti-inflammatory, Antioxidant, Chorioallantoic membrane (CAM)

DOI

https://doi.org/10.25004/

References

Gurung S, Poudel P, Adhikari N, Lamichhane G, Thapa R. Crassocephalum crepidioides (Benth.) S. Moore: traditional uses, chemical constituents, and biological activities. In: Medicinal plants of the Asteraceae family. Singapore: Springer Nature Singapore; 2022. p. 145–152. doi:10.1007/978-981-19-6080-2_9.

Tomimori K, Nakama S, Kimura R, Tamaki K, Ishikawa C, Mori N. Antitumor activity and macrophage nitric oxide producing action of medicinal herb, Crassocephalum crepidioides. BMC Complement Altern Med. 2012;12:78. doi:10.1186/1472-6882-12-78.

Akinpelu BA, Godwin A, Gbadegesin T, Ajakaye N, Omotosho SE, Azeez SO, Oziegbe M, Oyedapo OO. Comparative studies on anti-inflammatory, antioxidant and antimutagenic activities of Crassocephalum crepidioides leaf cold and hot water extracts. Asian Food Sci J. 2019;9(1):1–12.

Devi YA, Prathiba G, Haorongbam JD. Antibacterial, antioxidant and cytotoxicity assessment of Crassocephalum crepidioides leaf extract. J Pure Appl Microbiol. 2024;18(4):2528–2538. doi: 10.22207/JPAM.18.4.24.

Bahar E, Akter KM, Lee GH, Lee HY, Rashid HO, Choi MK, Bhattarai KR, Hossain MM, Ara J, Mazumder K, Raihan O, Chae HJ, Yoon H. β-Cell protection and antidiabetic activities of Crassocephalum crepidioides (Asteraceae) Benth. S. Moore extract against alloxan-induced oxidative stress via regulation of apoptosis and reactive oxygen species. BMC Complement Altern Med. 2017;17(1):179. doi:10.1186/s12906-017-1697-0.

Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023;26(3):313–347. doi:10.1007/s10456-023-09876-7.

Popper H. Primary tumor and metastasis—sectioning the different steps of the metastatic cascade. Transl Lung Cancer Res. 2020;9(5):2277–2300. doi:10.21037/tlcr-20-175.

Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J Clin Med. 2019;9(1):84. doi:10.3390/jcm9010084.

Cogo E, Elsayed M, Bhardwaj S, Cooley K, Aycho C, Liang V, Papadogianis P, Psihogios A, Seely D. Mistletoe extracts during the oncological perioperative period: a systematic review and meta-analysis of human randomized controlled trials. Curr Oncol. 2023;30(9):8196–8219. doi:10.3390/curroncol30090595.

Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin. 2010;60(4):222–243. doi:10.3322/caac.20075.

Sharma E, Manju T, Priyanka S, Isha S, Dharam CA, Supriyanka R, Afaf AA. Serving up health: how phytochemicals transform food into medicine in the battle against cancer. Food Frontiers. 2024;5(5):1866–1908. doi:10.1002/fft2.439.

Dennis EA. The growing phospholipase A2 superfamily of signal transduction enzymes. Trends Biochem Sci. 1997;22(1):1–2. doi:10.1016/S0968-0004(96)20031-3.

Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol. 2024;25(1):13–33. doi:10.1038/s41580-023-00645-4.

Engwa GA, Nweke FN, Nkeh-Chungag BN. Free radicals, oxidative stress-related diseases and antioxidant supplementation. Altern Ther Health Med. 2022;28(1):(no DOI found).

Akbari B, Namdar BY, Manochehr B, Fatemeh MA. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors. 2022;48(3):611–633. doi:10.1002/biof.183.

Karakoti M, Arya P, Joshi PK. Chemical composition of essential oils of flower and aerial part (leaves and stems) of Crassocephalum crepidioides (Benth.) S. Moore collected from foothills of Kumaon region of Uttarakhand, India. J Essent Oil Bear Plants. 2022;25(3):651–656. doi:10.1080/0972060X.2022.2100230.

Kujala TS, Loponen JM, Klika KD, Pihlaja K. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: distribution and effect of cold storage on total phenolics and three individual compounds. J Agric Food Chem. 2000;48(11):5338–5342. doi:10.1021/jf000523q.

Woisky R, Salatino A. Analysis of propolis: some parameters and procedures for chemical quality control. J Apic Res. 1998;37:99–105. doi:10.1080/00218839.1998.11100961.

Kivçak B, Mert T. Quantitative determination of alpha-tocopherol in Arbutus unedo by TLC-densitometry and colorimetry. Fitoterapia. 2001;72(6):656–661. doi:10.1016/S0367-326X(01)00305-7.

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–356. doi:10.1021/ac60111a017.

Padayatty SJ, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis. 2016;22(6):463–493. doi:10.1111/odi.12446.

Rekha ND, Aradhya SM, Jayashree K. The antiangiogenic, antioxidant and proapoptotic chemopreventive properties of tannins from Memecylon malabaricum. Int J Pharm Sci Res. 2015;6:259–266.

Boman HG, Kaletta U. Chromatography of rattlesnake venom; a separation of three phosphodiesterases. Biochim Biophys Acta. 1957;24(3):619–631.

Scherer R, Godoy HT. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009;112(3):654–658.

Halliwell B. Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. Mutat Res. 1999;443:37–52.

Chandel M, Kumar M, Sharma U, Kumar N, Singh B, Kaur S. Isolation and characterization of flavanols from Anthocephalus cadamba and evaluation of their antioxidant, antigenotoxic, cytotoxic and COX-2 inhibitory activities. Rev Bras Farmacogn. 2016;26:474–483. doi:10.1016/j.bjp.2016.02.009.

Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun. 1994;201:748–755. doi:10.1006/bbrc.1994.1764.

Nishikimi M, Rao NA, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46(2):849–854.

Dimitrios IT, Vassiliki O. The contribution of flavonoid C-ring on the DPPH free radical scavenging efficiency: a kinetic approach for the 3′,4′-hydroxy substituted members. Innov Food Sci Emerg Technol. 2006;7:140–146. doi:10.1016/j.ifset.2005.05.008.

Li C, Sun P, Yu H, Zhang N, Wang J. Scavenging ability of dendritic PAMAM-bridged hindered phenolic antioxidants towards DPPH· and ROO· free radicals. RSC Adv. 2017;7:1869–1878. doi:10.1039/C6RA24980E.

van Acker SA, Tromp MN, Haenen GR, van der Vijgh WJ, Bast A. Flavonoids as scavengers of nitric oxide radical. Biochem Biophys Res Commun. 1995;214(3):755–759.

Jadwiga R, Ryszard JG. Flavonoids are scavengers of superoxide anions. Biochem Pharmacol. 1988;37:837–841. doi:10.1016/0006-2952(88)90169-4.

Lättig J, Böhl M, Fischer P, Tischer S, Tietböhl C, Menschikowski M, Gutzeit HO, Metz P, Pisabarro MT. Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: rationale for lead design. J Comput Aided Mol Des. 2007;21(8):473–483. doi:10.1007/s10822-007-9129-8.

Kiran KS, Vivek HK, Nagaraju KK, Prasad N, Kavitha RV, Karthik NA, Guru Kumar D, NanjundaSwamy S, Krishna KL, Kumar JR. Diosmin: a Daboia russelii venom PLA2 inhibitor purified and characterized from Oxalis corniculata L. J Ethnopharmacol. 2024;318(Pt B):116977. doi:10.1016/j.jep.2023.116977.

Pereañez JA, Patiño AC, Núñez V, Osorio E. The biflavonoid morelloflavone inhibits the enzymatic and biological activities of a snake venom phospholipase A2. Chem Biol Interact. 2014;220:94–101. doi:10.1016/j.cbi.2014.06.009.

Gopi K, Anbarasu K, Renu K, Jayanthi S, Vishwanath BS, Jayaraman G. Quercetin-3-O-rhamnoside from Euphorbia hirta protects against snake venom-induced toxicity. Biochim Biophys Acta. 2016;1860(7):1528–1540. doi:10.1016/j.bbagen.2016.03.023.

Saini S, Tuli HS, Saini RV, Saini AK, Sak K, Kaur D, Shahwan M, Chauhan R, Chauhan A. Flavonoid-mediated suppression of tumor angiogenesis: roles of Ang-Tie/PI3K/AKT signaling. Pathophysiology. 2014;31:596–607. doi:10.1016/j.pathophys.2014.09.002.

Jiang B, Song J, Jin Y. A flavonoid monomer tricin in gramineous plants: metabolism, biosynthesis, biological properties and toxicology. Food Chem. 2020;320:126617. doi:10.1016/j.foodchem.2020.126617.

Han JM, Kwon HJ, Jung HJ. Tricin, 4′,5,7-trihydroxy-3′,5′-dimethoxyflavone, exhibits potent antiangiogenic activity in vitro. Int J Oncol. 2016;49:1497–1504. doi:10.3892/ijo.2016.3644.

Tuli HS, Garg VK, Bhushan S, Uttam V, Sharma U, Jain A, Sak K, Yadav V, Lorenzo JM, Dhama K, Behl T, Sethi G. Natural flavonoids exhibit potent anticancer activity by targeting microRNAs in cancer. Transl Oncol. 2023;27:101580. doi:10.1016/j.tranon.2022.101580.

Heo M, Lee B, Sishtla K, Fei X, Lee S, Park S, Yuan Y, Lee S, Kwon S, Lee J, Kim S, Corson TW, Seo SY. Enantioselective synthesis of homoisoflavanones by asymmetric transfer hydrogenation and their biological evaluation for antiangiogenic activity. J Org Chem. 2019;84(16):9995–10011. doi:10.1021/acs.joc.9b01114.

Kajiya K, Ichiba M, Kuwabara M, Kumazawa S, Nakayama T. Role of lipophilicity and hydrogen peroxide formation in the cytotoxicity of flavonols. Biosci Biotechnol Biochem. 2001;65:1227–1229. doi:10.1271/bbb.65.1227.

Alrumaihi F, Almatroodi SA, Alharbi HOA, Alwanian WM, Alharbi FA, Almatroudi A, Rahmani AH. Pharmacological potential of kaempferol, a flavonoid, in the management of pathogenesis via modulation of inflammation and other biological activities. Molecules. 2024;29(9):2007. doi:10.3390/molecules29092007.

Published

30-01-2026
Statistics
Abstract Display: 39
Dimension Badge

How to Cite

“Isolation and Characterization of a Phenolic Derivative (flavonoid) from Crassocephalum Crepidioides With Antiangiogenic, Anti-Inflammatory and Antioxidant Activities”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 18, no. 1, Jan. 2026, https://doi.org/10.25004/.

Issue

Section

Research Article

How to Cite

“Isolation and Characterization of a Phenolic Derivative (flavonoid) from Crassocephalum Crepidioides With Antiangiogenic, Anti-Inflammatory and Antioxidant Activities”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 18, no. 1, Jan. 2026, https://doi.org/10.25004/.