High-performance thin-layer chromatography chemical fingerprinting of salt tolerant plant: an efficient method for sterols and glycosides from various seasonal plant parts of two halophytic Suaeda species
Abstract
The study established an HPTLC fingerprinting profile of sterols and glycosides derived from the methanolic extracts of various plant parts of two halophytic Suaeda species, Suaeda fruticosa Forssk J. F. Gmel. and Suaeda nudiflora (Willd.) Moq. Which are having anti-inflammatory, anti-diabetic and anticancer properties. The comprehensive qualitative phytochemical analyses of water, methanol, chloroform, and ethyl acetate extracts from all parts of Suaeda species revealed the presence of sterols and glycosides, with the methanolic extracts showing the highest amount of both compounds. The chromatographic analysis of methanol extracts was conducted using silica gel 60 F254 HPTLC aluminium sheets with a CAMAG Linomat 5 applicator. The plates were created utilizing a mobile phase composed of chloroform: ethyl acetate (8:12 v/v) for sterols and ethyl acetate: methanol: glacial acetic acid: formic acid (16:1.5:1.5:1 v/v/v/v) for glycosides. Detection of sterols and glycosides on wavelengths at 254 nm and 366 nm before derivatization. After using derivatizing reagent chromatogram detected at 366 nm and 540 nm. Furthermore, the FT-IR analysis confirms the presence of multiple functional compounds. The established fingerprinting will ultimately be invaluable for the identification and differentiation of sterols and glycosides as marker compounds in the two referenced Suaeda species.
Keywords:
Suaeda, HPTLC, sterols, glycosides, fingerprinting, FT-IRDOI
https://doi.org/10.25004/References
Hopkins CO, Blackwell WH. Synopsis of Suaeda (Chenopodiaceae) in North America. SIDA, Contri. to Bot. 1977; 147–173.
Leuschner C, Ellenberg H. Ecology of Central European non-forest vegetation: coastal to alpine, natural to man-made habitats: vegetation ecology of Central Europe 2017; (2): Springer.
Evans WC. Trease and Evans. Pharma., 9th Edition Published by Saunders Elsevier. 2002; 553.
Oueslati S, Ksouri R, Falleh H, Pichette A, Abdelly C, Legault J. Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk. Food Chem. 2012; 132(2): 943–947. https://doi.org/10.1016/j.foodchem.2011.11.072
Zaier MM, Heleno SA, Mandim F, Calhelha RC, Ferreira ICFR, Achour L, Kacem A, Dias MI, Barros L. Effects of the seasonal variation in the phytochemical composition and bioactivities of the wild halophyte Suaeda fruticosa. Food Bio. sci. 2022; 50: 102131. https://doi.org/10.1016/j.fbio.2022.102131
Ahmed N, Mahmood A, Tahir SS, Bano A, Malik RN, Hassan S, Ashraf A. Ethnomedicinal knowledge and relative importance of indigenous medicinal plants of Cholistan desert, Punjab Province, Pakistan. J. E. pharma. 2014; 155(2): 1263–1275. https://doi.org/10.1016/j.jep.2014.07.007
Saleh KA, Albinhassan TH, Elbehairi SEI, Alshehry MA, Alfaifi MY, Al-Ghazzawi AM, Al-Kahtani MA, Alasmari ADA. Cell cycle arrest in different cancer cell lines (Liver, Breast, and Colon) induces apoptosis under the influence of the chemical content of Aeluropus lagopoides Leaf extracts. Mole. 2019; 24(3): 507. https://doi.org/10.3390/molecules24030507
Ayaz A, Jamil Q, Hussain M, Anjum F, Sarfraz A, Alqahtani T, Hussain N, Gahtani RM, Dera AA, Alharbi HM. Antioxidant and gastroprotective activity of Suaeda fruticosa Forssk. Ex JF Gmel. Mole. 2022; 27(14): 4368. https://doi.org/10.3390/molecules27144368
Barreira L, Resek E, Rodrigues MJ, Rocha MI, Pereira H, Bandarra N, da Silva MM, Varela J, Custódio L. Halophytes: Gourmet food with nutritional health benefits? J. Food Comp. and Ana. 2017; 59: 35–42. https://doi.org/10.1016/j.jfca.2017.02.003
Zaier MM, Ciudad-Mulero M, Cámara M, Pereira C, Ferreira ICFR, Achour L, Kacem A, Morales P. Revalorization of Tunisian wild Amaranthaceae halophytes: Nutritional composition variation at two different phenotypes stages. J. of Food Compo. and Ana. 2020; 89: 103463. https://doi.org/10.1016/j.jfca.2020.103463
Weber DJ, Ansari R, Gul B, Khan MA. Potential of halophytes as source of edible oil. J. of Arid Envi. 2007; 68(2): 315–321. https://doi.org/10.1016/j.jaridenv.2006.05.010
Benwahhoud M, Jouad H, Eddouks M, Lyoussi B. Hypoglycemic effect of Suaeda fruticosa in streptozotocin-induced diabetic rats. J. E. pharma. 2001; 76(1): 35–38. https://doi.org/10.1016/S0378-8741(01)00207-0
Rashid S, Iftikhar Q, Arshad M, Iqbal J. Chemical composition and antibacterial activity of Suaeda fruticosa Forssk. from Cholistan, Pakistan. Pak. J. of Bio. Sci. (Pakistan). 2000; 3(2).
Mzoughi Z, Abdelhamid A, Rihouey C, Le Cerf D, Bouraoui A, Majdoub H. Optimized extraction of pectin-like polysaccharide from Suaeda fruticosa leaves: Characterization, antioxidant, anti-inflammatory and analgesic activities. Carbo. Poly. 2018; 185: 127–137. https://doi.org/10.1016/j.carbpol.2018.01.022
Oueslati S, Ksouri R, Pichette A, Lavoie S, Girard-Lalancette K, Mshvildadze V, Legault J. A new flavonol glycoside from the medicinal halophyte Suaeda fruticosa. Nat. prod. Res. 2014; 28(13): 960-966. https://doi.org/10.1080/14786419.2014.900771
Suthar R, Solanki HA. Phytochemical Screening of Halophytic Plant Suaeda Fruticosa (L.) Forssk. Ex JF Gmel. Int. Assoc. Biol. Compu. Dig. 2022; 1(2): 308–313. https://doi.org/10.56588/iabcd.v1i2.84
Ahmad I, Gul H, Noureen A, Ujjan JA, Manzoor S, Muhammad W. Antimicrobial, antioxidant and antidiabetic potential of Suaeda fruticosa L. Int. J. Emerg. Technol. 2021; 12: 155-60.
Vanga UR, Peddinti N. Phytochemical screening, antibacterial, antioxidant and anthelmintic activities of Suaeda nudiflora (Willd.) Moq. Int. J. Pharm. Sci. Rev. Res. 2014; 29: 320–327.
Lalhriatpuii T. HPTLC fingerprint in herbal drug formulations. In Herbal medicine in India: Indigenous knowledge, practice, innovation and its value. Singapore: Springer Singapore. 2019; 337-362. https://doi.org/10.1007/978-981-13-7248-3_22
Jain A, Parashar AK, Nema RK, Narsinghani T. High performance thin layer chromatography (HPTLC): A modern analytical tool for chemical analysis. Cur. Res. in Pharma. Sci. 2014; 8-14.
Yang J, Yen HE. Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physio. 2002; 130(2): 1032-1042. https://doi.org/10.1104/pp.004325
Al-Mohammadi SS. Detection of Cholesterol in Suaeda Baccata (Chenopodiaceae). Iraqi. J. Pharma. Sci. 2006; 15(2): 29-36.
Salt TA, Adler JH. Diversity of sterol composition in the family Chenopodiaceae. Lipids 1985; 20(9): 594-601. https://doi.org/10.1007/BF02534285
Devi DR, Battu GR. Qualitative phytochemical screening and FTIR spectroscopic analysis of Grewia tilifolia (vahl) leaf extracts. Int J of Curr Pharma Res. 2019; 11(4): 100-107.
Nikalje GC, Kumar J, Nikam TD, Suprasanna P. FT-IR profiling reveals differential response of roots and leaves to salt stress in a halophyte Sesuvium portulacastrum (L.) L. Biotech. 2019; 23: 00352. https://doi.org/10.1016/j.btre.2019.e00352
Devaki K. HPTLC analysis and in vitro antioxidant activity of aqueous bark extract of Erythrina variegata L. Isr. J. Plant Sci. 2016; 63(3): 143-157.
Published
Abstract Display: 11 How to Cite
Issue
Section
Copyright (c) 2026 Ankita Dharva, Raj Maheta, Bhoomi Joshi, Mitu Patel, Illa Patel

This work is licensed under a Creative Commons Attribution 4.0 International License.

