ANTI-INFLAMMATORY EFFECTS AND SAFETY OF EXTRACTS AND ESSENTIAL OIL FROM CLINOPODIUM GILLIESII (MUÑA MUÑA)

Authors

  • Marcos Reynoso Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina
  • María E. Balderrama Coca Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina
  • Ivana Y. Brodkiewicz Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina
  • Gloria Jaime Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina
  • Marina Perotti Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina
  • Carola Schuff Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina
  • Nancy R. Vera Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina

Abstract

The chemical machinery of vegetables offers a great diversity of biological properties and plays a fundamental role in the field of pharmacology. The search for new drugs with fewer adverse effects represents a challenge for researchers. The objective of the present work was to carry out to investigate the medicinal properties and safety of extracts and essential oil from aerial parts of Clinopodium gilliesii (muña muña) and evaluate their antioxidant and anti-inflammatory activities in vivo. The extractions were carried out serially, using 96º alcohol (EE) and boiled distilled water (AE). The essential oil (EO) was obtained by steam dragging. The AE in vivo anti-inflammatory activity was determined by carrageenan induced plantar edema (acute inflammation) and granuloma formation by cotton disc (chronic inflammation) at oral doses of 250 and 500 mg/kg while that of the EO was established topically at doses of 50, 100µl/kg. In-vitro antioxidant activity was evaluated by DPPH depuration and inhibition of lipid peroxidation (β-carotene-linoleic acid method). Chemical study of the extracts was carried out by means of phytochemical screening and the essential oil was analyzed by GC-MS chromatography. The safety was evaluated with test of acute toxicity (48 h) and acute dermal toxicity (14 days). The results revealed that EE and EO had a significant acute and chronic anti-inflammatory activity, compared with positive patterns. EE (500 mg/kg), EO (100µl/kg), ibuprofen (100 mg/kg) and meprednisone (5 mg/kg) significantly reduced the weight of the exudate and cotton disc granuloma (24.17, 35.30, 45.56 and 57.17% respectively). The alcoholic and aqueous extracts presented important antioxidant activities with values higher than 90% (from 400μg/ml) in both methods and similar to the positive patterns (BHT and quercetin). The chromatographic profile of volatile oil compounds showed a great richness in terpene substances, pulegone, menthone and neomenthol, being its major constituents. The hydroalcoholic extracts revealed the presence of reducing compounds, polysaccharides, tannins, triterpenes, sterols and coumarins as major phytoconstituents. In the acute toxicity study, a single dose of 4000 and 8000 mg/kg b.w., produced no mortality and no clinical signs of disease were observed after 48 h. The essential oil at a single dose of 2000 and 5000 mg/kg of body weight did not produce treatment-related signs of toxicity or mortality in all rats tested during the 14 day observation period. These findings are encouraging to continue studies for the validation of popular use and development of a phytopharmaceutical with medicinal utility.

Keywords:

Clinopodium gilliesii – Satureja parviflora – muña muña – Anti-inflammatory activity – essential oil.

DOI

https://doi.org/10.25004/IJPSDR.2018.100416

References

1. Pérez SG, Zavala MS, Arias LG, Ramos ML. Anti-inflammatory Activity of Some Essential Oils. J. Essent. Oil Res. 2011; 23:38 – 44.
2. Olmedo RH, Asensio CM, Grosso NR. Thermal stability and antioxidant activity of essential oils from aromatic plants farmed in Argentina. Ind. Crops Prod. 2015; 21-28.
3. Gillij YG, Gleiser RM, Zygadlo JA. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresource Technolog. 2017; 99: 2507-2515.
4. Calvo-Irabien LM. Native Mexican aromatic flora and essential oils: Current research status, gaps in knowledge and agro-industrial potential. Ind.Crops Prod. 2018; 111: 807-822.
5. Cabana R, Silva LR, Valentãoa R, Viturro CI, Andrade PB. Effect of different extraction methodologies on the recovery of bioactive metabolites from Satureja parvifolia (Phil.) Epling (Lamiaceae). Ind. Crops Prod. 2013; 48:49–56.
6. Bustos DA, Tapia AA, Feresin GE, Ariza-Espinar L. Ethnopharmacobotanical survey of Bauchazeta district, San Juan Province Argentina. Fitoterapia 1996; 5:411–415.
7. Viturro CI, Molina A, Guy I, Charles B, Guinaudeau H, Fournet A. Essential oils of Satureja boliviana and S. parvifolia growing in the region of Jujuy, Argentina. Flavour and Fragrance Journal 2008; 15: 377–382.
8. Feresin GE, Tapia A, López S, Zacchino S. Antimicrobial activity of plants used in traditional medicine of San Juan province, Argentine. J. Etnopharmacol. 2001; 78:103-107.
9. Hnatyszyn O, Moscatelli V, García J, Rondina R, Costa M, Arranz C, Balaszczuk A, Ferraro G, Coussio J. Argentinean plant extracts with relaxant effects on the smooth muscle of the corpus cavernosum of guinea pig. Phytomedicine 2003; 10: 669–674.
10. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils − a review. Food Chem Toxicol. 2008; 46: 446− 475.
11. Adorjan B, Buchbauer G. Biological properties of essential oils: an updated review. Flavour Fragrance J. 2010; 25: 407−426.
12. Amorati R, Foti MC. Oxidative stability and antioxidant properties of essential oils. In Essential Oils as Natural Food Additives; Valgimigli, L., Ed.; Nova Science Publishers, New York, 2012.
13. Valgimigli L, Valginigli M, Gaiani S, Pedulli GF, Bolondi L. Measurement of oxidative stress in human liver by EPR spinprobe technique. Free Radical Res. 2000; 33: 167−178.
14. Viturro CI, Molina AC, Heit C, Elechosa MA, Molina AM, Juárez MA. Evaluación de la composición de los aceites esenciales de Satureja boliviana, S. odoray, S. parvifolia, obtenidos de colectas en Tucumán, Argentina. Bol. Latinoam. Caribe Plant. Med. y Aromat. 2007; 6: 288–289.
15. Luna L, Lima B, Tapia A, Feresin GE, Duschatzky C, Possetto M, de Lampasona MP, Schuff C. Chemical composition and antibacterial activity of Satureja parvifolia (Phil.) Epling essential oil. J Essent Oil Bear 2008; 11: 106 – 111.
16. Dambolena J, Zunino M, Lucini E, Zygadlo J, Rotman A, Ahumada O. Essential oils of plants used in home medicine in north of Argentina. J Essent Oil Res. 2009; 21: 405 - 409.
17. Muschietti L, Van Baren C, Coussio J, Vila R, Clos M, Cañigueral S, Adzet T. Chemical composition of the leaf oil of Satureja odora and Satureja parvifolia. J Essent Oil Res. 1996; 8: 681 - 684.
18. Van Baren C, Anao I, Leo Di Lira P, Debenedetti S, Houghton P, Croft S, Martino V. Triterpenic acids and flavonoids from Satureja parvifolia: evaluation of their antiprotozoal activity. Zeitschrift für Naturforschung C. 2006; 61: 189–192.
19. Zygadlo J, Merino E, Maestri D, Guzmán C, Espinar L. The Essential Oils of Satureja odora and S. parvifolia from Argentina. J Essent Oil Res. 1993; 5: 549 - 551.
20. Barbieri N, Costamagna M, Gilabert M, Perotti M, Schuff C, Isla MI, Benavente A. Antioxidant activity and chemical composition of essential oils of three aromatic plants from La Rioja province. Pharm Biol. 2016; 54: 168 – 173.
21. Hernández NE, Tereschuk ML, Abdala LR. Antimicrobial activity of flavonoids in medicinal plants from Tafí del Valle (Tucumán, Argentina). J. Ethnopharmacol. 2000; 73: 317–322.
22. Zuloaga FO, Morrone O, Belgrano MJ. Catálogo de Las Plantas Vasculares Del Cono Sur: (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). Monographs in Systematic Botany from the Missouri Botanical Garden (www.darwin.edu.ar) 2008; 107 (I-II-III): 1-3348 .
23. Harley RM, Paucar AG. List of Species of Tropical American Clinopodium (Labiatae), with New Combinations. Kew Bulletin 2000, 55(4): 917-927.
24. Cantero J, Barboza G, Chiarini F, Ariza Espinar LA. Plantas del Famatina. 1° edición. Córdoba, UNC, Academia Nacional de Ciencias 2015, 470p.
25. Kuklinsky C. Farmacognosia: Estudio de las drogas y sustancias medicamentosas de origen natural. Omega, Barcelona. 2000
26. Santa Cruz L. Guía práctica de productos naturales y fitoquímica, Editorial Universitaria, 1ª edición, Guatemala, 2000, pp.100.
27. Hua-Bin L, Ka-Wing C, Chi-Chun W, King-Wai F, Feng C, Yue J. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007; 102: 771–776.
28. Po-Yuan C, Jhih-Ying C, Li-Chun H. Antioxidant Activity of Phenolic Compounds Extracted from Fresh and Dried Water Caltrop Pulp (Trapa taiwanensis Nakai). J. Food Drug Anal. 2008; 16: 66-73.
29. Adams R. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectrometry, 4th edn. Allured Publishing Corporation, Carol Stream, IL (2007).
30. Reynoso MA, Vera N, Aristimuño ME, Daud A, Sanchez Riera A. Antinociceptive activity of fruits extracts and ‘‘arrope’’ of Geoffroea decorticans (chañar). Journal of Etnhopharmacol. 2013; 145, 355-62.
31. Sun T, Ho CT. Antioxidant activities of buckwheat extracts. Food Chem. 2005; 90: 743-749.
32. Winter CA, Risley EA, Nuss GW. Carrageenan-induced edemas in hind paw of the rats as an assay of anti-inflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine 1962; 3, 544–547.
33. García MD, Fernández MA, Sáenz MT, Ahumada MC. Antiinflammatory effects of different extracts and harpagoside isolated from Scrophularia frutescens. ll Farmaco 1995; 51: 443–6.
34. Pingsusaen P, Kunanusorn P, Khonsung P, Chiran T, Nattha K. Investigation of anti-inflammatory, antinociceptiveand antipyretic activities of Stahlianthus involucratus rhizome ethanol extract. J. Ethnopharmacol. 2015; 162: 199-206.
35. Reynoso MA, Sánchez Riera A, Vera NR. Nutraceutical Properties and Safety Evaluation of Fruits and Arrope of Geoffroea decorticans (Chañar). J. Nut. Food Sci. 2016; 6: 1–8.
36. OECD (Proposal of Guideline 434, 14 May 2004, 1st Version OECD GUIDELINE FOR TESTING OF CHEMICALS: Acute Dermal Toxicity – Fixed Dose Procedure). http://www.oecd.org.
37. Villagrán C, Romo M, Castro V. Etnobotánica del sur de Los Andes de la Primera Región de Chile: Un enlace entre las culturas altiplánicas y las de Quebradas Altas del Loa superior. Chungará 2003; 35: 73 - 124.
38. Chorianopoulos N, Evergetis E, Mallouchos A, Kalpoutzakis E, Nychas G, Haroutounian S. Characterization of the essential oil of volatiles of Satureja thymbra and Satureja parnassica: Influence of harvesting time and antimicrobial activity. J. Agric. Food Chem. 2006; 54: 3139–3145.
39. Cavar S, Maksimovic M, Solic M, Jerkovic-Mujkic A, Besta R. Chemical composition, antioxidant and antimicrobial activity of two Satureja essential oils. Food Chem. 2008; 111: 648–653.
40. Serrano C, Matos O, Teixeira B, Ramos C, Neng N, Nogueira J, Nunes ML, Marques A. Antioxidant and antimicrobial activity of Satureja montana L. extracts. J. Sci, Food and Agric. 2011; 91: 1554 – 1560.
41. Sefidkon F, Jamzad Z. Chemical composition of the essential oil of three Iranian Satureja species (S. mutica, S. macrantha and S. intermedia). Food Chem. 2005; 91: 1-4.
42. Sánchez-Moreno C. Review: methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int. 2002; 8: 121–137.
43. Iha SM, Migliato KF, Vellosa JCR, Sacramento LVS, Pietro RCLR, Isaac VLB, Brunetti IL, Corrêa MA, Salgado HRN. Estudo fitoquímico de goiaba (Psidium guajava L.) com potencial antioxidante para o desenvolvimento de formulação fitocosmética. Rev. Bras. Farmacog. 2008; 18: 387-393.
44. Scur MC, Pinto FGS, Pandini JA, Costa WF, Leite CW, Temponi LG. Antimicrobial and antioxidant activity of essential oil and different plant extracts of Psidium cattleianum Sabine. Braz. J. Biol. 2016; 76: 101-108.
45. Medina AL, Haas LIR, Chaves FC, Salvador M, Zambiazi RC, da Silva WP, Nora L, Rombaldi CV. Aracá (Psidium cattleianum Sabine) fruit extracts with antioxidant and antimicrobial activities and antiproliferative effec on human cancer cells. Food Chem. 2011; 128: 916-922.
46. Andrade MA, Cardoso M, De Andrade J, Fernandes Silva L, Teixeira ML, Valério Resende JM, da Silva Figueiredo AC, Gonçalves Barroso J. Chemical Composition and Antioxidant Activity of Essential Oils from Cinnamodendron dinisii Schwacke and Siparuna guianensis Aublet. Antioxidants 2013; 2: 384-397.
47. Panthong A, Kanjanapothi D, Taesotikul T, Phankummoon A, Panthong K, Reutrakul V. Anti-inflammatory activity of methanolic extracts from Ventilago harmandiana Pierre. J. Ethnopharmacol. 2004; 91: 237–42.
48. Kumar K, Ganesh M, Baskar S, Srinivasan K, Kanagasabai R. Evaluation of Anti-inflammatory activity and toxicity studies of Chloroxylon sweitenia in Rats. Ancient Science of Life 2006; XXV: 33 – 43.
49. Rungqu P, Oyedeji P, Nkeh Chungag B, Songca S., Oluwafemi O, Oyedeji A. Anti-inflammatory activity of the essential oils of Cymbopogon validus (Stapf) Stapf ex Burtt Davy from Eastern Cape, South Africa. Asian Pacific J. Trop.ical Med.icine, 2016; 9: 426 – 431.
50. de Sousa DP, Nóbrega FF, de Lima MR, de Almeida RN. Pharmacological activity of (R)-(+)-pulegone, a chemical constituent of essential oils. Zeitschrift für Naturforschung C. 2011; 66: 353-9.
51. da Silveira E, Sá R, Andrade LN, de Sousa DP. A Review on Anti-Inflammatory Activity of Monoterpenes. Molecules 2013; 18: 1227-1254.
52. Carvajal F, Huanca A, González-Teuber M, Urzúa A, Echeverría J. Uses of hazardous medicinal plants: Composition of the essential oil of Clinopodium Gilliesii (Benth.) Kuntze (Lamiaceae), collected in Chile. Bol. latinoam. Caribe Plant. Med. Aromát. 2017; 16: 486-492.
53. Rojas LB, Usubillaga A. Essential oil of Minthostachys mollis Grisebach from Venezuela. J. Essent. Oil Res. 1995; 7: 211-213.
54. Woolf A. Essential oil poisoning. J Toxicol. Clin. Toxicol. 1999; 37: 721 - 727.
55. Escobar FM, Sabini MC, Cariddi LN, Sabini LI, Mañas F, Cristofolini A, Bagnis G, Gallucci MN, Cavaglieri LR. Safety assessment of essential oil from Minthostachys verticillata (Griseb.) Epling (peperina): 90Days oral subchronic toxicity study in rats. Regul. Toxicol. Pharmacol. 2015; 71: 1 - 7.
56. Vaghasiya YK, Shukla VJ, Chanda SV. Acute oral toxicity study of Pluchea arguta boiss extract in mice. J. Pharmacol. Toxicol. 2011; 6: 113-123.
57. Kirtikar KR, Basu BD. Indian Medicinal Plants; International Book Distributors: Dehradun, India, Volume 2, 1975, pp. 858. 9.
58. López Barreiro M, García Hernández AI, Boucourt Rodríguez E, Morejón Rodríguez Z. Acute topical toxicity and dermal irritability of decoction of Piper auritum Kunth (caisimón de anís). Rev. Cubana Plant. Med. 2014; 19: 443-450.

Published

01-07-2018
Statistics
Abstract Display: 363
PDF Downloads: 0
Dimension Badge

How to Cite

“ANTI-INFLAMMATORY EFFECTS AND SAFETY OF EXTRACTS AND ESSENTIAL OIL FROM CLINOPODIUM GILLIESII (MUÑA MUÑA)”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 10, no. 4, July 2018, pp. 306-14, https://doi.org/10.25004/IJPSDR.2018.100416.

Issue

Section

Research Article

How to Cite

“ANTI-INFLAMMATORY EFFECTS AND SAFETY OF EXTRACTS AND ESSENTIAL OIL FROM CLINOPODIUM GILLIESII (MUÑA MUÑA)”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 10, no. 4, July 2018, pp. 306-14, https://doi.org/10.25004/IJPSDR.2018.100416.

Similar Articles

1-10 of 650

You may also start an advanced similarity search for this article.