2,4-Thiazolidinedione in Treating Diabetes: A Comprehensive Overview - History, Chemistry, Advancements, Challenges and Future Perspectives

Authors

  • Usha Jain Department of Pharmaceutical Chemistry, RJS College of Pharmacy, Kopargaon, Ahmednagar Maharashtra, India
  • Nitin Jain Department of Pharmaceutical Chemistry, RJS College of Pharmacy, Kopargaon, Ahmednagar Maharashtra, India https://orcid.org/0000-0003-3695-2217
  • Sunil Amrutkar Department of Pharmaceutical Chemistry SMNG College of Pharmaceutical Research and Education, Nashik, Maharashtra, India https://orcid.org/0000-0001-7292-5780
  • Dadashaeb Kawade Department of Pharmaceutical Chemistry, RJS College of Pharmacy, Kopargaon, Ahmednagar Maharashtra, India https://orcid.org/0000-0003-1891-2449

Abstract

Thiazolidinones are insulin-sensitizing agents used in the management and treatment of diabetes mellitus. Saturated at 5 positions, the thiazolidinedione compound is more active than the corresponding unsaturated compound. In some cases, 2,4-oxazolidinedione derivatives have shown superior anti-diabetic activity compared to 2,4-thiazolidinediones. Hydrophobic interactions between the N-alkyl group and the tail group of the aromatic ring of the TZD ligand and the receptor have been identified as crucial for the potent anti-hyperglycemic activity observed. This group of chemicals, called TZDs, includes indole, benzofuran, imidazopyridine, purines, pyridines, benzimidazole, phthalazinone, and benzoxazinone. The modification of the ether linker with ketone, alcohol olefin, amine, and acyl linker demonstrate modern to high anti-diabetic activity. Dual PPARα/γ agonists have the advantage of treating hyperglycemia and hyperlipidemia associated with T2DM. Unlike TZDs, which only bind and activate the PPARα/γ protein, phenyl propionic acid compounds have dual PPARα/γ agonist activity. Non-thiazolidinedione (non-TZD) compounds that activate PPARs are essential for managing hyperglycemia in diabetic patients. Drug development has targeted PPARs to treat diabetes mellitus and obesity, anti-inflammatory and cardiovascular disease. However, while glitazones have shown efficacy, they have also been linked with adverse drug reactions such weight gain, hepatotoxicity, osteoporosis and increased myocardial risk.

Keywords:

TZD, diabetes mellitus, hyperlipidemic, PPARα/γ

DOI

https://doi.org/10.25004/IJPSDR.2025.170211

References

International Diabetes Federation. IDF Diabetes Atlas. 9th ed. Brussels, Belgium: International Diabetes Federation; 2019. Available at: https://diabetesatlas.org.

Darwish KM, Salama I, Mostafa S, Gomaa MS, Khafagy E, Helal MA. Synthesis, biological evaluation, and molecular docking investigation of benzhydrol- and indole-based dual PPAR-δ/FFAR1 agonists. Bioorg Med Chem Lett. 2018;28(9):1595–602. Available from https://doi.org/10.1016/j.bmcl.2018.03.051

Naim MJ, Alam O, Alam MJ, Hassan MQ, Siddiqui N, Naidu VGM, et al. Design, synthesis and molecular docking of thiazolidinedione based benzene sulphonamide derivatives containing pyrazole core as potential anti-diabetic agents. Bioorg Chem. 2018;76:98–112. Available from https://doi.org/10.1016/j.bioorg.2017.11.010

Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg Chem. 2018;77:548–67. Available from https://doi.org/10.1016/j.bioorg.2018.02.009

Sohda T, Mizuno K, Imamiya E, Sugiyama Y, TKY F. Studies on antidiabetic agents. II. Synthesis of 5-[4-(1-methylcyclohexylmethoxy)benzyl]thiazolidine-2,4-dione (ADD-3878) and its derivatives. Chem Pharm Bull. 1982;30(10):3580–600. Available from https://doi.org/10.1248/cpb.30.3580.

Aleo MD, Doshna CM, Navetta KA. Ciglitazone-Induced Lenticular Opacities in Rats: In Vivo and Whole Lens Explant Culture Evaluation. Journal of Pharmacology and Experimental Therapeutics, 2005:312(3);1027–1033. Available from https://doi.org/10.1124/jpet.104.076885.

Cohen JS. Risks of troglitazone apparent before approval in USA. Diabetologia. 2006;49(6):1454–5. Available from https://doi: 10.1007/s00125-006-0245-0.

Day C, Bailey CJ. Rosiglitazone. In: Pharmacology and Therapeutics of the Diabetes Drugs. Handbook of Experimental Pharmacology. Elsevier; 2016:1–4. Available from https://doi.org/10.1016/b978-0-12-801238-3.97237-4.

Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71. Available from https://doi.org/10.1056/NEJMoa070762.

Bavec A. Insulin, other hypoglycaemic drugs, and glucagon. In: Bialer M, editor. Side Effects of Drugs Annual. Vol. 36. Elsevier; 2014. p. 645–57.

Kobayashi M, Iwata M HT. Clinical evaluation of pioglitazone. Nihon Rinsho. 2000;58(2):395–400.

Kuzuya T. The development of thiazolidinedione drugs as anti-diabetic agents. Nippon Rinsho. Japanese Journal of Clinical Medicine. 2000;58(2):364–369. Available from https://doi.org/10.11406/nenpouseiryo.58.364

Lewis JD, Habel LA, Quesenberry CP, Strom BL, Peng T, Hedderson MM, et al. Pioglitazone use and risk of bladder cancer and other common cancers in persons with diabetes. Journal of the American Medical Association. 2015;314(3):265–77. Available from: www.doi.org/10.1001/jama.2015.7996.

Lewis JD, Ferrara A, Peng T, Hedderson M, Bilker WB, Quesenberry CP, et al. Risk of bladder cancer among diabetic patients treated with pioglitazone: Interim report of a longitudinal cohort study. Diabetes Care. 2011;34(4):916–22. Available from https://doi.org/10.2337/dc10-1790.

Sohda T, Mizuno K, Momose Y, Ikeda H, Fujita T, et al. Studies on Antidiabetic Agents. 11. Novel thiazolidinedione derivatives as potent hypoglycemic and hypolipidemic agents. J Med Chem. 1992;35:2617–26. Available from https://doi.org/10.1021/jm00092a012.

Reddy KA, Lohray BB, Bhushan V, Bajji AC, Reddy KV, Reddy PR, et al. Novel antidiabetic and hypolipidemic agents. 3. Benzofuran-containing thiazolidinediones. J Med Chem. 1999;42(11):1927–40. Available from https://doi.org/10.1021/jm980549x.

Lohray BB, Bhushan V, Rao BP, Madhavan GR, Murali N, Rao KN, Reddy AK, Rajesh BM, Reddy PG, Chakrabarti R, Vikramadithyan RK, Rajagopalan R, Mamidi RN, Jajoo HK, Subramaniam S. Novel euglycemic and hypolipidemic agents. J Med Chem. 1998;41(10):1619–1630. Available from https://doi.org/10.1021/jm970444e.

Wrobel J, Li Z, Dietrich A, McCaleb M, Mihan B, Sredy J, et al. Novel 5-(3-aryl-2-propynyl)-5-(arylsulfonyl)thiazolidine-2,4-diones as antihyperglycemic agents. J Med Chem. 1998;41(7):1084–91. Available from https://doi.org/10.1021/jm9706168.

Oguchi M, Wada K, Honma H, Tanaka A, Kaneko T, Sakakibara S, Ohsumi J, Serizawa N, Fujiwara T, Horikoshi H, Fujita T. Molecular design, synthesis, and hypoglycemic activity of a series of thiazolidine-2,4-diones. J Med Chem. 2000;43(16):3052–66. Available from https://doi.org/10.1021/jm990522t.

Young B, Bok J, Woo H, Kwon S, Hwa J, Soo J, et al. Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione. Eur J Med Chem. 2004;39(5):433–47. Available from https://10.1016/j.ejmech.2004.03.001.

Madhavan GR, Chakrabarti R, Vikramadithyan RK, Mamidi RNVS, Balraju V, Rajesh BM, Misra P, Kumar SKB, Lohray BB, Lohray VB, Rajagopalan R. Synthesis and biological activity of novel pyrimidinone-containing thiazolidinedione derivatives. Bioorg Med Chem. 2002;10(8):2671–80. Available from https://doi.org/10.1016/s0968-0896(02)00107-4.

Nazreen S, Alam MS, Hamid H, Yar MS, Dhulap A, Alam P, et al. Thiazolidine-2,4-diones derivatives as PPAR-γ agonists: Synthesis, molecular docking, in vitro and in vivo antidiabetic activity with hepatotoxicity risk evaluation and effect on PPAR-γ gene expression. Bioorg Med Chem Lett. 2014;24(14):3034–42. Available from https://doi.org/10.1016/j.bmcl.2014.05.029.

Nazreen S, Alam MS, Hamid H, Yar MS, Dhulap A, Alam P, Pasha MA, Bano S, Alam MM, Haider S, Kharbanda C, Ali Y, Pillai KK. Design, Synthesis, and Biological Evaluation of Thiazolidine-2,4-dione Conjugates as PPAR-γ Agonists. Arch Pharm (Weinheim). 2015 Jun;348(6):421–32. Available from https://doi.org/10.1002/ardp.201400280.

Zask A, Jirkovsky I, Nowicki JW, McCaleb ML. Synthesis and antihyperglycemic activity of novel 5-(naphthalenylsulfonyl)-2,4-thiazolidinediones. J Med Chem. 1990;33(5):1418–23. Available from https://doi.org/10.1021/jm00167a022.

Yanagisawa H, Takamura M, Yamada E, Fujita S, Hagisawa Y. Novel oximes having 5-benzyl-2,4-thiazolidinedione as antihyperglycemic agents: synthesis and structure–activity relationship. Bioorg Med Chem Lett. 2000;10(4):373–5. Available from https://doi.org/10.1016/S0960-894X(00)00003-2.

Madhavan GR, Chakrabarti R, Kumar SKB, Misra P, Mamidi RNVS, Balraju V, et al. Novel phthalazinone and benzoxazinone containing thiazolidinediones as antidiabetic and hypolipidemic agents. Eur J Med Chem. 2001;36(7-8):627–37. Available from https://doi.org/10.1016/s0223-5234(01)01257-0.

Darwish KM, Salama I, Mostafa SM, Helal MA. Design, synthesis, and biological evaluation of novel thiazolidinediones as PPARγ/FFAR1 dual agonists. Eur J Med Chem. 2016;109:157–72. Available from https://doi.org/10.1016/j.ejmech.2015.12.049.

Izumi T, Tsuruta F, Ishizuka T, Nakamura K, Kothuma M, Takahashi M. Stereoselectivity in pharmacokinetics of rivoglitazone, a novel peroxisome proliferator-activated receptor γ agonist, in rats and monkeys: Model-based pharmacokinetic analysis and in vitro-in vivo extrapolation approach. J Pharm Sci. 2013;102(9):3174–88. Available from https://doi.org/10.1002/jps.23666.

Kong APS, Yamasaki A, Ozaki R, Saito H, Asami T, Ohwada S, et al. A randomized-controlled trial to investigate the effects of rivoglitazone, a novel PPAR gamma agonist on glucose-lipid control in type 2 diabetes. Diabetes Obes Metab. 2011;13(9):806–13. Available from https://doi.org/10.1111/j.1463-1326.2011.01402.x.

Ranjan A, Bhatia R, Chawla P. Synthesis, biological evaluation and molecular docking studies of novel 3,5-disubstituted 2,4-thiazolidinediones derivatives. Bioorg Chem. 2019;89:102993. Available from https://doi.org/10.1016/j.bioorg.2019.102993.

Sujatha B, Chennamsetty S, Chintha V, Wudayagiri R, Prasada Rao K. Synthesis and anti-diabetic activity evaluation of phosphonates containing thiazolidinedione moiety. Phosphorus Sulfur Silicon Relat Elem. 2020;195(7):586–91. Available from https://doi.org/10.1080/10426507.2020.1737061

Hulin B, Clark DA, Goldstein SW, McDermott RE, Dambek PJ, Kappeler WH, et al. Novel thiazolidine-2,4-diones as potent euglycemic agents. J Med Chem. 1992;35(10):1853–64. Available from https://doi.org/10.1021/jm00088a022.

Tanis SP, Parker TT, Colca JR, Fisher RM, Kletzein RF. Synthesis and biological activity of metabolites of the antidiabetic, antihyperglycemic agent pioglitazone. J Med Chem. 1996;39:5053–63. Available from https://doi.org/10.1021/jm9605694.

Tanis SP, Colca JR, Parker TT, Artman GD, Larsen SD, Mcdonald WG, et al. PPARγ-sparing thiazolidinediones as insulin sensitizers. Design, synthesis and selection of compounds for clinical development. Bioorg Med Chem. 2018;26(22):5870–84. Available from https://doi.org/10.1016/j.bmc.2018.10.033.

Pattan S, Kedar M, Pattan J, Dengale S, Sanap M, Gharate U, et al. Synthesis and evaluation of some novel 2,4-thiazolidinedione derivatives for antibacterial, antitubercular and antidiabetic activities. Indian Journal of Chemistry - Sect B. 2012;51B(9):1421–5. Available from https://doi.org/10.1002/chin.201311249.

Lohray BB, Bhushan V, Reddy AS, Rao PB, Reddy NJ, Harikishore P, et al. Novel euglycemic and hypolipidemic agents. 4. Pyridyl- and quinolinyl-containing thiazolidinediones. J Med Chem. 1999;42(14):2569–81. Available from https://doi.org/10.1021/jm980622j.

Prashantha Kumar BR, Nanjan MJ. Novel glitazones: design, synthesis, glucose uptake and structure-activity relationships. Bioorg Med Chem Lett. 2010;20(6):1953–56. Available from https://doi.org/10.1016/j.bmcl.2010.01.125.

Kumar BRP, Soni M, Kumar SS, Singh K, Patil M, Baig RBN, Adhikary L. Synthesis, glucose uptake activity and structure-activity relationships of some novel glitazones incorporated with glycine, aromatic and alicyclic amine moieties via two carbon acyl linker. Eur J Med Chem. 2011;46(3):835–44. Available from https://doi.org/10.1016/j.ejmech.2010.12.019.

Dadasaheb K, Jain N, Vijay J, Kashid G. Design synthesis and evaluation of novel thiazolidinedione derivatives as antidiabetic agents. Pharma Innov. 2017;6(12):390–8.

Pratima A, Nikalje G, Choudhari S, Une H, Campus Z, Bagh R, et al. Design, synthesis and hypoglycemic activity of novel 2-(4-((2,4-dioxothiazolidin-5-ylidene)methyl)-2-methoxyphenoxy)-N-substituted acetamide derivatives. Eur J Exp Biol. 2012;2(4):1302–14.

Gharge S, Alegaon SG, Ranade SD, Khatib NA, Kavalapure RS, Kumar BRP, et al. Design, synthesis of new 2,4-thiazolidinediones: In-silico, in-vivo anti-diabetic and anti-inflammatory evaluation. Eur J Med Chem Rep. 2024;11:100151. Available from https://doi.org/10.1016/j.ejmcr.2024.100151.

Chhajed SS, Shinde PE, Kshirsagar SJ, Sangshetti JN, Gupta PKP, Parab MM, et al. De-novo design and synthesis of conformationally restricted thiazolidine-2,4-dione analogues: highly selective PPAR-γ agonist in search of anti-diabetic agent. Struct Chem. 2020;31(4):1375–85. Available from https://doi.org/10.1007/s11224-020-01500-4.

Henke BR, Blanchard SG, Brackeen MF, Brown KK, Cobb JE, Collins JL, et al. N-(2-benzoylphenyl)-L-tyrosine PPARγ agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J Med Chem. 1998;41(25):5020–36. Available from https://doi.org/10.1021/jm9804127.

Momose Y, Maekawa T, Yamano T, Kawada M, Odaka H, Ikeda H, et al. Novel 5-substituted 2,4-thiazolidinedione and 2,4-oxazolidinedione derivatives as insulin sensitizers with antidiabetic activities. J Med Chem. 2002;45(7):1518–34. Available from https://doi.org/10.1021/jm010490l.

Kar K, Krithika U, Mithuna, Basu P, Santhosh Kumar S, Reji A, et al. Design, synthesis and glucose uptake activity of some novel glitazones. Bioorg Chem. 2014;56:27–33. Available from https://doi.org/ 10.1016/j.bioorg.2014.05.006.

Mahindroo N, Wang CC, Liao CC, Huang CF, Lu IL, Lien TW, et al. Indol-1-yl acetic acids as peroxisome proliferator-activated receptor agonists: Design, synthesis, structural biology, and molecular docking studies. J Med Chem. 2006;49(3):1212–16. Available from https://doi.org/10.1021/jm0510373.

Prashantha Kumar BR, Baig NR, Sudhir S, Kar K, Kiranmai M, Pankaj M, et al. Discovery of novel glitazones incorporated with phenylalanine and tyrosine: Synthesis, antidiabetic activity and structure-activity relationships. Bioorg Chem. 2012;45:12–28. Available from https://doi.org/ 10.1016/j.bioorg.2012.08.002.

Maji D, Samanta S. Novel thiazolidinedione-5-acetic-acid-peptide hybrid derivatives as potent antidiabetic and cardioprotective agents. Biomed Pharmacother. 2017;88:1163–72. Available from https://doi.org/10.1016/j.biopha.2017.01.160.

Arakawa K, Inamasu M. Novel Benzoxazole 2,4-Thiazolidinediones as Potent Hypoglycemic Agents. Synthesis and structure activity relationships. Chem Pharm Bull. 1984;45(12):1984–93. Available from https://doi.org/10.1248/cpb.45.1984.

Javed M, Ozair N. Synthesis, docking, in vitro and in vivo antidiabetic activity of pyrazole-based 2,4-thiazolidinedione derivatives as PPAR-γ modulators. Arch Pharma. 2018;351(3–4):1–15. Available from https://doi.org/10.1002/ardp.201700223.

Javed M, Alam J, Nawaz F, Naidu VGM, Aaghaz S, Sahu M, et al. Synthesis, molecular docking and anti-diabetic evaluation of 2,4-thiazolidinedione based amide derivatives. Bioorg Chem. 2017;73:24–36. Available from https://doi.org/10.1016/j.bioorg.2017.05.007.

Bansal G, Singh S, Monga V. Synthesis and biological evaluation of thiazolidine-2,4-dione-pyrazole conjugates as antidiabetic, anti-inflammatory and antioxidant agents. Bioorg Chem. 2019;92:103271. Available from https://doi.org/10.1016/j.bioorg.2019.103271.

Datar PA, Aher SB. Design and synthesis of novel thiazolidine-2,4-diones as hypoglycemic agents. J Saudi Chem Soc. 2016;20(Suppl 1):S196–201. Available from https://doi.org/10.1016/j.jscs.2012.10.010.

Avupati VR, Yejella RP, Akula A, Guntuku GS, Doddi BR, Vutla VR, et al. Synthesis, characterization and biological evaluation of some novel 2,4-thiazolidinediones as potential cytotoxic, antimicrobial and antihyperglycemic agents. Bioorg Med Chem Lett. 2012;22(20):6442–50. Available from https://doi.org/10.1016/j.bmcl.2012.08.052

Iwata Y, Miyamoto S, Takamura M, Yanagisawa H, Kasuya A. Interaction between peroxisome proliferator-activated receptor γ and its agonists: Docking study of oximes having 5-benzyl-2,4-thiazolidinedione. J Mol Graph Model. 2001;19(6):536–42. Available from https://doi.org/10.1016/s1093-3263(01)00086-9.

Sohda T, Mizuno K, Imamiya E, Sugiyama Y, Fujita T, Kawamatsu Y. Studies on antidiabetic agents. II. Synthesis of 5-[4-(1-methylcyclohexylmethoxy)-benzyl]thiazolidine-2,4-dione (ADD-3878) and its derivatives. Chem Pharm Bull (Tokyo). 1982;30(10):3580-600. Available from https://doi.org/10.1248/cpb.30.3580.

Yoshioka T, Fujita T, Kanai T, Aizawa Y, Kurumada T, Hasegawa K, Horikoshi H. Studies on hindered phenols and analogues. 1. Hypolipidemic and hypoglycemic agents with ability to inhibit lipid peroxidation. J Med Chem. 1989;32(2):421–8. Available from https://doi.org/10.1021/jm00122a022.

Murakami K, Tobe K, Ide T, Mochizuki T, Ohashi M, Akanuma Y, Yazaki Y, et al. A novel insulin sensitizer acts as a coligand for peroxisome proliferator-activated receptor-α and -γ: effect of PPARα activation on abnormal lipid metabolism in the liver of Zucker fatty rats. Diabetes. 1998;47(12):1841–7. Avaliable from https://doi.org/10.2337/diabetes.47.12.1841.

Ljung B, Bamberg K, Dahllöf B, Kjellstedt A, Oakes ND, Östling J, et al. AZ 242, a novel PPARα/γ agonist with beneficial effects on insulin resistance and carbohydrate and lipid metabolism in ob/ob mice and obese Zucker rats. J Lipid Res. 2002;43(11):1855–63. Avaliable from https://doi.org/10.1194/jlr.m200127-jlr200.

Cronet P, Petersen JFW, Folmer R, Blomberg N, Sjöblom K, Karlsson U, et al. Structure of the PPARα and -γ ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family. Structure. 2001;9(8):699–706.

Lohray BB, Lohray VB, Bajji AC, Kalchar S, Poondra RR. (-)3-[4-[2-(Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid [(-)DRF 2725]: A dual PPAR agonist with potent antihyperglycemic and lipid modulating activity. J Med Chem. 2001;44(17):2675–8. Available from https://doi.org/10.1021/jm010143b.

Ebdrup S, Pettersson I, Rasmussen HB, Deussen HJ, Jensen AF, Mortensen SB, et al. Synthesis and biological and structural characterization of the dual-acting peroxisome proliferator-activated receptor α/γ agonist ragaglitazar. J Med Chem. 2003;46(8):1306–17. Available from https://doi.org/10.1021/jm021027r.

Liu KG, Smith JS, Ayscue AH, Henke BR, Lambert MH, Leesnitzer LM, et al. Identification of a series of oxadiazole-substituted α-isopropoxy phenylpropanoic acids with activity on PPARα, PPARγ, and PPARδ. Bioorg Med Chem Lett. 2001;11(17):2385–8. Available from https://doi.org/10.1016/s0960-894x(01)00458-9.

Henke BR, Blanchard SG, Brackeen MF, Brown KK, Cobb JE, Collins JL, et al. N-(2-benzoylphenyl)-L-tyrosine PPARγ agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J Med Chem. 1998;41(25):5020–36. Available from https://doi.org/10.1021/jm9804127.

Miller AR, Etgen GJ. Novel peroxisome proliferator-activated receptor ligands for Type 2 diabetes and the metabolic syndrome. Expert Opin Investig Drugs. 2003;12(9):1489–500

Devasthale PV, Chen S, Jeon Y, Qu F, Shao C, Wang W, et al. Design and synthesis of N-[(4-methoxyphenoxy)carbonyl]-N-[[4-[2-(5-methyl-2-phenyl-4-oxazolyl)ethoxy]phenyl]methyl]glycine [muraglitazar/BMS-298585], a novel peroxisome proliferator-activated receptor α/γ dual agonist with efficacious glucose and lipid-l. J Med Chem. 2005;48(6):2248–50.

Harrity T, Farrelly D, Tieman A, Chu C, Kunselman L, Gu L, et al. Muraglitazar, a Novel Dual (α/γ) Peroxisome Proliferator–Activated Receptor Activator, Improves Diabetes and Other Metabolic Abnormalities and Preserves β-Cell Function in db/db Mice. Diabetes. 2006;55(January):240–8. Available from doi: https://doi.org/10.2337/diabetes.55.01.06.db05-0648

Nissen SE. The rise and fall of rosiglitazone. Eur Heart J. 2010;31(10):1282–4. Aailable from doi:10.1093/eurheartj/ehp604

Kobayashi M, Iwata M, Haruta T. Clinical evaluation of pioglitazone. Nihon Rinsho. 2000;58(2):395–400. Available from https://doi.org/10.2336/jnms.58.395

Kuzuya T. The development of thiazolidinedione drugs as anti-diabetic agents. Nihon Rinsho. 2000;58(2):364–9.

Lewis JD, Habel LA, Quesenberry CP, Strom BL, Peng T, Hedderson MM, et al. Pioglitazone use and risk of bladder cancer and other common cancers in persons with diabetes. JAMA. 2015;314(3):265–77. Available from https://doi.org/10.1001/jama.2015.6611

Lewis JD, Ferrara A, Peng T, Hedderson M, Bilker WB, Quesenberry CP, et al. Risk of bladder cancer among diabetic patients treated with pioglitazone: Interim report of a longitudinal cohort study. Diabetes Care. 2011;34(4):916–22. Available from https://doi.org/10.2337/dc10-1682.

Koffarnus RL, Wargo KA, Phillippe HM. Rivoglitazone: a new thiazolidinedione for the treatment of type 2 diabetes mellitus. Ann Pharmacother. 2013;47(6):877–85. Available from https://doi.org/10.1345/aph.1R685.

Jin SM, Park CY, Cho YM, Ku BJ, Ahn CW, Cha BS, et al. Lobeglitazone and pioglitazone as add-ons to metformin for patients with type 2 diabetes: a 24-week, multicentre, randomized, double-blind, parallel-group, active-controlled, phase III clinical trial with a 28-week extension. Diabetes Obes Metab. 2015;17(6):599–602. Available from https://doi.org/10.1111/dom.12464.

Kim SG, Kim DM, Woo JT, Jang HC, Chung CH, Ko KS, et al. Efficacy and safety of lobeglitazone monotherapy in patients with type 2 diabetes mellitus over 24 weeks: a multicenter, randomized, double-blind, parallel-group, placebo-controlled trial. PLoS One. 2014;9(4):e92843. Available from https://doi.org/10.1371/journal.pone.0092843.

Lee MA, Tan L, Yang H, Im YG, Im YJ. Structures of PPARγ complexed with lobeglitazone and pioglitazone reveal key determinants for the recognition of antidiabetic drugs. Sci Rep. 2017;7(1):16837. Available from https://doi.org/10.1038/s41598-017-17082-x.

Bae J, Park T, Kim H, Lee M, Cha BS. Lobeglitazone: A novel thiazolidinedione for the management of type 2 diabetes mellitus. Diabetes Metab J. 2021;45(3):326–36. Available from https://doi.org/10.4093/dmj.2021.0023.

Rohatgi N, Aly H, Marshall CA, McDonald WG, Kletzien RF, Colca JR, et al. Novel insulin sensitizer modulates nutrient sensing pathways and maintains β-cell phenotype in human islets. PLoS One. 2013;8(5):e62012. Available from https://doi.org/10.1371/journal.pone.0062012.

Colca JR, Vanderlugt JT, Adams WJ, Shashlo A, McDonald WG, Liang J, et al. Clinical proof-of-concept study with MSDC-0160, a prototype mTOT-modulating insulin sensitizer. Clin Pharmacol Ther. 2013;93(4):352–9. Available from https://doi.org/10.1038/clpt.2012.237.

Jani RH, Kansagra K, Jain MR, Patel H. Pharmacokinetics, safety, and tolerability of saroglitazar (ZYH1), a predominantly PPARα agonist with moderate PPARγ agonist activity in healthy human subjects. Clin Drug Investig. 2013;33(11):809–16. Available from https://doi.org/10.1007/s40261-013-0135-1.

Shetty SR, Kumar S, Mathur RP, Sharma KH, Jaiswal AD. Observational study to evaluate the safety and efficacy of saroglitazar in Indian diabetic dyslipidemia patients. Indian Heart J. 2015;67(1):23–6. Available from https://doi.org/10.1016/j.ihj.2015.02.007.

Goyal O, Nohria S, Goyal P, Kaur J, Sharma S, Sood A, et al. Saroglitazar in patients with non-alcoholic fatty liver disease and diabetic dyslipidemia: a prospective, observational, real-world study. Sci Rep. 2020;10(1):1–9. Available from https://doi.org/10.1038/s41598-020-75987-9.

Patel NN, Crincoli CM, Frederick DM, Tchao R, Harvison PJ. Effect of structural modifications on 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione-induced hepatotoxicity in Fischer 344 rats. J Appl Toxicol. 2012;32(2):108–17. Available from https://doi.org/10.1002/jat.1639.

Hurren KM, Taylor TN, Jaber LA. Antidiabetic prescribing trends and predictors of thiazolidinedione discontinuation following the 2007 rosiglitazone safety alert. Diabetes Res Clin Pract. 2011;93(1):49–55. Available from https://doi.org/10.1016/j.diabres.2011.01.003.

Bae J, Park T, Kim H, Lee M, Cha BS. Lobeglitazone: A novel thiazolidinedione for the management of type 2 diabetes mellitus. Diabetes Metab J. 2021;45(3):326–36. Available from https://doi.org/10.4093/dmj.2020.0172.

Konar M, Kaur B, Sharma S. Mechanistic implications of diabetes leading to bone pathology. J Orthop Rep. 2024 Dec;4(4):100485. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2773157X24001802

Published

30-03-2025
Statistics
Abstract Display: 96
PDF Downloads: 79
Dimension Badge

How to Cite

“2,4-Thiazolidinedione in Treating Diabetes: A Comprehensive Overview - History, Chemistry, Advancements, Challenges and Future Perspectives”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 17, no. 2, Mar. 2025, pp. 203-15, https://doi.org/10.25004/IJPSDR.2025.170211.

Issue

Section

Review Article

How to Cite

“2,4-Thiazolidinedione in Treating Diabetes: A Comprehensive Overview - History, Chemistry, Advancements, Challenges and Future Perspectives”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 17, no. 2, Mar. 2025, pp. 203-15, https://doi.org/10.25004/IJPSDR.2025.170211.

Similar Articles

1-10 of 78

You may also start an advanced similarity search for this article.