Lipid Hybrid Nanoparticles in Cancer Therapy: A Promising Nanotechnology-Based Drug Delivery System
Abstract
Cancer is one of the leading causes of mortality worldwide, with an increasing global burden and significant disparities in its incidence and treatment. Hybrid nanoparticles (LHNPs) represent a cutting-edge advancement in nanotechnology-based drug delivery for cancer therapy. These nanoparticles combine lipid carriers' biocompatibility with polymeric nanoparticles' structural stability, resulting in improved drug solubility, controlled release, and enhanced tumour targeting. LHNPs enhance drug delivery to cancer sites through both passive and active targeting strategies, leveraging the enhanced permeability and retention (EPR) effect along with ligand-based targeting to increase drug concentration at tumor locations. The formulation of LHNPS involves various preparation techniques, including high-pressure homogenisation, solvent evaporation, and nanoprecipitation, ensuring stability and optimal drug loading efficiency. Their structural composition consists of a lipid matrix encapsulating a hydrophilic or hydrophobic drug core, allowing versatile drug delivery applications. Characterisation techniques such as dynamic light scattering (DLS), zeta potential analysis, and transmission electron microscopy (TEM) assess particle size, surface charge, and morphology, which are crucial for therapeutic efficacy. Despite their advantages, challenges such as large-scale manufacturing, long-term stability, and potential cytotoxicity require further research. The integration of LHNPs into cancer therapy offers a promising approach to overcoming conventional treatment limitations, enhancing patient outcomes with reduced systemic toxicity.
Keywords:
Lipid Hybrid Nanoparticles, Cancer Therapy, Drug Delivery Systems, Nanoformulations, Targeted Drug DeliveryDOI
https://doi.org/10.25004/IJPSDR.2025.170408References
Sriharikrishnaa S, Suresh PS, Prasada K S. An introduction to fundamentals of cancer biology. In Optical Polarimetric Modalities for Biomedical Research 2023 Jul 23 (pp. 307-330). Cham: Springer International Publishing. Available from: doi.org/10.1007/978-3-031-31852-8_11
Irigaray P, Newby JA, Clapp R, Hardell L, Howard V, Montagnier L, Epstein S, Belpomme D. Lifestyle-related factors and environmental agents causing cancer: an overview. Biomedicine & pharmacotherapy. 2007 Dec 1;61(10):640-58. Available from https://doi.org/10.1016/j.biopha.2007.10.006.
Mujawar NK, Mulla JAS. Beyond Boundaries: Emerging Trends & Innovations in Cancer Research. In: Horizons in Cancer Research. Edn 1, Vol. 87, Nova Science Publishers, Inc., New York, 2024, pp. 125-161.
Farshi E. Comprehensive Overview Of 31 Types of Cancer: Incidence, Categories, Treatment Options, And Survival Rates. International Journal of Gastroenterology and Hepatology. 2024.
Mattiuzzi C, Lippi G. Cancer statistics: a comparison between world health organization (WHO) and global burden of disease (GBD). European journal of public health. 2020 Oct;30(5):1026-7. Available from https://doi.org/10.1093/eurpub/ckz216.
Bizuayehu HM, Ahmed KY, Kibret GD, Dadi AF, Belachew SA, Bagade T, Tegegne TK, Venchiarutti RL, Kibret KT, Hailegebireal AH, Assefa Y. Global disparities of cancer and its projected burden in 2050. JAMA network open. 2024 Nov 4;7(11):e2443198. Available from https://doi:10.1001/jamanetworkopen.2024.43198.
Swift LH, Golsteyn RM. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. International journal of molecular sciences. 2014 Feb 25;15(3):3403-31. Available from https://doi.org/10.3390/ijms15033403.
Ralhan R, Kaur J. Alkylating agents and cancer therapy. Expert Opinion on Therapeutic Patents. 2007 Sep 1;17(9):1061-75. Available from: doi.org/10.1517/13543776.17.9.1061
Chowdhury PS, Chamoto K, Honjo T. Combination therapy strategies for improving PD‐1 blockade efficacy: a new era in cancer immunotherapy. Journal of internal medicine. 2018 Feb;283(2):110-20. Available from https://doi.org/10.1111/joim.12708.
Chabner B, Longo DL. Clinical strategies for cancer treatment: the role of drugs. Cancer chemotherapy and biotherapy: principles and practice. 2006;4.
Abbas Z, Rehman S. An overview of cancer treatment modalities. Neoplasm. 2018 Sep 19;1:139-57. Available from https://dx.doi.org/10.5772/intechopen.76558.
Singh P, Singh S, Mishra A, Mishra SK. Multimodality treatment planning using the Markov decision process: a comprehensive study of applications and challenges. Research on Biomedical Engineering. 2024 Jun;40(2):435-50. Available from https://doi.org/10.1007/s42600-024-00349-4.
Milanezi F, Carvalho S, Schmitt FC. EGFR/HER2 in breast cancer: a biological approach for molecular diagnosis and therapy. Expert review of molecular diagnostics. 2008 Jul 1;8(4):417-34. Available from https://doi.org/10.1586/14737159.8.4.417.
Kelloff GJ, Sigman CC. Cancer biomarkers: selecting the right drug for the right patient. Nature reviews Drug discovery. 2012 Mar;11(3):201-14. Available from https://doi.org/10.1038/nrd3651.
Yip R. Factors Associated with Lung Cancer Treatment Choices: Current Practice and a Step Towards Precision Medicine (Doctoral dissertation, The George Washington University),2024.
Marco RA, Brindise J, Dong D. MOSS: A patient-centered approach. In Metastatic Spine Disease: A Guide to Diagnosis and Management 2018 Mar 2 (pp. 1-20). Cham: Springer International Publishing. Available from https://doi.org/10.1007/978-3-319-76252-4_1.
Wang C, Zhao K, Hu S, Li M, Song Y. Patterns and treatment strategies of osimertinib resistance in T790M-positive non-small cell lung cancer: a pooled analysis. Frontiers in Oncology. 2021 Mar 2; 11:600844. Available from https:// doi.org/10.3389/fonc.2021.600844.
Kaur S, Mayanglambam P, Bajwan D, Thakur N. Chemotherapy and its adverse effects-A systematic review. International Journal of Nursing Education and Research. 2022;10(4):399-402. Available from https://doi:10.52711/2454-2660.2022.00090.
Hainsworth JD, Spigel DR, Sosman JA, Burris III HA, Farley C, Cucullu H, Yost K, Hart LL, Sylvester L, Waterhouse DM, Greco FA. Treatment of advanced renal cell carcinoma with the combination bevacizumab/erlotinib/imatinib: a phase I/II trial. Clinical genitourinary cancer. 2007 Dec 1;5(7):427-32. Available from https://doi.org/10.3816/CGC.2007.n.030.
Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ, Powell SF, Cheng SY. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. New England journal of medicine. 2018 May 31;378(22):2078-92. Available from https://doi.org/10.1056/NEJMoa1801005.
Joshi D, Patel J, Munshi M, Mistry Z, Prajapati A, Mukherjee A, Ramachandran AV, Parashar NC, Parashar G, Haque S, Tuli HS. Hormones as a double-edged sword: the role of hormones in cancer progression and the potential of targeted hormone therapies. Medical Oncology. 2024 Oct 14;41(11):283. Available from https://doi.org/10.1007/s12032-024-02517-z.
Rothenberg ML, Cox JV, Butts C, Navarro M, Bang YJ, Goel R, Gollins S, Siu LL, Laguerre S, Cunningham D. Capecitabine plus oxaliplatin (XELOX) versus 5-fluorouracil/folinic acid plus oxaliplatin (FOLFOX-4) as second-line therapy in metastatic colorectal cancer: a randomized phase III noninferiority study. Annals of Oncology. 2008 Oct 1;19(10):1720-6. Available from https://doi.org/10.1093/annonc/mdn370.
Molla G, Bitew M. The Future of Cancer Diagnosis and Treatment: Unlocking the Power of Biomarkers and Personalized Molecular-Targeted Therapies, 2025. Available from https://doi:10.20944/preprints202503.2350.v1.
Hoskins E. Leveraging multi-omics and big data to detect and describe rare genomic alterations in cancer that can potentially be targeted with precision therapies (Doctoral dissertation, The Ohio State University),2024.
Garg P, Malhotra J, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging therapeutic strategies to overcome drug resistance in cancer cells. Cancers. 2024 Jul 7;16(13):2478. Available from https://doi.org/10.3390/cancers16132478.
Martins VF. Benefits and drawbacks for the clinical use of 5-fluorouracil (Master's thesis, Universidade de Lisboa (Portugal)),2023.
Moradpour Z, Barghi L. Novel approaches for efficient delivery of tyrosine kinase inhibitors. Journal of Pharmacy & Pharmaceutical Sciences. 2019 Jan 13;22:37-48. Available from https://doi.org/10.18433/jpps29891.
Kar S, Vignesh K, Kolhe UD. An overview of paclitaxel delivery systems. Sustainable Agriculture Reviews 43: Pharmaceutical Technology for Natural Products Delivery Vol. 1 Fundamentals and Applications. 2020 May 6:161-215. Available from https://doi.org/10.1007/978-3-030-41838-0_6.
Etrych T, Braunova A, Zogala D, Lambert L, Renesova N, Klener P. Targeted drug delivery and theranostic strategies in malignant lymphomas. Cancers. 2022 Jan 26;14(3):626. Available from https://doi.org/10.3390/cancers14030626.
Krukiewicz K, Zak JK. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. Materials Science and Engineering: C. 2016 May 1;62:927-42. Available from https://doi.org/10.1016/j.msec.2016.01.063.
Das KP. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges. Frontiers in Medical Technology. 2023 Jan 6;4:1067144. Available from https://doi.org/10.3389/fmedt.2022.1067144.
Mujawar NK, Navale SS, Mevekari FI. Advancements in Nanotechnology. Edn 1, Vol. 31, Nova Science Publishers, Inc., New York, 2024, pp. 171-196. ISBN: 979-8-89530-247-0. Available from https://doi.org/10.52305/ENFL5303.
DeVita VT, Lawrence TS, Rosenberg SA. DeVita, Hellman, and Rosenberg's Cancer: Principles & Practice of Oncology. 11th ed. Philadelphia: Wolters Kluwer; 2021.
Luo C, Sun J, Du Y, He Z. Emerging integrated nanohybrid drug delivery systems to facilitate the intravenous-to-oral switch in cancer chemotherapy. Journal of controlled release. 2014 Feb 28;176:94-103. Available from https://doi.org/10.1016/j.jconrel.2013.12.030.
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anticancer drug delivery. J Control Release. 2010 Nov 10;148(2):135-46. Available from https:// doi: 10.1016/j.jconrel.2010.08.027.
Torchilin VP. Multifunctional nanocarriers for drug delivery in cancer. Nat Rev Drug Discov. 2014 Nov;13(11):813-27. Available from https://doi: 10.1038/nrd4333.
Persano F, Gigli G, Leporatti S. Lipid-polymer hybrid nanoparticles in cancer therapy: Current overview and future directions. Nano Express. 2021 Mar 18;2(1):012006. Available from https://doi:10.1088/2632-959X/abeb4b.
Wang L, Zhao X, Zhang Q, Zhang W, Wang C, Yu L. Lipid hybrid nanoparticles for cancer therapy: Advances and perspectives. Acta Pharm Sin B. 2021 Sep;11(9):2505-2529. Available from https://doi: 10.1016/j.apsb.2021.04.017.
Wang J, Xu W, Li S, Qiu X, Song Y, Xu R. Drug delivery systems for overcoming multidrug resistance in cancer. J Control Release. 2019 Jan 10; 295:170-87. Available from https://doi: 10.1016/j.jconrel.2018.12.019.
Layek B, Gidwani B, Tiwari S, Joshi V, Jain V, Vyas A. Recent advances in lipid-based nanodrug delivery systems in cancer therapy. Current Pharmaceutical Design. 2020 Aug 1;26(27):3218-33. Available from https://doi.org/10.2174/1381612826666200622133407.
Ferraro E, Drago JZ, Modi S. Implementing antibody-drug conjugates (ADCs) in HER2-positive breast cancer: state of the art and future directions. Breast Cancer Research. 2021 Aug 11;23(1):84. Available from https://doi.org/10.1186/s13058-021-01459-y.
Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug discovery today. 2016 Nov 1;21(11):1835-49. Available from https://doi.org/10.1016/j.drudis.2016.07.006.
Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. Journal of Controlled Release. 2012 May 10;159(3):312-23. Available from https://doi.org/10.1016/j.jconrel.2011.12.012.
Brem H, Gabikian P. Biodegradable polymer implants to treat brain tumors. Journal of controlled release. 2001 Jul 6;74(1-3):63-7. Available from https://doi.org/10.1016/S0168-3659(01)00311-X.
Hariharan A, Tran SD. Localized Drug Delivery Systems: An Update on Treatment Options for Head and Neck Squamous Cell Carcinomas. Pharmaceutics 2023, 15, 1844 [Internet]. 2023. Available from:doi.org/10.3390/pharmaceutics15071844.
Tiruwa R. A review on nanoparticles-preparation and evaluation parameters. Indian J Pharm Biol Res. 2016;4(2):27-31.
Hami Z. A brief review on advantages of nano-based drug delivery systems. Annals of Military and Health Sciences Research. 2021 Jan 1;19(1). Available from https://doi.org/10.5812/amh.112274.
Singh S, Pandey VK, Tewari RP, Agarwal V. Nanoparticle based drug delivery system: advantages and applications. Indian J Sci Technol. 2011 Mar;4(3):177-80.
Waheed S, Li Z, Zhang F, Chiarini A, Armato U, Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. Journal of Nanobiotechnology. 2022 Aug 31;20(1):395. Available from https://doi.org/10.1186/s12951-022-01605-4.
Kishimoto TK, Ferrari JD, LaMothe RA, Kolte PN, Griset AP, O'Neil C, Chan V, Browning E, Chalishazar A, Kuhlman W, Fu FN. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nature nanotechnology. 2016 Oct;11(10):890-9. Available from https://doi.org/10.1038/nnano.2016.135.
Bose RJ, Ravikumar R, Karuppagounder V, Bennet D, Rangasamy S, Thandavarayan RA. Lipid–polymer hybrid nanoparticle-mediated therapeutics delivery: advances and challenges. Drug discovery today. 2017 Aug 1;22(8):1258-65. Available from https://doi.org/10.1016/j.drudis.2017.05.015.
Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Molecular Cancer. 2023 Oct 3;22(1):160. Available from https://doi.org/10.1186/s12943-023-01849-0.
Jain S, Kumar M, Kumar P, Verma J, Rosenholm JM, Bansal KK, Vaidya A. Lipid–polymer hybrid nanosystems: a rational fusion for advanced therapeutic delivery. Journal of Functional Biomaterials. 2023 Aug 23;14(9):437. Available from https://doi.org/10.3390/jfb14090437.
Sivadasan D, Sultan MH, Madkhali O, Almoshari Y, Thangavel N. Polymeric lipid hybrid nanoparticles (plns) as emerging drug delivery platform—A comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics. 2021 Aug 18;13(8):1291. Available from https://doi.org/10.3390/pharmaceutics13081291.
Chella N, Shastri NR. Lipid carriers: role and applications in nano drug delivery. In Particulate technology for delivery of therapeutics 2017 Oct 11 (pp. 253-289). Singapore: Springer Singapore.Available from https://doi.org/10.1007/978-981-10-3647-7_8.
Mulla JA, Mabrouk M, Choonara YE, Kumar P, Chejara DR, du Toit LC, Pillay V. Development of respirable rifampicin-loaded nano-lipomer composites by microemulsion-spray drying for pulmonary delivery. Journal of Drug Delivery Science and Technology. 2017 Oct 1;41:13-9. Available from https://doi: 10.1016/j.jddst.2017.06.017.
Sahel DK, Vora LK, Saraswat A, Sharma S, Monpara J, D'Souza AA, Mishra D, Tryphena KP, Kawakita S, Khan S, Azhar M. CRISPR/Cas9 genome editing for tissue‐specific in vivo targeting: nanomaterials and translational perspective. Advanced Science. 2023 Jul;10(19):2207512. Available from https://doi.org/10.1002/advs.202207512.
Li Z, Xu K, Qin L, Zhao D, Yang N, Wang D, Yang Y. Hollow nanomaterials in advanced drug delivery systems: from single‐to multiple shells. Advanced Materials. 2023 Mar;35(12):2203890. Available from https://doi.org/10.1002/adma.202203890.
Patel D, Sethi N, Patel P, Shah S, Patel K. Exploring the potential of P-glycoprotein inhibitors in the targeted delivery of anti-cancer drugs: a comprehensive review. European Journal of Pharmaceutics and Biopharmaceutics. 2024 Mar; 20:114267. Available from https://doi.org/10.1016/j.ejpb.2024.114267.
Raman S, Mahmood S, Rahman A. A review on lipid-polymer hybrid nanoparticles and preparation with recent update. In Materials science forum 2020 (Vol. 981, pp. 322-327). Trans Tech Publications Ltd. Available from https://doi.org/10.4028/www.scientific.net/msf.981.322.
Rizwanullah M, Alam M, Harshita, Mir SR, Rizvi MM, Amin S. Polymer-lipid hybrid nanoparticles: A next-generation nanocarrier for targeted treatment of solid tumors. Current Pharmaceutical Design. 2020 Mar 1;26(11):1206-15. Available from https://doi.org/10.2174/1381612826666200116150426.
Mohanty A, Uthaman S, Park IK. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules. 2020 Sep 23;25(19):4377. Available from https://doi.org/10.3390/molecules25194377.
Mulla JA. Drug Delivery and Therapeutic Approaches to Prostate Cancer. Indian Journal of Novel Drug Delivery. 2018;10(3):98-109.
Fathy Abd-Ellatef GE, Gazzano E, Chirio D, Ragab Hamed A, Belisario DC, Zuddas C, Peira E, Rolando B, Kopecka J, Assem Said Marie M, Sapino S. Curcumin-loaded solid lipid nanoparticles bypass p-glycoprotein mediated doxorubicin resistance in triple negative breast cancer cells. Pharmaceutics. 2020 Jan 24;12(2):96. Available from https://doi.org/10.3390/pharmaceutics12020096.
Kannan S, Cheng VW. Nanoparticle drug delivery to target breast cancer brain metastasis: Current and future trends. International Journal of Cancer. 2023 Sep 15;153(6):1118-29. Available from https://doi.org/10.1002/ijc.34542.
Ali DA, Mehanna MM. Role of lignin-based nanoparticles in anticancer drug delivery and bioimaging: An up-to-date review. International Journal of Biological Macromolecules. 2022 Nov 30;221:934-53. Available from https://doi.org/10.1016/j.ijbiomac.2022.09.007.
Li M, Liu Y, Liu Y, Lin J, Ding L, Wu S, Gong J. Fabrication of targeted and pH responsive lysozyme-hyaluronan nanoparticles for 5-fluorouracil and curcumin co-delivery in colorectal cancer therapy. International journal of biological macromolecules. 2024 Jan 1;254:127836. Available from https://doi.org/10.1016/j.ijbiomac.2023.127836.
Qi L, Li Z, Liu J, Chen X. Omics‐Enhanced Nanomedicine for Cancer Therapy. Advanced Materials. 2024 Dec;36(50):2409102. Available from https://doi.org/10.1002/adma.202409102.
Ortíz R, Quiñonero F, García-Pinel B, Fuel M, Mesas C, Cabeza L, Melguizo C, Prados J. Nanomedicine to overcome multidrug resistance mechanisms in colon and pancreatic cancer: recent progress. Cancers. 2021 Apr 24;13(9):2058. Available from https://doi.org/10.3390/cancers13092058.
Bansal T, Akhtar N, Jaggi M, Khar RK, Talegaonkar S. Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug discovery today. 2009 Nov 1;14(21-22):1067-74. Available from https://doi.org/10.1016/j.drudis.2009.07.010.
Sun G, Sun K, Sun J. Combination prostate cancer therapy: Prostate-specific membranes antigen targeted, pH-sensitive nanoparticles loaded with doxorubicin and tanshinone. Drug delivery. 2021 Jan 1;28(1):1132-40. Available from https://doi.org/10.1080/10717544.2021.1931559.
Rose PEGylated Liposomal Doxorubicin (Doxil) improves drug delivery to ovarian cancer. [17,31] Rose PG. Pegylated liposomal doxorubicin: optimizing the dosing schedule in ovarian cancer. The oncologist. 2005 Mar 1;10(3):205-14. Available from https://doi.org/10.1634/theoncologist.10-3-205.
Messerschmidt SK, Musyanovych A, Altvater M, Scheurich P, Pfizenmaier K, Landfester K, et al. Targeted lipid-coated nanoparticles: delivery of tumor necrosis factor-functionalized particles to tumor cells. J Control Release. 2009 Jun 5;137(1):69-77. Available from https:// doi: 10.1016/j.jconrel.2009.03.005.
Tahir N, Madni A, Correia A, Rehman M, Balasubramanian V, Khan MM, Santos HA. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. International journal of nanomedicine. 2019 Jul 5:4961-74. Available from https://doi.org/10.2147/IJN.S209325.
Chaudhary Z, Ahmed N, Rehman AU, Khan GM. Lipid polymer hybrid carrier systems for cancer targeting: A review. International journal of polymeric materials and polymeric biomaterials. 2018 Jan 22;67(2):86-100. Available from https://doi.org/10.1080/00914037.2017.1300900.
Shi C, Zhang Z, Wang F, Luan Y. Active-targeting docetaxel-loaded mixed micelles for enhancing antitumor efficacy. Journal of Molecular Liquids. 2018 Aug 15;264:172-8. Available from https://doi.org/10.1016/j.molliq.2018.05.039.
Du JB, Song YF, Ye WL, Cheng Y, Cui H, Liu DZ, Liu M, Zhang BL, Zhou SY. PEG-detachable lipid–polymer hybrid nanoparticle for delivery of chemotherapy drugs to cancer cells. Anti-Cancer Drugs. 2014 Aug 1;25(7):751-66. Available from https:// doi: 10.1097/CAD.0000000000000092.
Zhang H, Dong S, Zhang S, Li Y, Li J, Dai Y, Wang D. pH-responsive lipid polymer hybrid nanoparticles (LPHNs) based on poly (β-amino ester) as a promising candidate to resist breast cancers. Journal of Drug Delivery Science and Technology. 2021 Feb 1;61:102102. Available from https://doi.org/10.1016/j.jddst.2020.102102.
Li M, Zhao G, Su WK, Shuai Q. Enzyme-responsive nanoparticles for anti-tumor drug delivery. Frontiers in chemistry. 2020 Jul 30;8:647. Available from https://doi.org/10.3389/fchem.2020.00647.
Gupta P, Neupane YR, Aqil M, Kohli K, Sultana Y. Lipid-based nanoparticle-mediated combination therapy for breast cancer management: a comprehensive review. Drug Delivery and Translational Research. 2023 Nov;13(11):2739-66. Available from https://doi.org/10.1007/s13346-023-01366-z.
Behravan N, Zahedipour F, Jaafari MR, Johnston TP, Sahebkar A. Lipid-based nanoparticulate delivery systems for HER2-positive breast cancer immunotherapy. Life Sciences. 2022 Feb 15;291:120294. Available from https://doi.org/10.1016/j.lfs.2021.120294.
Kong SD, Sartor M, Hu CM, Zhang W, Zhang L, Jin S. Magnetic field activated lipid–polymer hybrid nanoparticles for stimuli-responsive drug release. Acta biomaterialia. 2013 Mar 1;9(3):5447-52. Available from https://doi.org/10.1016/j.actbio.2012.11.006.
Huynh Mai C, Thanh Diep T, Le TT, Nguyen V. Advances in colloidal dispersions: A review. Journal of Dispersion Science and Technology. 2020 Mar 20;41(4):479-94. Available from https://doi.org/10.1080/01932691.2019.1591970.
Cheng Y, Hay CD, Mahuttanatan SM, Hindley JW, Ces O, Elani Y. Microfluidic technologies for lipid vesicle generation. Lab on a Chip. 2024;24(20):4679-716. Available from https://doi: 10.1039/D4LC00380B.
Bochicchio S, Lamberti G, Barba AA. Polymer–lipid pharmaceutical nanocarriers: Innovations by new formulations and production technologies. Pharmaceutics. 2021 Feb 2;13(2):198. Available from https://doi.org/10.3390/pharmaceutics13020198.
Puri A, Mohite P, Munde S, Ade N, Ramole A, Pillai D, Nagare S, Mahadik S, Singh S. Unlocking the multifaceted potential of lipid-based dispersion as a drug carrier: Targeted applications and stability improvement strategies. Journal of Dispersion Science and Technology. 2025 Apr 22:1-33. Available from https://doi.org/10.1080/01932691.2025.2496388.
Tsakiri M, Tsichlis I, Zivko C, Demetzos C, Mahairaki V. Lipidic nanoparticles, extracellular vesicles and hybrid platforms as advanced medicinal products: future therapeutic prospects for neurodegenerative diseases. Pharmaceutics. 2024 Mar 1;16(3):350. Available from https://doi.org/10.3390/pharmaceutics16030350.
Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. Journal of microbiological methods. 2019 May 1;160:130-42. Available from https://doi.org/10.1016/j.mimet.2019.03.017.
Shirke SN, Mulla JA. Intranasal nanoemulsion for brain targeting: A review. Indian Journal of Novel Drug Delivery. 2023;15(1):1-1.
Khalili L, Dehghan G, Sheibani N, Khataee A. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. International Journal of Biological Macromolecules. 2022 Jul 31;213:166-94. Available from https://doi.org/10.1016/j.ijbiomac.2022.05.156.
Yang H, Li J, Song C, Li H, Luo Q, Chen M. Emerging Gene Therapy Based on Nanocarriers: A Promising Therapeutic Alternative for Cardiovascular Diseases and a Novel Strategy in Valvular Heart Disease. International Journal of Molecular Sciences. 2025 Feb 18;26(4):1743. Available from https://doi.org/10.3390/ijms26041743.
Jiang L, Lee HW, Loo SC. Therapeutic lipid-coated hybrid nanoparticles against bacterial infections. RSC advances. 2020;10(14):8497-517. Available from https://doi: 10.1039/C9RA10921H.
Grigoras AG. Polymer-lipid hybrid systems used as carriers for insulin delivery. Nanomedicine: Nanotechnology, Biology and Medicine. 2017 Nov 1;13(8):2425-37. Available from https://doi.org/10.1016/j.nano.2017.08.005.
Mulla JA, Aralelimath VR, Tipugade O, Shinde SS, Tetgure NG, Mulla AA, Gavali DD. Formulation and Evaluation of Teneligliptin-Loaded Mucoadhesive Microspheres. Indian Journal of Novel Drug Delivery. 2020Oct-Dec. 2020 Oct;12(4):222-7.
Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and nanotechnology based approaches to combat chronic obstructive pulmonary disease: implications for chronic airway diseases. International journal of nanomedicine. 2020 May 28:3803-26. Available from https://doi.org/10.2147/IJN.S242516.
Shewale SS, Mulla JA. Non-Ionic Surfactant Vesicle (Niosome): A Novel Drug Delivery System. Indian Journal of Novel Drug Delivery. 2022;14(3):129-37.
Wei J, Mu J, Tang Y, Qin D, Duan J, Wu A. Next-generation nanomaterials: advancing ocular anti-inflammatory drug therapy. Journal of nanobiotechnology. 2023 Aug 19;21(1):282. Available from https://doi.org/10.1186/s12951-023-01974-4.
Mali JD, Mulla JAS. Ocular drug delivery system: A review. World J Drug Targeting. 2023;1(1):9-24.
Pukale SS, Sahel DK, Mittal A, Chitkara D. Coenzyme Q10 loaded lipid-polymer hybrid nanoparticles in gel for the treatment of psoriasis like skin condition. Journal of Drug Delivery Science and Technology. 2022 Oct 1;76:103672. Available from https://doi.org/10.1016/j.jddst.2022.103672.
Gosavi AA, Thorat PA, Mulla JA. Formulation and Evaluation of Acyclovir Loaded Transferosomal Gel for Transdermal Drug Delivery. Journal of Drug Delivery & Therapeutics. 2024 Sep 1;14(9). Available from https://doi.org/10.22270/jddt.v14i9.6786.
Gameiro M, Mano JF, Gaspar VM. Emerging lipid–polymer hybrid nanoparticles for genome editing. Polymer Chemistry. 2024;15(34):3436-68. Available from https://doi.org/10.1039/D4PY00298A.
Mandal B, Mittal NK, Balabathula P, Thoma LA, Wood GC. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. European journal of pharmaceutical sciences. 2016 Jan 1;81:162-71. Available from https://doi.org/10.1016/j.ejps.2015.10.021.
Mulla JA, Hajare SC, Doijad RC. Particle Size and It’s Importance in Industrial Pharmacy: A Review. Indian Journal of Novel Drug Delivery. 2016;8(4):191-9.
Mulla JS, Khazi IM, Sharma NK. Solid Lipid Nanoparticles: Measures of Characterization. Indian Journal of Novel Drug delivery. 2011;3(4):259-64.
Mulla JA, Khazi MI, Khan AY, Khazi IA. Design, Characterization and In vitro Evaluation of Imidazo [2, 1-b][1, 3, 4] thiadiazole Derivative Loaded Solid Lipid Nanoparticles. Drug Invention Today. 2012 Aug 1;4(8).
Patil SM, Mulla JAS. Cubosomes uncovered: insights into their types, preparation techniques, evaluation methods, and emerging applications. Indian J Novel Drug Deliv. 2024;16(2):104-12. Available from https://doi.org/10.2174/0115672018265571231011093546.
SHINGATE DM, MULLA JA. Indian Journal of Novel Drug Delivery. Indian Journal of Novel Drug Delivery. 2024 Apr;16(2):80-90.
Li Y, Wong HL, Shuhendler AJ, Rauth AM, Wu XY. Molecular interactions, internal structure, and drug release kinetics of rationally developed polymer–lipid hybrid nanoparticles. Journal of controlled release. 2008 May 22;128(1):60-70. Available from https://doi.org/10.1016/j.jconrel.2008.02.014.
Salsabila S, Khairinisa MA, Wathoni N, Sufiawati I, Mohd Fuad WE, Khairul Ikram NK, Muchtaridi M. In vivo toxicity of chitosan-based nanoparticles: a systematic review. Artificial Cells, Nanomedicine, and Biotechnology. 2025 Dec 31;53(1):1-5. Available from https://doi.org/10.1080/21691401.2025.2462328.
Rouco H, Garcia-Garcia P, Evora C, Díaz-Rodríguez P, Delgado A. Screening strategies for surface modification of lipid-polymer hybrid nanoparticles. International Journal of Pharmaceutics. 2022 Aug 25;624:121973. Available from https://doi.org/10.1016/j.ijpharm.2022.121973.
Published


How to Cite
Issue
Section
Copyright (c) 2025 Nigar Mujawar, Jameel Ahmed Mulla

This work is licensed under a Creative Commons Attribution 4.0 International License.