Bioefficacy of Lipoblepharis urticifolia (Blume) Orchard: Pharmacognostic Insights, Essential Oil Analysis, Evaluation of Antioxidant and Antidiabetic Properties
Abstract
The study comprehensively characterized Lipoblepharis urticifolia (syn. Wedelia urticifolia) leaves, focusing on elucidating the phytochemical composition of their essential oil, assessing the antioxidant and antidiabetic activities of its methanolic leaf extract. The study also involved a detailed pharmacognostic analysis of macroscopic, microscopic, fluorescence, and physicochemical properties. The essential oil was found to contain 17 individual chemical components through a gas chromatography-mass spectrometry (GC-MS) study, predominantly octadecanoic acid ethenyl ester (69.28%), followed by β-Caryophyllene (7.54%) and β-elemene (4.05%). The methanolic extract of L. urticifolia leaves demonstrated dose-dependent total antioxidant capacity with increasing absorbance observed in the phosphomolybdate assay. Furthermore, it exhibited significant nitric oxide scavenging activity, showing an IC50 of 29.10μg/ml comparable to the standard Vitamin C (IC50=18.25μg/ml). Pharmacognostic analysis characterized L. urticifolia leaves as bitter, ovate, and serrated with bristly hairs; quantitative microscopy revealed a stomatal index of 33.1%, trichome index of 23.3%, and vein islet/termination numbers of 1 per mm2. Powder microscopy confirmed anomocytic stomata and uniseriate non-glandular trichomes, complemented by varied UV fluorescence. Physicochemical analysis revealed low moisture, high acid-soluble ash, superior methanolic extract yield and abundant K, Ca, Na, detectable Fe and P. This research offers crucial data for authenticating, identifying, and assessing the therapeutic potential of L. urticifolia.
Keywords:
Lipoblepharis urticifolia, Wedelia urticifolia, GC-MS, Pharmacognosy, Antioxidant, AntidiabeticDOI
https://doi.org/10.25004/References
Ismail MM, Muhammad S, Noor NM, Samat MA, Aris MA. Phytochemical, pharmacological and tissue culture applications of Wedelia spp. – A review. J Pharm Res Int. 2019;28(2):1-10.
Orchard AE. The Wollastonia/Melanthera/Wedelia generic complex (Asteraceae: Ecliptinae), with particular reference to Australia and Malesia. Nuytsia. 2013; 23: 337-466. https://doi.org/10.58828/nuy00659.
Hu J, Jia M, Zhu L. Chemical composition and antimicrobial activities of essential oil from Wedelia urticifolia growing wild in Hunan Province, China. Nat Prod Res. 2018;33(18): 2685–8.
Matthew KM. The Flora of the Tamilnadu Carnatic. Vol. III. Madras: Diocesan Press; 1983.
Kalaiselvan M, Gopalan. Ethnobotanical studies on selected wild medicinal plants used by Irula tribes of Bolampatty valley, Nilgiri Biosphere Reserve (NBR), southern Western Ghats, India. Asian J Pharm Clin Res. 2014;7(1):22-6.
Hu J, Jia M, Zhu L. Chemical composition and antimicrobial activities of essential oil from Wedelia urticifolia growing wild in Hunan Province, China. Natural product research. 2019; 33(18): 2685-8. https://doi.org/10.1080/14786419.2018.1460830.
Ahmed BA, Idris SN, Taha RM, Mustafa MM, Marikar FM. Phytochemical, pharmacological and tissue culture applications of Wedelia spp.–A review. J Agric Sci Technol. 2019;11:123–32.
Rather M, Pandian KJ, Sundarapandian SM, Yogamoorthi A. Biosynthesis and characterization of silver nanoparticles using leaf extract of Wedelia urticifolia (Blume) DC and evaluation of antibacterial efficacy. IOSR J Pharm Biol Sci. 2017;12:14-23. doi:10.9790/3008-1204051423.
Kumar A, Prasad SK, Sanjeev NG, Rao KV. Phytochemical screening and in vitro antioxidant activity of Wedelia urticifolia DC. leaves. Int J Pharm Sci Res. 2015;6(03):108-12.
Singh A, Kumar R, Sharma M. Phytochemical analysis of Wedelia urticifolia (Asteraceae) leaves and its in vitro antioxidant activity. J Med Plants Res. 2020;14(10):555-62.
Touil N, Bounouar O, Balahbib A, El Omari N, Bouhrim M, Daoudi N, et al. Flavonoids as promising antidiabetic agents: A review of their mechanisms of action. J Food Biochem. 2020;44(9):e13426.
Khandelwal KR. Practical Pharmacognosy: Techniques and Experiments. 1st ed. Pune: Nirali Prakashan; 2007.
Nirmal SA, Girme AS, Bhalke RD. Major constituents and anthelmintic activity of volatile oils from leaves and flowers of Cymbopogon martini Roxb. Natural Product Research. 2007;21(13):1217–20.
Joshi A, Gupta P, Singh H. Evaluation of Free Radical-Scavenging and Nitric Oxide Inhibition Activities of Selected Medicinal Plants. Material Science Research India. 2023 Dec 31;20(Special Issue 1):31-9.
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014;4:177.
Garrat DC. The quantitative analysis of drugs. Japan: Chapman and Hall; 1964.
Parikh B, Patel VH. Total phenolic content and total antioxidant capacity of common Indian pulses and split pulses. J Food Sci Technol. 2018;55(4):1499-507.
Stephen A.A, Oboh G. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water extractable phytochemicals from some tropical spices. Pharm Biol. 2012;50(7):857-65.
Sass JE. Elements of botanical microtechnique. New York: McGraw Hill Book Co; 1940. p. 222.
Ishtiaq S, Meo MB, Afridi MS, Akbar S, Rasool S. Pharmacognostic studies of aerial parts of Colebrookea oppositifolia. Phytomedicine. 2016;5(2):161-7. doi:10.1590/0001-3765202020190387.
Aslam I, Afridi MSK. Pharmacognostic characterization of Beaumontia grandiflora (Roxb.) Wall. leaf for taxonomic identification for quality control of a drug. J Appl Res Med Aromat Plants. 2018;8:53-9.
Dharamveer, Mishra B, Siddiqui HH. Pharmacognostical and phytochemical studies on Anacardium occidentale Linn. leaves. J Phytochem. 2023;10(2):25-30.
Kadam DK, Ahire PD, Bhoye JV, Patil AR, Yadav DK. Comparative standardization study of Gandharva Haritaki Churna formulation. Int J Pharmacogn. 2017 Jul;4(7):245-9.
Kokashi CJ, Kokashi RJ, Sharma M. Fluorescence of powdered vegetable drugs in UltraViolet radiation. J Am Pharm Assoc. 1958; 47:715–717. https://doi.org/10.1002/jps.3030471010.
Masiwal M, Semwal A, Upadhyaya K, Upreti K. Pharmacognostical and phytochemical screening of leaf extract of Zanthoxylum armatum DC. International Journal of Herbal Medicine. 2013; 1(1): 6–12.
Junejo JA, Ghoshal A, Mondal P, Nainwal L, Zaman K, Singh KD, Chakraborty T. In-vivo toxicity evaluation and phytochemical, physicochemical analysis of Diplazium esculentum (Retz.) sw. leaves, a traditionally used North-Eastern Indian vegetable. Advances in Bioresearch. 2015; 6(5): 175–18. DOI: 10.15515/abr.0976- 4585.6.5.175181.
Arambewela LS, Arawwawala LD. Standardization of Alpinia calcarata roscoe rhizomes. Pharmacognosy Research. 2010; 2(5): 285. https://doi.org/10.4103/0974-8490.72324.
Sobkowska A, Basinska M. Flame photometry determination of Na, K, Li, and Ca traces in Cr-Ni steel. Microchimica Acta. 1975; 64: 227-234. https://doi.org/10.1007/BF01219389.
Nurchi VM, Cappai R, Spano N, Sanna G. A friendly complexing agent for spectrophotometric determination of total iron. Molecules. 2021; 26(11): 3071. https://doi.org/10.3390/molecules26113071.
Bartels PC, Roijers AFM. A Kinetic Study on the Influence of the Parameters in the Determination of Inorganic Phosphate by the Molybdenum Blue Reaction. Clinica Chimica Acta. 1975; 61:135-144. https://doi.org/10.1016/0009-8981(75)90307-1.
Tan T, Li J, Luo R, Wang R, Yin L, Liu M, Zeng Y, Zeng Z, Xie T. Recent Advances in Understanding the Mechanisms of Elemene in Reversing Drug Resistance in Tumor Cells-A Review. Molecules. 2021; 26(19): 5792. doi: 10.3390/molecules26195792.
Bayala B, Coulibaly AY, Djigma FW, Nagalo BM, Baron S, Figueredo G, Lobaccaro JM, Simpore J. Chemical composition, antioxidant, anti-inflammatory and antiproliferative activities of the essential oil of Cymbopogon nardus, a plant used in traditional medicine. Biomolecular concepts. 2020; 11(1): 86-96. doi: 10.1515/bmc-2020-0007.
Pala-Paul J, Usano-Alemany J, Granda E, Soria AC. Antifungal and antibacterial activity of the essential oil of Chamaecyparis lawsoniana from Spain. Natural product communications. 2012; 7(10). http://dx.doi.org/10.1177/1934578X1200701036.
Yang J, Lee SY, Jang SK, Kim KJ, Park MJ. Anti-Inflammatory Effects of Essential Oils from the Peels of Citrus Cultivars. Pharmaceutics. 2023; 15(6): 1595. https://doi.org/10.3390/pharmaceutics15061595.
Turkez H, Celik K, Togar B. Effects of copaene, a tricyclic sesquiterpene, on human lymphocytes cells in vitro. Cytotechnology. 2014; 66(4): 597-603. doi: 10.1007/s10616-013-9611-1.
Lull C, Gil-Ortiz R, CantinA. A Chemical Approach to Obtaining α-copaene from Clove Oil and Its Application in the Control of the Medfly. Applied Sciences. 2023; 13(9): 5622. https://doi.org/10.3390/app13095622.
Turkez H, Togar B, Tatar A. Tricyclic sesquiterpene copaene prevents H2O2-induced neurotoxicity. Journal of Intercultural Ethnopharmacology. 2014; 3. http://doi.org/10.5455/jice.20131229104710.
Pan Y, Wan P, Zhang L, Wang C, Wang Y. Clinical benefit and risk of elemene in cancer patients undergoing chemotherapy: a systematic review and meta-analysis. Front Pharmacol. 2023; 14:1185987. doi:10.3389/fphar.2023.1185987.
Li Y, Zhang L. Beta-elemene alleviates cigarette smoke-triggered inflammation, apoptosis, and oxidative stress in human bronchial epithelial cells, and refrains the PI3K/AKT/mTOR signaling pathway. Allergologiaet Immunopathologia. 2024; 52(6): 79- 84. https://doi.org/10.15586/aei.v52i6.1199.
Sieniawska E, Sawicki R, Golus J, Swatko-Ossor M, Ginalska G, Skalicka-Wozniak K. Nigella damascena L. Essential Oil-A Valuable Source of β-Elemene for Antimicrobial Testing. Molecules. 2018; 23(2): 256. doi: 10.3390/molecules23020256.
Kilani S, Ledauphin J, Bouhlel I, Ben Sghaier M, Boubaker J, Skandrani I, Mosrati R, Ghedira K, Barillier D, Chekir-Ghedira L. Comparative study of Cyperus rotundus essential oil by a modified GC/MS analysis method, Evaluation of its antioxidant, cytotoxic, and apoptotic effects. Chem Biodivers. 2008; 5(5):729-42. doi:10.1002/cbdv.200890069.
Zhang LL, Zhang LF, Hu QP, Hao DL, Xu JG. Chemical composition, antibacterial activity of Cyperus rotundus rhizomes essential oil against Staphylococcus aureus via membrane disruption and apoptosis pathway. Food control. 2017; 80: 290-6. https://doi.org/10.1016/j.foodcont.2017.05.016.
Khan S, Choi RJ, Lee DU, Kim YS. Sesquiterpene Derivatives Isolated from Cyperus rotundus L. Inhibit Inflammatory Signaling Mediated by NF- Kb. Natural Product Sciences. 2011;17(3): 250-5.
Dahham SS, Tabana Y, Asif M, Ahmed M, Babu D, Hassan LE, Ahamed MBK, Sandai D, Barakat K, Siraki, Majid AMSA. β- Caryophyllene Induces Apoptosis and Inhibits Angiogenesis in Colorectal Cancer Models. Int J Mol Sci. 2021; 22(19):10550. doi:10.3390/ijms221910550.
Fernandes ES, Passos GF, Medeiros R, da Cunha FM, Ferreira J, Campos MM, Pianowski LF, Calixto JB. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. European journal of pharmacology. 2007; 569(3): 228-36. http://dx.doi.org/10.1111/j.1750-3841.2010.01541.x
Chen, H, Yuan, J, Hao, J, Wen, Y, Lv, Y, Chen, L, Yang, X. α-Humulene inhibits hepatocellular carcinoma cell proliferation and induces apoptosis through the inhibition of Akt signaling. Food and Chemical Toxicology. 2019; 134: 110830. https://doi.org/10.1016/j.fct.2019.110830.
Yang J, Choi WS, Kim KJ, Eom CD, Park MJ. Investigation of Active Anti-Inflammatory Constituents of Essential Oil from Pinu koraiensis ,Wood in LPS-Stimulated RBL-2H3 Cells. Biomolecules. 2021; 11(6): 817. doi: 10.3390/biom11060817.
Cavallo L, Menotti F, Roana J, Costa C, Longo F, Pagano C, Curtoni A, Bondi A, Banche G, Allizond V, Mandras N. Synergistic Effect of Essential Oils and Antifungal Agents in Fighting Resistant Clinical Isolates of Candida auris. Pharmaceutics. 2024;16(7): 957. doi: 10.3390/pharmaceutics16070957.
Oliveira AT, Freitas CV, Simas CG, Silva TR, Silva LS, Oliveira LM, Rocha ML, Lucchese AM. Antinociceptive and anti-inflammatory effects of the essential oil of Lippia hermannioides, an endemic species of Brazil. Rodriguesia 2024; 75. http://dx.doi.org/10.1590/2175- 7860202475047.
Ferreira OO, Franco CJP, Varela ELP, Silva SG, Cascaes MM, Percario S, de Oliveira MS, Andrade EHA. Chemical Composition and Antioxidant Activity of Essential Oils from Leaves of Two Specimens of Eugenia florida DC. Molecules. 2021; 26(19): 5848. Doi: 10.3390/molecules26195848.
da Silva EB, Matsuo AL, Figueiredo CR, Chaves MH, Sartorelli P, Lago JH: Chemical constituents and cytotoxic evaluation of essential oils from leaves of Porcelia macrocarpa (Annonaceae). Nat Prod Commun. 2013; 8(2): 277-279. PMID: 23513748.
Turkez H, Sozio P, Geyikoglu F, Tatar A, Hacimuftuoglu A, Di Stefano A. Neuroprotective effects of farnesene against hydrogen peroxide-induced neurotoxicity in vitro. Cell Mol Neurobiol. 2014; 34(1):101-111. doi: 10.1007/s10571-013-9991-y.
Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, Bharti AC, Aggarwal BB. Chronic diseases, inflammation, and spices: how are they linked?. J Transl Med. 2018; 16(1):14. doi: 10.1186/s12967-018-1381-2.
Xue H, Jiang Y, Zhao H, Kollner T G, Chen S, Chen F, Chen, F. Characterization of Composition and Antifungal Properties of Leaf Secondary Metabolites from Thirteen Cultivars of Chrysanthemum morifolium Ramat. Molecules2019; 24(23): 4202. https://doi.org/10.3390/molecules24234202.
Yang Y, Li Y, He H, Yang L, Zeng J, Bai M, Wu H. Comparison of Essential Oil Components and In Vitro Antioxidant Activity of Zanthoxylum nitidum from Different Parts. Plants (Basel). 2025; 14(8):1194. doi: 10.3390/plants14081194.
Panamito MF, Bec N, Valdivieso V, Salinas M, Calva J, Ramírez J, Larroque C, Armijos C. Chemical Composition and Anticholinesterase Activity of the Essential Oil of Leaves and Flowers from the Ecuadorian Plant Lepechinia paniculata (Kunth) Epling. Molecules. 2021; 26(11): 3198. doi: 10.3390/molecules26113198.
Shirazi MT, Gholami H, Kavoosi G, Rowshan V, Tafsiry A. Chemical composition, antioxidant, antimicrobial and cytotoxic activities of Tagetes minuta and Ocimum basilicum essential oils. Food Sci Nutr. 2014 ; 2(2):146-55. doi: 10.1002/fsn3.85.
Beniaich G, Mabchour I, Mssillou I, Lfitat A, El Kamari, F, Allali A, Taleb M. Antioxidant, antimicrobial, and insecticidal properties of chemically characterized essential oils isolated from Artemisia herba-alba: in vivo, in vitro, and in silico approaches. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology. 2025; 159(2), 275–288. https://doi.org/10.1080/11263504.2025.2463415.
Wahyuni DK, Kharisma VD, Murtadlo AAA, Rahmawati CT, Syukriya AJ, Prasongsuk S, Subramaniam S, Wibowo AT, Purnobasuki H. The antioxidant and antimicrobial activity of ethanolic extract in roots, stems, and leaves of three commercial Cymbopogon species. BMC Complement Med Ther. 2024; 24(1): 272. https://doi.org/10.1186/s12906-024-04573-4.
Tripathi J, Gupta S, Gautam S. Alpha-cadinol as a potential ACE-inhibitory volatile compound identified from Phaseolus vulgaris L. through in vitro and in silico analysis. J Biomol Struct Dyn. 2023; 41(9): 3847-3861. https://doi.org/10.1080/07391102.2022.2057359.
Medeiros JR, Campos LB, Mendonça SC, Davin LB, Lewis NG. Composition and antimicrobial activity of the essential oils from invasive species of the Azores, Hedychium gardnerianum and Pittosporum undulatum. Phytochemistry. 2003; 64(2): 561-565. doi: 10.1016/s0031- 9422(03)00338-8.
Garcia PA, De Oliveira AB, Batista R. Occurrence, Biological Activities and Synthesis of Kaurane Diterpenes and their Glycosides. Molecules. 2007; 12(3): 455-483. https://doi.org/10.3390/12030455.
Yu J, Jin F, Tang Y, Huang Y. In Vitro Anticancer Activity of Phytol on Human Non-Small Cell Lung Cancer A549 Cells. Integr Cancer Ther. 2025; 24:15347354251344592. doi: 10.1177/15347354251344592.
Pu ZH, Zhang YQ, Yin ZQ, Jiao XU, Jia RY, Yang LU, Fan YA. Antibacterial activity of 9-octadecanoic acid-hexadecanoic acid-tetrahydrofuran-3, 4-diyl ester from neem oil. Agricultural Sciences in China. 2010; 9(8):1236-40. https://doi.org/10.1016/S1671- 2927(09)60212-1.
Papi S, Ahmadizar F, Hasanvand A. The role of nitric oxide in inflammation and oxidative stress. Immunopathol Persa. 2019;5(1): e08.
Kumar S, Kumar D, Kumar S, Kumar R, Kumar A. Antioxidant activity of essential oils from Wedelia chinensis (Osbeck) in vitro and in vivo lung cancer bearing C57BL/6 mice. Asian Pac J Cancer Prev. 2012;13(7):3065-9.
Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun. 1994;201(2):748-55.
Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337-41.
Kataki M, Ahmad M, Awasthi D, Tomar B, Mehra P, Yadav RS, Rajak P. In vitro Antioxidant profile of Wedelia calendulacea leaves. Pharmacologia. 2012;3:75-83.
American Diabetes Association. Standards of Medical Care in Diabetes—2024. Diabetes Care. 2024;47(Suppl 1):S1-S291.
Bhutkar MA, Bhise SB. In vitro assay of alpha amylase inhibitory activity of some indigenous plants. Int J Chem Sci. 2012;10(1):457-62.
Islam MA, Al-Amin M, Khan MA, Alam MM, Al-Mamun M, Hasan MN, et al. Antidiabetic effect of Wedelia chinensis leaf extract in alloxan induced Swiss albino diabetic mice. BMC Complement Med Ther. 2020;20(1):10.
Thao NP, Kiem PV, Minh CV, Tai BH, Cuong NX, Kim YH. α-Amylase and α-Glucosidase Inhibitory Activities of Chemical Constituents from Wedelia chinensis (Osbeck.) Merr. Leaves. Evid Based Complement Alternat Med. 2018;2018:5971303.
Awote OK, Apete SK, Igbalaye JO, Adeyemo AG, Dele-osedele PI, Thomas-Akinwale KO, et al. Phytochemical screening, antioxidant and α-amylase inhibitory activities of Acacia nilotica seed methanol extract. Adv J Curr Res. 2022;7(8):1-9.
Sudharsan S, Saravanan R, Shanmugam A, Vairamani S, Kumar RM, Menaga S, Ramesh N. Isolation and characterization of octadecanoic acid from the ethyl acetate root extract of Trigonella foneum graecum L. by using hydroponics method. Journal of Bioterrorism & Biodefense. 2011; 105.
Khan SA, Ibrar M, Barkatullah: Pharmacognostic evaluation of the leaf of Rhus succedanea var. Himalaica. JD Hooker. Afr J Tradit Complement Altern Med. 2016;13(6):107-120. doi: 10.21010/ajtcam.v13i6.16.
Metcalfe CR and Chalk L. Anatomy of the dicotyledons. vol. 2, 1950.
Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy, Nirali Prakashan, 2007.
Singhal AK, Bhati VS, Singhal VK. Pharmacognostic study of aerial parts of plant Geniosporum prostratum (L) Benth. J Sci Specul Res. 2010; 1(1): 19-24.
Lee JE, Jayakody, JTM, Kim, JI, Jeong, JW, Choi, KM, Kim, TS, Seo, C, Azimi, I, Hyun, J, Ryu, B. The Influence of Solvent Choice on the Extraction of Bioactive Compounds from Asteraceae: A Comparative Review. Foods. 2024; 13(19): 3151. https://doi.org/10.3390/foods13193151.
Sharma RK, Bhardwaj RL. Regulatory Role of Mineral Elements in the Metabolism of Medicinal Plants. In: Sharma RK, Bhardwaj RL, editors. Plant Metabolism: A Comprehensive Guide. Singapore: Springer; 2021. p. 1-20.
Published

How to Cite
Issue
Section
Copyright (c) 2025 Remya G Nair, Sindu N, Jini Joseph, Amose P Thomas

This work is licensed under a Creative Commons Attribution 4.0 International License.