Neuroprotective Effects of Calycosin Against Fenpropathrin-Induced Dopaminergic Neurodegeneration in Drosophila melanogaster
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by dopaminergic neuron loss in the substantia nigra of the midbrain. The onset of PD is influenced by genetic and environmental components, with pesticides being a key environmental trigger. 'Parkinson's disease (PD) is associated with genetic predispositions and environmental toxins, which significantly influence its pathology in both invertebrate and mammalian models. Recently, studies have indicated that exposure to fenpropathrin (Fen) may also increase the likelihood of developing PD. alycosin, an isoflavone phytoestrogen, demonstrates neuroprotective activity and shows potential for treating various diseases, likely due to its isoflavonoid and phytoestrogenic effects. Previous studies have suggested calycosin's protective effects in various neurotoxicity models, but its specific impact on Fen-induced neuronal damage still needs to be investigated. Therefore, this study investigates the neuroprotective potential of calycosin, a phytoestrogen, against Fen-induced neurodegeneration in Drosophila melanogaster. Our findings reveal that calycosin significantly ameliorated Fen-induced motor deficits, leading to a 48% improvement in crawling behavior. Calycosin treatment also resulted in a 16.7% reduction in cleaved caspase-3 levels, indicating reduced apoptosis. Fen's toxic effects improved motor abilities, restored crawling behavior, and reducedAdditionally, calycosin improved survival rates by 20% and alleviated Fen-induced developmental delays by 18.9%. Notably, calycosin significantly restored tyrosine hydroxylase (TH) levels by 44.1%, suggesting its protective effect on dopaminergic neurons. These findings underscore the neuroprotective potential of calycosin, suggesting that it may serve as a promising therapeutic candidate for mitigating pesticide-induced neurodegeneration. This study provides insights into the development of novel therapeutic strategies targeting PD and related neurodegenerative diseases caused by environmental toxins.
Keywords:
calycosin, neurodegeneration, parkinsonDOI
https://doi.org/10.25004/References
References
Araujo, S. M., de Paula, M. T., Poetini, M. R., Meichtry, L., Bortolotto, V. C., Zarzecki, M. S., et al. (2015). Effectiveness of γ-oryzanol in reducing neuromotor deficits, dopamine depletion and oxidative stress in a Drosophila melanogaster model of Parkinson'sParkinson'sParkinson's disease induced by rotenone. Neurotoxicology 51, 96–105. doi: 10.1016/j.neuro.2015.09.003
B. White, R., and G. Thomas, M. (2012). Moving Beyond Tyrosine Hydroxylase to Define Dopaminergic Neurons for Use in Cell Replacement Therapies for Parkinson'sParkinson's Disease. CNS Neurol Disord Drug Targets 11, 340–349. doi: 10.2174/187152712800792758
Bondonno, N. P., Dalgaard, F., Kyrø, C., Murray, K., Bondonno, C. P., Lewis, J. R., et al. (2019). Flavonoid intake is associated with lower mortality in the Danish Diet Cancer and Health Cohort. Nat Commun 10, 3651. doi: 10.1038/s41467-019-11622-x
Bonilla-Ramirez, L., Jimenez-Del-Rio, M., and Velez-Pardo, C. (2013). Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: Implication in autosomal recessive juvenile Parkinsonism. Gene 512, 355–363. doi: 10.1016/j.gene.2012.09.120
Brouwer, M., Huss, A., van der Mark, M., Nijssen, P. C. G., Mulleners, W. M., Sas, A. M. G., et al. (2017). Environmental exposure to pesticides and the risk of Parkinson'sParkinson'sParkinson's disease in the Netherlands. Environ Int 107, 100–110. doi: 10.1016/j.envint.2017.07.001
Camus, M. F., Huang, C., Reuter, M., and Fowler, K. (2018). Dietary choices are influenced by genotype, mating status, and sex in Drosophila melanogaster. Ecol Evol 8, 5385–5393. doi: 10.1002/ece3.4055
Carrera, I., Fernandez-Novoa, L., Sampedro, C., Tarasov, V. V., Aliev, G., and Cacabelos, R. (2019). Dopaminergic Neuroprotection with Atremorine in PParkinsonParkinson' s Disease. Curr Med Chem 25, 5372–5388. doi: 10.2174/0929867325666180410100559
Chaouhan, H. S., Li, X., Sun, K.-T., Wang, I.-K., Yu, T.-M., Yu, S.-H., et al. (2022a). Calycosin Alleviates Paraquat-Induced Neurodegeneration by Improving Mitochondrial Functions and Regulating Autophagy in a Drosophila Model of Parkinson'sParkinson'sParkinson's Disease. Antioxidants 11, 222. doi: 10.3390/antiox11020222
Chaouhan, H. S., Li, X., Sun, K.-T., Wang, I.-K., Yu, T.-M., Yu, S.-H., et al. (2022b). Calycosin Alleviates Paraquat-Induced Neurodegeneration by Improving Mitochondrial Functions and Regulating Autophagy in a Drosophila Model of Parkinson'sParkinson'sParkinson's Disease. Antioxidants 11, 222. doi: 10.3390/antiox11020222
Chen, H., Xu, J., Lv, Y., He, P., Liu, C., Jiao, J., et al. (2018). Proanthocyanidins exert a neuroprotective effect via ROS/JNK signaling in MPTP induced Parkinson'sParkinson's disease models in�vitro and in�vivo. Mol Med Rep. doi: 10.3892/mmr.2018.9509
Daubner, S. C., Le, T., and Wang, S. (2011). Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508, 1–12. doi: 10.1016/j.abb.2010.12.017
Feng, C.-W., Wen, Z.-H., Huang, S.-Y., Hung, H.-C., Chen, C.-H., Yang, S.-N., et al. (2014). Effects of 6-Hydroxydopamine Exposure on Motor Activity and Biochemical Expression in Zebrafish ( Danio Rerio ) Larvae. Zebrafish 11, 227–239. doi: 10.1089/zeb.2013.0950
Fuentes-Herrera, P. B., Herrera-Cabrera, B. E., Martínez-Ayala, A. L., Zamilpa, A., and Delgado-Alvarado, A. (2023). Content and Yield of L-DOPA and Bioactive Compounds of Broad Bean Plants: Antioxidant and Anti-Inflammatory Activity In Vitro. Plants 12, 3918. doi: 10.3390/plants12233918
Gao, L., Li, Y., Xie, H., Wang, Y., Zhao, H., Zhang, M., et al. (2020a). Effect of ethylparaben on the growth and development of Drosophila melanogaster on preadult. Environ Toxicol Pharmacol 80, 103495. doi: 10.1016/j.etap.2020.103495
Gao, L., Li, Y., Xie, H., Wang, Y., Zhao, H., Zhang, M., et al. (2020b). Effect of ethylparaben on the growth and development of Drosophila melanogaster on preadult. Environ Toxicol Pharmacol 80, 103495. doi: 10.1016/j.etap.2020.103495
Goldman, S. M. (2014). Environmental Toxins and Parkinson'sParkinson'sParkinson's Disease. Annu Rev Pharmacol Toxicol 54, 141–164. doi: 10.1146/annurev-pharmtox-011613-135937
Hack, W., Gladen-Kolarsky, N., Chatterjee, S., Liang, Q., Maitra, U., Ciesla, L., et al. (2024). Gardenin A treatment attenuates inflammatory markers, synuclein pathology and deficits in tyrosine hydroxylase expression and improves cognitive and motor function in A53T-α-syn mice. Biomedicine & Pharmacotherapy 173, 116370. doi: 10.1016/j.biopha.2024.116370
Hassan, S. S. ul, Samanta, S., Dash, R., Karpiński, T. M., Habibi, E., Sadiq, A., et al. (2022). The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 13. doi: 10.3389/fphar.2022.1015835
Hsu, C.-C., Kuo, T.-W., Liu, W.-P., Chang, C.-P., and Lin, H.-J. (2020). Calycosin Preserves BDNF/TrkB Signaling and Reduces Post-Stroke Neurological Injury after Cerebral Ischemia by Reducing Accumulation of Hypertrophic and TNF-α-Containing Microglia in Rats. Journal of Neuroimmune Pharmacology 15, 326–339. doi: 10.1007/s11481-019-09903-9
Huang, D., Xu, J., Wang, J., Tong, J., Bai, X., Li, H., et al. (2017). Dynamic Changes in the Nigrostriatal Pathway in the MPTP Mouse Model of Parkinson'sParkinson's Disease. Parkinsons Dis 2017, 1–7. doi: 10.1155/2017/9349487
Huang, X., Liang, Y., Qing, Y., Chen, D., and Shi, N. (2019). Proteasome inhibition by MG-132 protects against deltamethrin-induced apoptosis in rat hippocampus. Life Sci 220, 76–83. doi: 10.1016/j.lfs.2019.01.041
Jakubowski, B. R., Longoria, R. A., and Shubeita, G. T. (2012). A high throughput and sensitive method correlates neuronal disorder genotypes to Drosophila larvae crawling phenotypes. Fly (Austin) 6, 303–308. doi: 10.4161/fly.21582
Jaroonwitchawan, T., Chaicharoenaudomrung, N., Namkaew, J., and Noisa, P. (2017). Curcumin attenuates paraquat-induced cell death in human neuroblastoma cells through modulating oxidative stress and autophagy. Neurosci Lett 636, 40–47. doi: 10.1016/j.neulet.2016.10.050
Jiao, Z., Wu, Y., and Qu, S. (2020a). Fenpropathrin induces degeneration of dopaminergic neurons via disruption of the mitochondrial quality control system. Cell Death Discov 6, 78. doi: 10.1038/s41420-020-00313-y
Jiao, Z., Wu, Y., and Qu, S. (2020b). Fenpropathrin induces degeneration of dopaminergic neurons via disruption of the mitochondrial quality control system. Cell Death Discov 6, 78. doi: 10.1038/s41420-020-00313-y
Kakkar, A. K., and Dahiya, N. (2015). Management of Parkinson׳s disease: Current and future pharmacotherapy. Eur J Pharmacol 750, 74–81. doi: 10.1016/j.ejphar.2015.01.030
Khan, W., Priyadarshini, M., A. Zakai, H., A. Kamal, M., and Alam, Q. (2012). A Brief Overview of Tyrosine Hydroxylase and α-Synuclein in the Parkinsonian Brain. CNS Neurol Disord Drug Targets 11, 456–462. doi: 10.2174/187152712800792929
Kikuchi, T., Morizane, A., Doi, D., Magotani, H., Onoe, H., Hayashi, T., et al. (2017). Human iPS cell-derived dopaminergic neurons function in a primate Parkinson'sParkinson'sParkinson's disease model. Nature 548, 592–596. doi: 10.1038/nature23664
Kumar, P. P., Bawani, S. S., Anandhi, D. U., and Prashanth, K. V. H. (2022). Rotenone mediated developmental toxicity in Drosophila melanogaster. Environ Toxicol Pharmacol 93, 103892. doi: 10.1016/j.etap.2022.103892
Kwon, D. K., Kwatra, M., Wang, J., and Ko, H. S. (2022). Levodopa-Induced Dyskinesia in Parkinson'sParkinson's Disease: Pathogenesis and Emerging Treatment Strategies. Cells 11, 3736. doi: 10.3390/cells11233736
Lanson, N. A., Maltare, A., King, H., Smith, R., Kim, J. H., Taylor, J. P., et al. (2011). A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Hum Mol Genet 20, 2510–2523. doi: 10.1093/hmg/ddr150
Ma, J., Gao, S.-S., Yang, H.-J., Wang, M., Cheng, B.-F., Feng, Z.-W., et al. (2018). Neuroprotective Effects of Proanthocyanidins, Natural Flavonoids Derived From Plants, on Rotenone-Induced Oxidative Stress and Apoptotic Cell Death in Human Neuroblastoma SH-SY5Y Cells. Front Neurosci 12. doi: 10.3389/fnins.2018.00369
Maan, G., Sikdar, B., Kumar, A., Shukla, R., and Mishra, A. (2020). Role of Flavonoids in Neurodegenerative Diseases: Limitations and Future Perspectives. Curr Top Med Chem 20, 1169–1194. doi: 10.2174/1568026620666200416085330
Maher, P. (2019). The Potential of Flavonoids for the Treatment of Neurodegenerative Diseases. Int J Mol Sci 20, 3056. doi: 10.3390/ijms20123056
Maitra, U., and Ciesla, L. (2019). Using Drosophila as a platform for drug discovery from natural products in Parkinson'sParkinson'sParkinson's disease. Medchemcomm 10, 867–879. doi: 10.1039/C9MD00099B
Maitra, U., Harding, T., Liang, Q., and Ciesla, L. (2021a). GardeninA confers neuroprotection against environmental toxin in a Drosophila model of Parkinson'sParkinson's disease. Commun Biol 4, 162. doi: 10.1038/s42003-021-01685-2
Maitra, U., Harding, T., Liang, Q., and Ciesla, L. (2021b). GardeninA confers neuroprotection against environmental toxin in a Drosophila model of Parkinson'sParkinson'sParkinson's disease. Commun Biol 4, 162. doi: 10.1038/s42003-021-01685-2
Maitra, U., Scaglione, M. N., Chtarbanova, S., and O’Donnell, J. M. (2019). Innate immune responses to paraquat exposure in a Drosophila model of Parkinson'sParkinson'sParkinson's disease. Sci Rep 9, 12714. doi: 10.1038/s41598-019-48977-6
Naeem, A., Ming, Y., Pengyi, H., Jie, K. Y., Yali, L., Haiyan, Z., et al. (2022). The fate of flavonoids after oral administration: a comprehensive overview of its bioavailability. Crit Rev Food Sci Nutr 62, 6169–6186. doi: 10.1080/10408398.2021.1898333
Naz, F., and Siddique, Y. H. (2021). Drosophila melanogaster a Versatile Model of Parkinson'sParkinson's Disease. CNS Neurol Disord Drug Targets 20, 487–530. doi: 10.2174/1871527320666210208125912
Nazir, A., Mukhopadhyay, I., Saxena, D. K., and Chowdhuri, D. K. (2003). Evaluation of the No Observed Adverse Effect Level of Solvent Dimethyl Sulfoxide in Drosophila melanogaster. Toxicol Mech Methods 13, 147–152. doi: 10.1080/15376510309846
Nichols, C. D., Becnel, J., and Pandey, U. B. (2012). Methods to Assay <em>Drosophila</em> Behavior. Journal of Visualized Experiments. doi: 10.3791/3795
Nieradko-Iwanicka, B., and Borzęcki, A. (2016). The 28-day exposure to fenpropathrin decreases locomotor activity and reduces activity of antioxidant enzymes in mice brains. Pharmacological Reports 68, 495–501. doi: 10.1016/j.pharep.2015.12.002
Pan, Q., Ban, Y., and Khan, S. (2021a). Antioxidant activity of calycosin against α-synuclein amyloid fibrils-induced oxidative stress in neural-like cells as a model of preventive care studies in Parkinson'sParkinson'sParkinson's disease. Int J Biol Macromol 182, 91–97. doi: 10.1016/j.ijbiomac.2021.03.186
Pan, Q., Ban, Y., and Khan, S. (2021b). Antioxidant activity of calycosin against α-synuclein amyloid fibrils-induced oxidative stress in neural-like cells as a model of preventive care studies in Parkinson'sParkinson'sParkinson's disease. Int J Biol Macromol 182, 91–97. doi: 10.1016/j.ijbiomac.2021.03.186
Petithomme Feve, A. (2012). Current Status of Tyrosine Hydroxylase in Management of Parkinson'sParkinson's Disease. CNS Neurol Disord Drug Targets 11, 450–455. doi: 10.2174/187152712800792910
Podder, S., and Roy, S. (2015). Study of the changes in life cycle parameters of Drosophila melanogaster exposed to fluorinated insecticide, cryolite. Toxicol Ind Health 31, 1341–1347. doi: 10.1177/0748233713493823
Post, Y., and Paululat, A. (2018). Muscle Function Assessment Using a Drosophila Larvae Crawling Assay. Bio Protoc 8. doi: 10.21769/BioProtoc.2933
Pringsheim, T., Jette, N., Frolkis, A., and Steeves, T. D. L. (2014). The prevalence of Parkinson'sParkinson'sParkinson's disease: A systematic review and meta‐analysis. Movement Disorders 29, 1583–1590. doi: 10.1002/mds.25945
Przedborski, S. (2017). The two-century journey of Parkinson disease research. Nat Rev Neurosci 18, 251–259. doi: 10.1038/nrn.2017.25
Ratner, M. H., Farb, D. H., Ozer, J., Feldman, R. G., and Durso, R. (2014). Younger age at onset of sporadic Parkinson'sParkinson'sParkinson's disease among subjects occupationally exposed to metals and pesticides. Interdiscip Toxicol 7, 123–133. doi: 10.2478/intox-2014-0017
Santiago, J. A., Bottero, V., and Potashkin, J. A. (2017). Biological and Clinical Implications of Comorbidities in Parkinson'sParkinson'sParkinson's Disease. Front Aging Neurosci 9. doi: 10.3389/fnagi.2017.00394
Sharma, A., Mishra, M., Shukla, A. K., Kumar, R., Abdin, M. Z., and Chowdhuri, D. K. (2012). Organochlorine pesticide, endosulfan induced cellular and organismal response in Drosophila melanogaster. J Hazard Mater 221–222, 275–287. doi: 10.1016/j.jhazmat.2012.04.045
Shishtar, E., Rogers, G. T., Blumberg, J. B., Au, R., and Jacques, P. F. (2020). Long-term dietary flavonoid intake and risk of Alzheimer disease and related dementias in the Framingham Offspring Cohort. Am J Clin Nutr 112, 343–353. doi: 10.1093/ajcn/nqaa079
Shukla, A. K., Pragya, P., Chaouhan, H. S., Patel, D. K., Abdin, M. Z., and Kar Chowdhuri, D. (2014a). A mutation in Drosophila methuselah resists paraquat induced Parkinson-like phenotypes. Neurobiol Aging 35, 2419.e1-2419.e16. doi: 10.1016/j.neurobiolaging.2014.04.008
Shukla, A. K., Pragya, P., Chaouhan, H. S., Patel, D. K., Abdin, M. Z., and Kar Chowdhuri, D. (2014b). A mutation in Drosophila methuselah resists paraquat induced Parkinson-like phenotypes. Neurobiol Aging 35, 2419.e1-2419.e16. doi: 10.1016/j.neurobiolaging.2014.04.008
Soares, J. J., Rodrigues, D. T., Gonçalves, M. B., Lemos, M. C., Gallarreta, M. S., Bianchini, M. C., et al. (2017). Paraquat exposure-induced Parkinson'sParkinson'sParkinson's disease-like symptoms and oxidative stress in Drosophila melanogaster: Neuroprotective effect of Bougainvillea glabra Choisy. Biomedicine & Pharmacotherapy 95, 245–251. doi: 10.1016/j.biopha.2017.08.073
Swank, D. M., Knowles, A. F., Suggs, J. A., Sarsoza, F., Lee, A., Maughan, D. W., et al. (2002). The myosin converter domain modulates muscle performance. Nat Cell Biol 4, 312–317. doi: 10.1038/ncb776
Tong, H., Zhang, X., Meng, X., Lu, L., Mai, D., and Qu, S. (2018). Simvastatin Inhibits Activation of NADPH Oxidase/p38 MAPK Pathway and Enhances Expression of Antioxidant Protein in Parkinson Disease Models. Front Mol Neurosci 11. doi: 10.3389/fnmol.2018.00165
Wang, L.-Y., Yu, X., Li, X.-X., Zhao, Y.-N., Wang, C.-Y., Wang, Z.-Y., et al. (2019a). Catalpol Exerts a Neuroprotective Effect in the MPTP Mouse Model of Parkinson'sParkinson'sParkinson's Disease. Front Aging Neurosci 11. doi: 10.3389/fnagi.2019.00316
Wang, L.-Y., Yu, X., Li, X.-X., Zhao, Y.-N., Wang, C.-Y., Wang, Z.-Y., et al. (2019b). Catalpol Exerts a Neuroprotective Effect in the MPTP Mouse Model of Parkinson'sParkinson'sParkinson's Disease. Front Aging Neurosci 11. doi: 10.3389/fnagi.2019.00316
Wang, X., and Zhao, L. (2016). Calycosin ameliorates diabetes-induced cognitive impairments in rats by reducing oxidative stress via the PI3K/Akt/GSK-3β signaling pathway. Biochem Biophys Res Commun 473, 428–434. doi: 10.1016/j.bbrc.2016.03.024
Wang, Y., Ren, Q., Zhang, X., Lu, H., and Chen, J. (2018). Neuroprotective Mechanisms of Calycosin Against Focal Cerebral Ischemia and Reperfusion Injury in Rats. Cellular Physiology and Biochemistry 45, 537–546. doi: 10.1159/000487031
White, J. B., Beckford, J., Yadegarynia, S., Ngo, N., Lialiutska, T., and d’Alarcao, M. (2012). Some natural flavonoids are competitive inhibitors of caspase-1, -3, and -7 despite their cellular toxicity. Food Chem 131, 1453–1459. doi: 10.1016/j.foodchem.2011.10.026
Wongchum, N., and Dechakhamphu, A. (2021). Xanthohumol prolongs lifespan and decreases stress-induced mortality in Drosophila melanogaster. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 244, 108994. doi: 10.1016/j.cbpc.2021.108994
Xiong, J., Zhang, X., Huang, J., Chen, C., Chen, Z., Liu, L., et al. (2016). Fenpropathrin, a Widely Used Pesticide, Causes Dopaminergic Degeneration. Mol Neurobiol 53, 995–1008. doi: 10.1007/s12035-014-9057-2
Yamada, M., Kida, K., Amutuhaire, W., Ichinose, F., and Kaneki, M. (2010). Gene disruption of caspase-3 prevents MPTP-induced Parkinson'sParkinson'sParkinson's disease in mice. Biochem Biophys Res Commun 402, 312–318. doi: 10.1016/j.bbrc.2010.10.023
Yang, J., Jia, M., Zhang, X., and Wang, P. (2019). Calycosin attenuates MPTP‐induced Parkinson'sParkinson'sParkinson's disease by suppressing the activation of TLR/NF‐κB and MAPK pathways. Phytotherapy Research 33, 309–318. doi: 10.1002/ptr.6221
Zare, K., Eidi, A., Roghani, M., and Rohani, A. H. (2015). The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat. Metab Brain Dis 30, 205–213. doi: 10.1007/s11011-014-9604-6
Zeng, X.-S., Geng, W.-S., and Jia, J.-J. (2018). Neurotoxin-Induced Animal Models of Parkinson Disease: Pathogenic Mechanism and Assessment. ASN Neuro 10, 175909141877743. doi: 10.1177/1759091418777438
Zhou, Z. D., Saw, W. T., Ho, P. G. H., Zhang, Z. W., Zeng, L., Chang, Y. Y., et al. (2022a). The role of tyrosine hydroxylase–dopamine pathway in Parkinson'sParkinson'sParkinson's disease pathogenesis. Cellular and Molecular Life Sciences 79, 599. doi: 10.1007/s00018-022-04574-x
Zhou, Z. D., Saw, W. T., Ho, P. G. H., Zhang, Z. W., Zeng, L., Chang, Y. Y., et al. (2022b). The role of tyrosine hydroxylase–dopamine pathway in Parkinson'sParkinson's disease pathogenesis. Cellular and Molecular Life Sciences 79, 599. doi: 10.1007/s00018-022-04574-x
Published

How to Cite
Issue
Section
Copyright (c) 2025 Saba Afsheen, Suhel Parvez, Mohammad Mumtaz Alam

This work is licensed under a Creative Commons Attribution 4.0 International License.