A REVIEW ON ANGIOGENESIS ASSAYS
Abstract
The angiogenesis activity was involved in many physiological and pathological conditions. The research on angiogenesis activity was increased and many new methods are come for the evaluation of the angiogenesis activity. Previously Robert Auerbach et al., described the methods used for the evaluation of angiogenesis activity. We added some more techniques to that which are currently used for the evaluation of angiogenesis activity. Some of ischemic models are also used for the evaluation of angiogenesis like hindlimb ischemia model, coronary artery ligation model and Langendorff isolated model. Some of the new methods are introduced for the evaluation of inflammatory angiogenesis i.e. sponge granuloma angiogenesis assay. The CAM assay, corneal angiogenesis assay and matrigel plug assays are used for the evaluation of both angiogenic and anti-angiogenic agents. We also described some of the quantification techniques which are easily performed in laboratory like capillary density and estimation of hemoglobin in Matrigels.
Keywords:
Angiogenesis, Angiogenesis assays, Hindlimb ischemia model, LAD model, CAM assayDOI
https://doi.org/10.25004/IJPSDR.2010.020301References
Robert A, Rachel L, Brenda S, Louis K, Nasim A. Angiogenesis assays: a critical overview. Clinical chemistry 2003; 49(1): 32-40.
Peter C, Jain RK. Angiogenesis in Cancer and other Diseases. Nature 2000; 407: 249-257.
Carmeliet P. Mechanism of angiogenesis and arteriogenesis. Nat med. 2000; 66: 53-58.
Risau W, Flame I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995; 11: 73-80.
Liekens S, De Clercq E, Neyts J. Angiogenesis: regulators and clinical applications. Biochem Pharmacol. 1998; 61: 253-270.
Tabibiazar R, Rockson SG. Angiogenesis and the ischemic heart. European heart Journal 2001; 22: 903-918.
Ju Hee H, Yong Whee B, Jun Suk S, Byung KK, Hyung JS, Jin SK, Sung Kim HO, Young HM, Sung JK, Jin WC, Jae HP. An Experimental Model of Ischemia in Rabbit Hindlimb. J Korean Med Sci. 2001; 16: 630-639.
James HC, Elizabeth BP, Joan GD, Halea HA, David GB, Irene RT, Jacquelynn CJ. Revascularization in the rabbit hind limb: dissociation between capillary sprouting and arteriogenesis. Cardiovascular Research 2001; 49: 618-625.
Ying L, Lijun S, Human Y, Haitao Z, Jinglan D. Effect of basic fibroblast growth factor microspheres on angiogenesis in ischemic magnetic resonance tagging myocardium and cardiac function: analysis with dobutamine cardiovascular. Eur J Cardio Thorac Surg. 2006; 30:103-107.
Keyong HL, Hye RC, Chang HK. Anti-angiogenic effect of the seed extract of Benincasa hispida Cogniaux. Journal of Ethno pharmacology 2006: 97: 509-513.
Rajani M, Suresh GK, Neeta Singh, Sandeep M, Vinoth K, Velpandian T. Evaluation of the effect of Withania somnifera root extracts on cell cycle and angiogenesis. Journal of Ethnopharmacology 2006: 105: 336-341.
Barbel KM, Emile VE, Catherine CC, Evelyn F, Folkman J, Robert AD. A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci. 2006; 37: 1625-1632.
Christ PC, Jacques Morel CM, Asif Amin M, Matthew CA, Lisa HA, Alisa KE. Evidence of IL-18 as a Novel Angiogenesis Mediator. The Journal of Immunology 2001:167: 1644-1653.
Myung JP, Hee JK, Hyung CL, Doo HY, In Chul P, Mi Suk K, Seung HL, Chang HR, Seok II H. Nerve Growth Factor induces endothelial cell invasion and cord formation by promoting Matrix Metalloproteinase-2 expression through the Phosphatidylinositol 3-kinase/ Akt signaling pathway and AP-2 transcription factor. The Jour of Biol Chem. 2007; 282: 30485-30496.
Mina S, Sayeon C. Angiopoietin-like 3 (ANGPTL3) stimulates human umbilical vein endothelial cell tube formation and vascular endothelial growth factor production. Bull Korean Chem Soc. 2009; 30(3): 707-709.
Jeong EH, Eun OL, Min SK, Kyung SK, Cheol HK, Bae CC, Young JS, Sung HK. Penta-O-gallol-beta-D-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: role of Cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis. 2005; 26(8):1436-1445.
Suya Y, Xiaohua X, Constance Z, Gladys I, Germaine F, Bing L, Barbara M, Abraham M DV, Mary Gerritsen E. Vascular endothelial cell growth factor driven endothelial tube formation is mediated by vascular endothelial cell growth factor receptor-2, a kinase insert domain containing receptor. Arterioscler Thromb Vasc Biol. 2001; 21: 1934-1940.
Wei L, Yukio C, Tetsuya K, Kouichi M, Takahiko U, Akio I, Ryusuke M. Transmyocardial laser revascularization induced angiogenesis correlated with the expression of matrix metalloproteinases and platelet derived endothelial cell growth factor. Euro Jour of Cardio-Thoracic Surg. 2001; 19:156-163.
Chad Darling E, Rong J, Michelle M, Peter W, Jakob Vinten J, Karin P. Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit heart: role of ERK 1/2. Am J Physiol Heart Circ Physiol, in Press.
Veronica Munk C, Lourdes S, De Miguel, Marco P, Nicole B, Andrea B, Eriksson U, Lutz H, Rok H, Edouard Battegay J. Angiotensin II Induces Angiogenesis in the hypoxic adult mouse heart in- vitro through an AT2-B2 receptor pathway. Hypertension 2007; 49: 1178-1185.
Makoto N, Kimio S, Yoshihiro F, Yoshitaka I, Yutaka K, Naoto I, Kazuo S, Hiroaki S. Important role of erythropoietin receptor to promote VEGF expression and angiogenesis in peripheral ischemia in mice. Circ Res. 2007; 100: 662-669.
Masami K, Katsuichi S, Takeshi F, Shogo M, Fumio I, Donald I, Judah F. Potent anti-angiogenic action of AGM-1470: comparison to the fumagillin parent. Biochemical and Biophysical Research communications 1991; 174: 1070-1080.
Seung-Hyun O, Jong Woo K, Quanri J, Hye Jin K, Joo WJ, Kyu WK, Waun KH, Ho Young L. Identification of novel antiangiogenic anticancer activities of deguelin targeting hypoxia-inducible factor-1 alpha. Int. J. Cancer. 2008; 122: 5-14.
Theodore L, Janson Miller M, Kalayaan Bilbao V, Daniel Palanker V, Philip H, Mark S B. The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation. Retina 2004; 24: 427-434.
Domenico R, Angelo V, Luisa R, Franco D. The chick embryo chorioallantoic membrane as a model for in-vivo research on angiogenesis. Int J Dev Biol. 1996; 40: 1189-1197.
Huixia L, Xinsheng X, Mei Z, Renhai C, Ebba B, Changjiang L, Huili L, Guihua Y, Huiwen S, Lihang Q, Mengxiong T, Hongyan D, Yanen Z, Runyi S, Yanwen B, Yun Z, Yihai C. Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. PNAS 2007; 104: 12140-12145.
Stefano DS, Zijiang Y, Moritz, Wyler VB, Voelzmann J, Nicolas D, Baumgartner I, Christoph K. Novel cell-free strategy for therapeutic angiogenesis: in-vitro generated conditioned medium can replace progenitor cell transplantation. PLOS ONE 2009; 4(5): e5643.
Benjamin CJ, Rebecca SM, Daniel LC. G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism. Blood 2006; 108:2438-2445.
Thierry C, Marcy S, Zheng LP, Marianne K, Bernhard W, Jeffrey IM. Mouse model of angiogenesis. Am J Pathol. 1998; 152: 1667-1679.
Alain R, Marcy S, Dongfen C, Marianne K, Meredith M, Brian A, Kevin P, Jeffrey MI. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am J Pathol. 1999; 154(2): 355-363.
Subrina J, Sohel Z, Yamaguchi N, Seiji M, Nobutake S, Koichi M, Yamaguchi I, Katsutoshi G, Takashi M. Differential effects of selective endothelin type a receptor antagonist on the gene expression of vascular endothelial growth factor and its receptors in streptozocin- induced diabetic heart. Exp Biol Med. 2006; 231: 902-906.
Published

