Protective effect of Barringtonia racemosa Ethyl Acetate Fraction against Cisplatin-induced Nephrotoxicity in Rats

Authors

  • Rachna B. Patel Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, District Dhule, Maharashtra, India
  • Umesh B. Mahajan Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, District Dhule, Maharashtra, India
  • Sameer N. Goyal Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule-424001, Maharashtra, India
  • Sanjay J. Surana Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, District Dhule, Maharashtra, India
  • Chandragouda R. Patil Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, District Dhule, Maharashtra, India
  • Kalpesh R. Patil

Abstract

Cisplatin is a major antineoplastic drug for the treatment of solid tumors. Nephrotoxicity is dose- limiting side effect associated with clinical use of cisplatin. The present study was executed to determine whether bartogenic acid containing fraction of Barringtonia racemosa fruits (BREAF) possesses a nephroprotective effect against cisplatin-induced nephrotoxicity in rats. Furthermore, the study was also aimed to explore the mechanisms underlying this effect of BREAF. The BREAF was orally administered at the doses of (2, 5 and 10 mg/kg) for five consecutive days following single dose administration of cisplatin (5 mg/kg, i.p.). Treatment of animals with cisplatin resulted into the significant body weight changes, oxidative stress, elevated levels of serum biomarkers and histological alterations in the kidney architecture. The BREAF administration reduced relative body weight and organ weight changes in cisplatin-treated rats. The BREAF exhibited nephroprotective effect through the significant reduction of cisplatin-induced rise in the serum creatinine, and blood urea nitrogen levels as well as renal levels of malondialdehyde (MDA) the makers of lipid peroxidation. Additionally, the treatment with BREAF resulted into the increased renal levels of reduced glutathione (GSH), superoxide dismutase (SOD) and catalase activity. Histopathological examination established the nephroprotective effect of BREAF. In conclusion, the anti-oxidant, and anti-inflammatory effects of BREAF has important role underlying its nephroprotective effect.

Keywords:

Bartogenic acid, Barringtonia racemosa, cisplatin, nephrotoxicity, antioxidant

DOI

https://doi.org/10.25004/IJPSDR.2020.120413

References

Delord J-P, Puozzo C, Lefresne F, Bugat R. Combination chemotherapy of vinorelbine and cisplatin: a phase I pharmacokinetic study in patients with metastatic solid tumors. Anticancer research. 2009;29(2):553-60.

Somani SM, Husain K, Whitworth C, Trammell GL, Malafa M, Rybak LP. Dose‐Dependent Protection by Lipoic Acid against Cisplatin‐Induced Nephrotoxicity in Rats: Antioxidant Defense System. Basic & Clinical Pharmacology & Toxicology. 2000;86(5):234-41.

Ilić S, Stojiljković N, Veljković M, Veljković S, Stojanović G. Protective effect of quercetin on cisplatin-induced nephrotoxicity in rats. Facta Universitatis, Series: Medicine and Biology. 2014;16(2):71-5.

Mohan IK, Khan M, Shobha JC, Naidu MUR, Prayag A, Kuppusamy P, et al. Protection against cisplatin-induced nephrotoxicity by Spirulina in rats. Cancer chemotherapy and pharmacology. 2006;58(6):802. https://doi.org/10.1007/s00280-006-0231-8.

Gao L, Wu W-F, Dong L, Ren G-L, Li H-D, Yang Q, et al. Protocatechuic aldehyde attenuates cisplatin-induced acute kidney injury by suppressing nox-mediated oxidative stress and renal inflammation. Frontiers in pharmacology. 2016;7:479. doi: 10.3389/fphar.2016.00479.

Heidemann HT, Müller S, Mertins L, Stepan G, Hoffmann K, Ohnhaus E. Effect of aminophylline on cisplatin nephrotoxicity in the rat. British journal of pharmacology. 1989;97(2):313-8.

Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins. 2010;2(11):2490-518.

Safirstein R, Winston J, Moel D, Dikman S, Guttenplan J. Cisplatin nephrotoxicity: insights into mechanism. International journal of andrology. 1987;10(1):325-46.

Xiao T, Choudhary S, Zhang W, Ansari N, Salahudeen A. Possible involvement of oxidative stress in cisplatin-induced apoptosis in LLC-PK1 cells. Journal of Toxicology and Environmental Health Part A. 2003;66(5):469-79.

Prabhu VV, Kannan N, Guruvayoorappan C. 1, 2-Diazole prevents cisplatin-induced nephrotoxicity in experimental rats. Pharmacological reports. 2013;65(4):980-90.

Bhat SG, Mishra S, Mei Y, Nie Z, Whitworth CA, Rybak LP, et al. Cisplatin up-regulates the adenosine A1 receptor in the rat kidney. European journal of pharmacology. 2002;442(3):251-64.

Peres LAB, Cunha Júnior ADd. Acute nephrotoxicity of cisplatin: molecular mechanisms. Jornal Brasileiro de Nefrologia. 2013;35(4):332-40.

Sherif IO. Amelioration of cisplatin-induced nephrotoxicity in rats by triterpenoid saponin of Terminalia arjuna. Clinical and experimental nephrology. 2015;19(4):591-7.

Ali AM, Muse R, Mohd NB. Anti-oxidant and anti-inflammatory activities of leaves of Barringtonia racemosa. Journal of Medicinal Plants Research. 2007;1(5):095-102.

Kong KW, Aziz AA, Razali N, Aminuddin N, Junit SM. Antioxidant-rich leaf extract of Barringtonia racemosa significantly alters the in vitro expression of genes encoding enzymes that are involved in methylglyoxal degradation III. PeerJ. 2016;4:e2379.

Gowri PM, Tiwari AK, Ali AZ, Rao JM. Inhibition of α‐glucosidase and amylase by bartogenic acid isolated from Barringtonia racemosa Roxb. seeds. Phytotherapy Research. 2007;21(8):796-9.

Patil KR, Patil CR, Jadhav RB, Mahajan VK, Patil PR, Gaikwad PS. Anti-arthritic activity of bartogenic acid isolated from fruits of Barringtonia racemosa Roxb.(Lecythidaceae). Evidence-Based Complementary and Alternative Medicine. 2011;2011. 785245. doi: 10.1093/ecam/nep148.

Patil CR, Sonara BM, Mahajan UB, Patil KR, Patil DD, Jadhav RB, et al. Chemomodulatory Potential of Bartogenic Acid Against DMBA/Croton Oil Induced Two-Step Skin Carcinogenesis in Mice. Journal of Cancer. 2016;7(14):2139.

Nurul Mariam H, Radzali M, Johari R, Syahida A, Maziah M. Antioxidant activities of different aerial parts of putat (Barringtonia racemosa L.). Malaysian Journal of Biochemistry and Molecular Biology. 2008;16(2):15-9.

Patil KR, Patil CR. Anti-inflammatory activity of bartogenic acid containing fraction of fruits of Barringtonia racemosa Roxb. in acute and chronic animal models of inflammation. Journal of traditional and complementary medicine. 2017;7(1):86-93.

Hussin N, Muse R, Ahmad S, Ramli J, Mahmood M, Sulaiman M, et al. Antifungal activity of extracts and phenolic compounds from Barringtonia racemosa L.(Lecythidaceae). African Journal of Biotechnology. 2009;8(12). 2835-42.

Thomas TJ, Panikkar B, Subramoniam A, Nair MK, Panikkar K. Antitumour property and toxicity of Barringtonia racemosa Roxb seed extract in mice. Journal of ethnopharmacology. 2002;82(2-3):223-7.

Deraniyagala S, Ratnasooriya W, Goonasekara C. Antinociceptive effect and toxicological study of the aqueous bark extract of Barringtonia racemosa on rats. Journal of Ethnopharmacology. 2003;86(1):21-6.

Mmushi T, Masoko P, Mde L, Mokgotho M, Mampuru L, Howard R. Antimycobacterial evaluation of fifteen medicinal plants in South Africa. African Journal of Traditional, Complementary and Alternative Medicines. 2010;7(1): 34-9.

Saha S, Sarkar KK, Hossain ML, Hossin A, Barman AK, Ahmed MI, et al. Bioactivity studies on Barringtonia racemosa (lam.) bark. Pharmacologyonline. 2013;1:93-100.

Bami E, Ozakpınar OB, Ozdemir-Kumral ZN, Köroglu K, Ercan F, Cirakli Z, et al. Protective effect of ferulic acid on cisplatin induced nephrotoxicity in rats. Environmental toxicology and pharmacology. 2017;54:105-11.

Shirwaikar A, Issac D, Malini S. Effect of Aerva lanata on cisplatin and gentamicin models of acute renal failure. Journal of ethnopharmacology. 2004;90(1):81-6.

Harlalka GV, Patil CR, Patil MR. Protective effect of Kalanchoe pinnata pers.(Crassulaceae) on gentamicin-induced nephrotoxicity in rats. Indian journal of pharmacology. 2007;39(4):201-5.

Li W, Yan M-H, Liu Y, Liu Z, Wang Z, Chen C, et al. Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis. Nutrients. 2016;8(9):566. doi: 10.3390/nu8090566.

Avi-Dor Y, Lipkin R. A spectrophotometric method for the determination of reduced glutathione. J biol Chem. 1958;233(1):69-72.

Palipoch S, Punsawad C, Chinnapun D, Suwannalert P. Amelioration of cisplatin-induced nephrotoxicity in rats by curcumin and α-tocopherol. Tropical Journal of Pharmaceutical Research. 2013;12(6):973-9.

Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Archives of biochemistry and biophysics. 1978;186(1):189-95.

Chao C-S, Tsai C-S, Chang Y-P, Chen J-M, Chin H-K, Yang S-C. Hyperin inhibits nuclear factor kappa B and activates nuclear factor E2-related factor-2 signaling pathways in cisplatin-induced acute kidney injury in mice. International immunopharmacology. 2016;40:517-23.

Lück H. Catalase. Methods of enzymatic analysis: Elsevier; 1965. p. 885-94.

Arjumand W, Seth A, Sultana S. Rutin attenuates cisplatin induced renal inflammation and apoptosis by reducing NFκB, TNF-α and caspase-3 expression in wistar rats. Food and chemical toxicology. 2011;49(9):2013-21.

Malik S, Suchal K, Bhatia J, Gamad N, Dinda AK, Gupta YK, et al. Molecular mechanisms underlying attenuation of cisplatin-induced acute kidney injury by epicatechin gallate. Laboratory Investigation. 2016;96(8):853-61.

Razzaque MS. Cisplatin nephropathy: is cytotoxicity avoidable? : Oxford University Press; 2007.

Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. The American journal of the medical sciences. 2007;334(2):115-24.

Hosseinian S, Rad AK, Mousa-Al-Reza Hadjzadeh NM, Roshan SH, Shafiee S. The protective effect of Nigella sativa against cisplatin-induced nephrotoxicity in rats. Avicenna journal of phytomedicine. 2016;6(1):44-54.

Khan S, Jabbar A, Hasan C, Rashid M. Antibacterial activity of Barringtonia racemosa. Fitoterapia. 2001;72(2):162-4.

Kong KW, Mat-Junit S, Aminudin N, Ismail A, Abdul-Aziz A. Antioxidant activities and polyphenolics from the shoots of Barringtonia racemosa (L.) Spreng in a polar to apolar medium system. Food Chemistry. 2012;134(1):324-32.

de Oliveira Mora L, Antunes LMG, Francescato HsDC, Bianchi MdLP. The effects of oral glutamine on cisplatin-induced nephrotoxicity in rats. Pharmacological Research. 2003;47(6):517-22.

Atessahin A, Yilmaz S, Karahan I, Ceribasi AO, Karaoglu A. Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology. 2005;212(2-3):116-23.

Helmy M, Helmy M, ALLAH D, ZAID A, El-Din M. Role of nitergic and endothelin pathways modulations in cisplatin-induced nephrotoxicity in male rats. JPP. 2014; 65(3):393-9.

Domitrović R, Cvijanović O, Šušnić V, Katalinić N. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology. 2014;324:98-107.

Dickey DT, Muldoon LL, Doolittle ND, Peterson DR, Kraemer DF, Neuwelt EA. Effect of N-acetylcysteine route of administration on chemoprotection against cisplatin-induced toxicity in rat models. Cancer chemotherapy and pharmacology. 2008;62(2):235-41.

Vaziri ND, Dicus M, Ho ND, Boroujerdi-Rad L, Sindhu RK. Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency. Kidney international. 2003;63(1):179-85.

Hassan HA, Edrees GM, El-Gamel EM, El-sayed EA. Amelioration of cisplatin-induced nephrotoxicity by grape seed extract and fish oil is mediated by lowering oxidative stress and DNA damage. Cytotechnology. 2014;66(3):419-29.

Kim Y-H, Kim Y-W, Oh Y-J, Back N-I, Chung S-A, Chung H-G, et al. Protective effect of the ethanol extract of the roots of Brassica rapa on cisplatin-induced nephrotoxicity in LLC-PK1 cells and rats. Biological and Pharmaceutical Bulletin. 2006;29(12):2436-41.

Amirshahrokhi K, Khalili A-R. Thalidomide ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in an experimental model. Inflammation. 2015;38(2):476-84.

Al-Kahtani MA, Abdel-Moneim AM, Elmenshawy OM, El-Kersh MA. Hemin attenuates cisplatin-induced acute renal injury in male rats. Oxidative medicine and cellular longevity. 2014;2014. 476430.

Ali B, Al Moundhri M, Tag Eldin M, Nemmar A, Tanira M. The ameliorative effect of cysteine prodrug l‐2‐oxothiazolidine‐4‐carboxylic acid on cisplatin‐induced nephrotoxicity in rats. Fundamental & clinical pharmacology. 2007;21(5):547-53.

Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. The Journal of nutrition. 2004;134(3):489-92.

Silva CR, Antunes LMG, Maria de Lourdes PB. Antioxidant action of bixin against cisplatin-induced chromosome aberrations and lipid peroxidation in rats. Pharmacological Research. 2001;43(6):561-6.

Afifi ME. Effect of camel’s milk on cisplatin-induced nephrotoxicity in Swiss Albino mice. Am J Biochem Biotechnol. 2010;6(141):147. DOI: 10.3844/ajbbsp.2010.141.147.

Wu YJ, Muldoon LL, Neuwelt EA. The chemoprotective agent N-acetylcysteine blocks cisplatin-induced apoptosis through caspase signaling pathway. Journal of Pharmacology and Experimental Therapeutics. 2005;312(2):424-31.

Ognjanović BI, Djordjević NZ, Matić MM, Obradović JM, Mladenović JM, Štajn AŠ, et al. Lipid peroxidative damage on cisplatin exposure and alterations in antioxidant defense system in rat kidneys: a possible protective effect of selenium. International journal of molecular sciences. 2012;13(2):1790-803.

Kim YK, Jung JS, Lee SH, Kim YW. Effects of antioxidants and Ca2+ in cisplatin-induced cell injury in rabbit renal cortical slices. Toxicology and applied pharmacology. 1997;146(2):261-9.

Badary OA, Abdel-Maksoud S, Ahmed WA, Owieda GH. Naringenin attenuates cisplatin nephrotoxicity in rats. Life sciences. 2005;76(18):2125-35.

Chirino YI, Hernández-Pando R, Pedraza-Chaverrí J. Peroxynitrite decomposition catalyst ameliorates renal damage and protein nitration in cisplatin-induced nephrotoxicity in rats. BMC pharmacology. 2004;4(1):20. doi: 10.1186/1471-2210-4-20.

Ma S-F, Nishikawa M, Hyoudou K, Takahashi R, Ikemura M, Kobayashi Y, et al. Combining cisplatin with cationized catalase decreases nephrotoxicity while improving antitumor activity. Kidney international. 2007;72(12):1474-82.

Published

30-07-2020
Statistics
Abstract Display: 389
PDF Downloads: 437
Dimension Badge

How to Cite

“Protective Effect of Barringtonia Racemosa Ethyl Acetate Fraction Against Cisplatin-Induced Nephrotoxicity in Rats”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 12, no. 4, July 2020, pp. 396-03, https://doi.org/10.25004/IJPSDR.2020.120413.

Issue

Section

Research Article

How to Cite

“Protective Effect of Barringtonia Racemosa Ethyl Acetate Fraction Against Cisplatin-Induced Nephrotoxicity in Rats”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 12, no. 4, July 2020, pp. 396-03, https://doi.org/10.25004/IJPSDR.2020.120413.