Molecular Docking, Binding Energy and Molecular Dynamics Simulation Studies of Piperazin-1-ylpyridazine Derivatives as Deoxycytidine Triphosphate Pyrophosphatase Inhibitors

Authors

  • Shashank Mishra Department of Pharmaceutical chemistry, Faculty of Pharmacy, Bhupal Nobles’ University, Udaipur-313001, Rajasthan, India
  • C. S. Sharma Department of Pharmaceutical chemistry, Faculty of Pharmacy, Bhupal Nobles’ University, Udaipur-313001, Rajasthan, India

Abstract

Cancer is a most serious health problem globally due to increased mortality. Deoxycytidine triphosphate pyrophosphatase (dCTPase) enzyme involved in cancer progression and cancer cell stemness and found over-expressed in breast cancer. This overexpression makes it of attractive target to discover new class of anticancer therapy. In the present work, we have selected piperazin-1-ylpyridazine derivatives as dCTPase inhibitors and performed molecular docking and dynamics simulations analysis to evaluate the binding pattern of selected compounds with target protein. Compound P21 has highest binding affinity towards dCTPase protein with -4.649 as Glide Gscore. In all compounds, only pyridazine and caboxamide nucleus involves in hydrogen bond formation and benzyl or phenyl nucleus involves in π-π stacking interaction. These observations provide the valuable lead for ligand based anticancer drug design.

Keywords:

dCTPase enzyme, Molecular docking, Molecular dynamics, Binding energy calculation.

DOI

https://doi.org/10.25004/IJPSDR.2022.140203

References

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer Genome Landscapes. Science [Internet]. American Association for the Advancement of Science (AAAS); 2013 Mar 28;339(6127):1546–58. Available from: http://dx.doi. org/10.1126/science.1235122

Counihan JL, Grossman EA, Nomura DK. Cancer Metabolism: Current Understanding and Therapies. Chemical Reviews [Internet]. American Chemical Society (ACS); 2018 Jun 25;118(14):6893–923. Available from: http://dx.doi.org/10.1021/acs.chemrev.7b00775

Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nature Reviews Drug Discovery [Internet]. Springer Science and Business Media LLC; 2013 May 31;12(6):447–64. Available from: http://dx.doi.org/10.1038/nrd4010

Requena CE, Pérez-Moreno G, Ruiz-Pérez LM, Vidal AE, González- Pacanowska D. The NTP pyrophosphatase DCTPP1 contributes to the homoeostasis and cleansing of the dNTP pool in human cells. Biochemical Journal [Internet]. Portland Press Ltd.; 2014 Mar 14;459(1):171–80. Available from: http://dx.doi.org/10.1042/ bj20130894

Vértessy BG, Tóth J. Keeping Uracil Out of DNA: Physiological Role, Structure and Catalytic Mechanism of dUTPases. Accounts of Chemical Research [Internet]. American Chemical Society (ACS); 2008 Oct 7;42(1):97–106. Available from: http://dx.doi. org/10.1021/ar800114w

Requena CE, Pérez-Moreno G, Horváth A, Vértessy BG, Ruiz-Pérez LM, González-Pacanowska D, et al. The nucleotidohydrolases DCTPP1 and dUTPase are involved in the cellular response to decitabine. Biochemical Journal [Internet]. Portland Press Ltd.; 2016 Aug 30;473(17):2635–43. Available from: http://dx.doi. org/10.1042/bcj20160302

Song F, Xia L, Ji P, Tang Y, Huang Z, Zhu L, et al. Human dCTP pyrophosphatase 1 promotes breast cancer cell growth and stemness through the modulation on 5-methyl-dCTP metabolism and global hypomethylation. Oncogenesis [Internet]. Springer Science and Business Media LLC; 2015 Jun;4(6):e159–e159. Available from: http://dx.doi.org/10.1038/oncsis.2015.10

Zhang Y, Ye WY, Wang JQ, Wang SJ, Ji P, Zhou GY, et al. dCTP pyrophosphohydrase exhibits nucleic accumulation in multiple carcinomas. European Journal of Histochemistry [Internet]. PAGEPress Publications; 2013 Sep 25;57(3):29. Available from: http://dx.doi.org/10.4081/ejh.2013.e29

Morisaki T, Yashiro M, Kakehashi A, Inagaki A, Kinoshita H, Fukuoka T, et al. Comparative Proteomics Analysis of Gastric Cancer Stem Cells. Hjelmeland AB, editor. PLoS ONE [Internet]. Public Library of Science (PLoS); 2014 Nov 7;9(11):e110736. Available from: http:// dx.doi.org/10.1371/journal.pone.0110736

Llona-Minguez S, Höglund A, Ghassemian A, Desroses M, Calderón- Montaño JM, Burgos Morón E, et al. Piperazin-1-ylpyridazine Derivatives Are a Novel Class of Human dCTP Pyrophosphatase 1 Inhibitors. Journal of Medicinal Chemistry [Internet]. American Chemical Society (ACS); 2017 May 16;60(10):4279–92. Available from: http://dx.doi.org/10.1021/acs.jmedchem.7b00182

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics [Internet]. Springer Science and Business Media LLC; 2009 Dec;10(1). Available from: http://dx.doi.org/10.1186/1471-2105- 10-421

Remmert M, Biegert A, Hauser A, Söding J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nature Methods [Internet]. Springer Science and Business Media LLC; 2011 Dec 25;9(2):173–5. Available from: http://dx.doi. org/10.1038/nmeth.1818

Halgren T. New Method for Fast and Accurate Binding-site Identification and Analysis. Chemical Biology & Drug Design [Internet]. Wiley; 2007 Feb;69(2):146–8. Available from: http:// dx.doi.org/10.1111/j.1747-0285.2007.00483.x

Halgren TA. Identifying and Characterizing Binding Sites and Assessing Druggability. Journal of Chemical Information and Modeling [Internet]. American Chemical Society (ACS); 2009 Jan 20;49(2):377–89. Available from: http://dx.doi.org/10.1021/ ci800324m

Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. Journal of Medicinal Chemistry [Internet]. American Chemical Society (ACS); 2006 Sep 23;49(21):6177–96. Available from: http://dx.doi.org/10.1021/jm051256o

Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins: Structure, Function, and Bioinformatics [Internet]. Wiley; 2011 Aug 22;79(10):2794–812. Available from: http://dx.doi.org/10.1002/prot.23106

Su P-C, Tsai C-C, Mehboob S, Hevener KE, Johnson ME. Comparison of radii sets, entropy, QM methods, and sampling on MM-PBSA, MM-GBSA, and QM/MM-GBSA ligand binding energies ofF. tularensisenoyl-ACP reductase (FabI). Journal of Computational Chemistry [Internet]. Wiley; 2015 Jul 27;36(25):1859–73. Available from: http://dx.doi.org/10.1002/jcc.24011

Bowers KJ, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE, Chow E, et al. Molecular dynamics---Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/ IEEE conference on Supercomputing - SC ’06 [Internet]. ACM Press; 2006; Available from: http://dx.doi.org/10.1145/1188455.1188544

Shekhar MS, Venkatachalam T, Sharma CS, Pratap Singh H, Kalra S, Kumar N. Computational investigation of binding mechanism of substituted pyrazinones targeting corticotropin releasing factor-1 receptor deliberated for anti-depressant drug design. Journal of Biomolecular Structure and Dynamics [Internet]. Informa UK Limited; 2018 Dec 24;37(12):3226–44. Available from: http:// dx.doi.org/10.1080/07391102.2018.1513379

Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics [Internet]. Oxford University Press (OUP); 2010 Dec 5;27(3):343–50. Available from: http://dx.doi.org/10.1093/ bioinformatics/btq662

Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK. Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing. Hannenhalli S, editor. PLoS ONE [Internet]. Public Library of Science (PLoS); 2010 Aug 16;5(8):e12029. Available from: http://dx.doi. org/10.1371/journal.pone.0012029

Kumar H, Raj U, Gupta S, Varadwaj PK. In-silico identification of inhibitors against mutated BCR-ABL protein of chronic myeloid leukemia: a virtual screening and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics [Internet]. Informa UK Limited; 2016 Jan 8;34(10):2171–83. Available from: http://dx.doi.org/10.1080/07391102.2015.1110046.

Published

30-03-2022
Statistics
Abstract Display: 623
PDF Downloads: 534
Dimension Badge

How to Cite

“Molecular Docking, Binding Energy and Molecular Dynamics Simulation Studies of Piperazin-1-Ylpyridazine Derivatives As Deoxycytidine Triphosphate Pyrophosphatase Inhibitors”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 14, no. 2, Mar. 2022, pp. 171-80, https://doi.org/10.25004/IJPSDR.2022.140203.

Issue

Section

Research Article

How to Cite

“Molecular Docking, Binding Energy and Molecular Dynamics Simulation Studies of Piperazin-1-Ylpyridazine Derivatives As Deoxycytidine Triphosphate Pyrophosphatase Inhibitors”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 14, no. 2, Mar. 2022, pp. 171-80, https://doi.org/10.25004/IJPSDR.2022.140203.