Syringic Acid Reversed Depression-Resembling Behavior Induced by Chronic Unpredictable Mild Stress Paradigm in Mice

Authors

  • Abhishek Sharma Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, G D Goenka University, Gurugram -122103, Haryana, India
  • Dinesh Dhingra Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar -125001, Haryana, India
  • Rohit Dutt Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, G D Goenka University, Gurugram -122103, Haryana, India https://orcid.org/0000-0001-6794-5533

Abstract

The aim of the present investigation was to explore the anti-depressive potential of syringic acid in Swiss albino male mice. Mice were exposed to unpredictable stress for 21 sequential days. Imipramine (15 mg/kg, p.o.) and syringic acid (10 and 20 mg/kg, p.o.) were administered for three consecutive weeks to unstressed and stressed mice. Tail suspension test and sucrose preference test were used to evaluate antidepressant potential of the drugs. Syringic acid and imipramine significantly decreased immobility periods of stressed mice as compared to vehicle treated stressed mice in tail suspension test, indicating their antidepressant effects. Syringic acid (20 mg/kg) and imipramine also significantly restored the reduced sucrose preference (%) in stressed mice, which further substantiated their antidepressant effects. Syringic acid and imipramine did not produce significant antidepressant effects in unstressed mice. These drugs did not significantly affect locomotor activity scores of mice. Syringic acid (20 mg/kg) and imipramine significantly reversed chronic unpredictable mild stress (CUMS)-induced increase of plasma nitrite and corticosterone levels; brain malondialdehyde levels and monoamine oxidase (MAO(-A activity. Both the drugs also significantly reversed CUMS-induced decrease in brain reduced glutathione levels and catalase activity. Thus, syringic acid showed significant antidepressant-like activity in mice subjected to CUMS through alleviation of oxidative and nitrosative stress; and inhibition of brain MAO-A activity. Further, antidepressant-like activity of syringic acid in mice subjected to CUMS might also be due to decrease in plasma corticosterone levels. Fig. 1 Illustrates further the scheme of protocol designed with various groups of animals.

Keywords:

Antidepressant; Chronic unpredictable mild stress; Depression; Syringic acid

DOI

https://doi.org/10.25004/IJPSDR.2021.130608

References

American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-IV [Internet]. 4th ed. Washington (DC): American Psychiatric Association; 1994 [cited 2010 Mar 8]. 866 p. Available from: http://www.psychiatryonline.com/DSMPDF/dsm-iv.pdf

World Health Organization Fact sheet, 2020 [online]; Available https://www.who.int/news-room/fact-sheets/detail/depression

Manji HK, Drevets WC, Charney DS. The cellular neurobiology of depression. Nat Med. 2001 May;7(5):541-7. doi: 10.1038/87865. PMID: 11329053.

Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev. 2012 Feb;36(2):764-85. doi: 10.1016/j.neubiorev.2011.12.005. Epub 2011 Dec 19. PMID: 22197082.

Heuser I, Bissette G, Dettling M, Schweiger U, Gotthardt U, Schmider J, Lammers CH, Nemeroff CB, Holsboer F. Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: response to amitriptyline treatment. Depress Anxiety. 1998;8(2):71-9. PMID: 9784981.

Tanabe A, Nomura S. [Pathophysiology of depression]. Nihon Rinsho. 2007 Sep;65(9):1585-90. Japanese. PMID: 17876979.

Madrigal JL, Moro MA, Lizasoain I, Lorenzo P, Castrillo A, Boscá L, Leza JC. Inducible nitric oxide synthase expression in brain cortex after acute restraint stress is regulated by nuclear factor kappaB-mediated mechanisms. J Neurochem. 2001 Jan;76(2):532-8. doi: 10.1046/j.1471-4159.2001.00108.x. PMID: 11208916.

Pinto VL, Brunini TM, Ferraz MR, Okinga A, Mendes-Ribeiro AC. Depression and cardiovascular disease: role of nitric oxide. Cardiovasc Hematol Agents Med Chem. 2008 Apr;6(2):142-9. doi: 10.2174/187152508783955060. PMID: 18473779.

Maes M, De Vos N, Pioli R, Demedts P, Wauters A, Neels H, Christophe A. Lower serum vitamin E concentrations in major depression. Another marker of lowered antioxidant defenses in that illness. J Affect Disord. 2000 Jun;58(3):241-6. doi: 10.1016/s0165-0327(99)00121-4. PMID: 10802134.

Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E. Lower whole blood glutathione peroxidase (GPX) activity in depression, but not in myalgic encephalomyelitis / chronic fatigue syndrome: another pathway that may be associated with coronary artery disease and neuroprogression in depression. Neuro Endocrinol Lett. 2011;32(2):133-40. PMID: 21552194.

Dhingra D, Bansal S. Antidepressant-like activity of plumbagin in unstressed and stressed mice. Pharmacol Rep. 2015 Oct;67(5):1024-32. doi: 10.1016/j.pharep.2015.03.001. Epub 2015 Mar 19. PMID: 26398399.

Sousa N, Cerqueira JJ, Almeida OF. Corticosteroid receptors and neuroplasticity. Brain Res Rev. 2008 Mar;57(2):561-70. doi: 10.1016/j.brainresrev.2007.06.007. Epub 2007 Jul 17. PMID: 17692926.

Sanacora G, Berman RM, Cappiello A, Oren DA, Kugaya A, Liu N, Gueorguieva R, Fasula D, Charney DS. Addition of the alpha2-antagonist yohimbine to fluoxetine: effects on rate of antidepressant response. Neuropsychopharmacology. 2004 Jun;29(6):1166-71. doi: 10.1038/sj.npp.1300418. PMID: 15010697.

Goldman LS, Nielsen NH, Champion HC. Awareness, diagnosis, and treatment of depression. J Gen Intern Med. 1999 Sep;14(9):569-80. doi: 10.1046/j.1525-1497.1999.03478.x. PMID: 10491249; PMCID: PMC1496741.

Millan MJ. The role of monoamines in the actions of established and "novel" antidepressant agents: a critical review. Eur J Pharmacol. 2004 Oct 1;500(1-3):371-84. doi: 10.1016/j.ejphar.2004.07.038. PMID: 15464046.

Al-Harbi KS. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence. 2012;6:369-88. doi: 10.2147/PPA.S29716. Epub 2012 May 1. PMID: 22654508; PMCID: PMC3363299.

Karthik G, Angappan M, Vijaya Kumar A, Natarajapillai S. Syringic acid exerts antiangiogenic activity by downregulation of VEGF in zebrafish embryos. Biomed Prev Nutr. 2014;4:203–208. doi:10.1016/j.bionut.2014.01.007

Hirota A, Taki S, Kawaii S, Yano M, Abe N. 1,1-Diphenyl-2-picrylhydrazyl radical-scavenging compounds from soybean miso and antiproliferative activity of isoflavones from soybean miso toward the cancer cell lines. Biosci Biotechnol Biochem. 2000 May;64(5):1038-40. doi: 10.1271/bbb.64.1038. PMID: 10879475.

Muthukumaran J., Srinivasan S., Venkatesan R. S., Ramachandran V., Muruganathan U. Syringic acid, a novel natural phenolic acid, normalizes hyperglycemia with special reference to glycoprotein components in experimental diabetic rats. Journal of Acute Disease. 2013;2(4):304–309. doi: 10.1016/S2221-6189(13)60149-3.

Tokmak M, Yuksel Y, Sehitoglu MH, Guven M, Akman T, Aras AB, Cosar M, Abbed KM. The neuroprotective effect of syringic acid on spinal cord ischemia/reperfusion injury in rats. Inflammation. 2015;38(5):1969–1978. doi: 10.1007/s10753-015-0177-2.

Cao Y, Zhang L, Sun S, Yi Z, Jiang X, Jia D. Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells. Int J Mol Med. 2016 Aug;38(2):567-73. doi: 10.3892/ijmm.2016.2623. Epub 2016 Jun 3. PMID: 27278454.

Dalmagro AP, Camargo A, Zeni ALB. Morus nigra and its major phenolic, syringic acid, have antidepressant-like and neuroprotective effects in mice. Metab Brain Dis. 2017 Dec;32(6):1963-1973. doi: 10.1007/s11011-017-0089-y. Epub 2017 Aug 18. PMID: 28822021.

Li W, Li QJ, An SC. Preventive effect of estrogen on depression-like behavior induced by chronic restraint stress. Neurosci Bull. 2010 Apr;26(2):140-6. doi: 10.1007/s12264-010-0609-9. PMID: 20332819; PMCID: PMC5560369.

Karamkolly RR, Selvakumar GP, Sivakamasundari RI. Effects of syringic acid on chronic MPTP/probenecid induced motor dysfunction, dopaminergic markers expression and neuroinflammation in C57BL/6 mice. Biomed Aging Pathol. 2014 4(2): 95–104. https://doi.org/10.1016/j.biomag.2014.02.004

Güven M, Aras AB, Topaloğlu N, Özkan A, Şen HM, Kalkan Y, Okuyucu A, Akbal A, Gökmen F, Coşar M. The protective effect of syringic acid on ischemia injury in rat brain. Turk J Med Sci. 2015;45(1):233-40. doi: 10.3906/sag-1402-71. PMID: 25790559.

Mao QQ, Ip SP, Ko KM, Tsai SH, Che CT. Peony glycosides produce antidepressant-like action in mice exposed to chronic unpredictable mild stress: effects on hypothalamic-pituitary-adrenal function and brain-derived neurotrophic factor. Progress in Neuro-psychopharmacology & Biological Psychiatry. 2009 Oct;33(7):1211-1216. DOI: 10.1016/j.pnpbp.2009.07.002.

Kumar B, Kuhad A, Chopra K. Neuropsychopharmacological effect of sesamol in unpredictable chronic mild stress model of depression: behavioral and biochemical evidences. Psychopharmacology (Berl). 2011 Apr;214(4):819-28. doi: 10.1007/s00213-010-2094-2. Epub 2010 Nov 20. PMID: 21103863.

Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl). 1985;85(3):367-70. doi: 10.1007/BF00428203. PMID: 3923523.

Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl). 1987;93(3):358-64. doi: 10.1007/BF00187257. PMID: 3124165.

Bartos J, Pesez M. Colorimetric and Fluorimetric determination of steroids. Pure and Applied Chemistry. 1979;51: 2157-2169. https://doi.org/10.1351/pac197951102157

Dhingra D, Bhankher A. Behavioral and biochemical evidences for antidepressant-like activity of palmatine in mice subjected to chronic unpredictable mild stress. Pharmacol Rep. 2014 Feb;66(1):1-9. doi: 10.1016/j.pharep.2013.06.001. Epub 2014 Jan 30. PMID: 24905299.

Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131-8. doi: 10.1016/0003-2697(82)90118-x. PMID: 7181105.

Schurr A, Livne A. Differential inhibition of mitochondrial monoamine oxidase from brain by hashish components. Biochem Pharmacol. 1976 May 15;25(10):1201-3. doi: 10.1016/0006-2952(76)90369-5. PMID: 938542.

Charles M, McEwen J, Tabor H, Tabor C. MAO activity in rabbit serum. Methods in enzymology, XVIIB. 1977;94:692-8.

Henry RJ, Canon DC, Winkelman JW. Clinical Chemistry: Principles and Technics, 2nd Ed, Harper and Row Publishers, 1974.

Wills ED. Mechanisms of lipid peroxide formation in tissues. Role of metals and haematin proteins in the catalysis of the oxidation unsaturated fatty acids. Biochim Biophys Acta. 1965 Apr 5;98:238-51. doi: 10.1016/0005-2760(65)90118-9. PMID: 14325327.

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70-7. doi: 10.1016/0003-9861(59)90090-6. PMID: 13650640.

Dhingra D and Gahalain N. Protective effect of ellagic acid against reserpine-induced orofacial dyskinesia and oxidative stress in rats, Pharmacologia. 2016;7: 16-21. doi: 10.5567/pharmacologia.2016.16.21

Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6. doi: 10.1016/s0076-6879(84)05016-3. PMID: 6727660.

Willner P. Animal models as simulations of depression. Trends Pharmacol Sci. 1991 Apr;12(4):131-6. doi: 10.1016/0165-6147(91)90529-2. PMID: 2063478.

Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl). 1997 Dec;134(4):319-29. doi: 10.1007/s002130050456. PMID: 9452163.

Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008 Sep;31(9):464-8. doi: 10.1016/j.tins.2008.06.006. Epub 2008 Jul 31. PMID: 18675469.

Nemeroff CB, Widerlöv E, Bissette G, Walléus H, Karlsson I, Eklund K, Kilts CD, Loosen PT, Vale W. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science. 1984 Dec 14;226(4680):1342-4. doi: 10.1126/science.6334362. PMID: 6334362.

Mason BL, Pariante CM. The effects of antidepressants on the hypothalamic-pituitary-adrenal axis. Drug News Perspect. 2006 Dec;19(10):603-8. doi: 10.1358/dnp.2006.19.10.1068007. PMID: 17299602.

Pan Y, Zhang WY, Xia X, Kong LD. Effects of icariin on hypothalamic-pituitary-adrenal axis action and cytokine levels in stressed Sprague-Dawley rats. Biol Pharm Bull. 2006 Dec;29(12):2399-403. doi: 10.1248/bpb.29.2399. PMID: 17142971.

Gao S, Cui YL, Yu CQ, Wang QS, Zhang Y. Tetrandrine exerts antidepressant-like effects in animal models: role of brain-derived neurotrophic factor. Behav Brain Res. 2013 Feb 1;238:79-85. doi: 10.1016/j.bbr.2012.10.015. Epub 2012 Oct 22. PMID: 23085478.

Bilici M, Efe H, Köroğlu MA, Uydu HA, Bekaroğlu M, Değer O. Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord. 2001 Apr;64(1):43-51. doi: 10.1016/s0165-0327(00)00199-3. PMID: 11292519.

Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011 Apr 29;35(3):676-92. doi: 10.1016/j.pnpbp.2010.05.004. Epub 2010 May 12. PMID: 20471444.

Réus GZ, Stringari RB, de Souza B, Petronilho F, Dal-Pizzol F, Hallak JE, Zuardi AW, Crippa JA, Quevedo J. Harmine and imipramine promote antioxidant activities in prefrontal cortex and hippocampus. Oxid Med Cell Longev. 2010 Sep-Oct;3(5):325-31. doi: 10.4161/oxim.3.5.13109. Epub 2010 Sep 1. PMID: 21150338; PMCID: PMC3154037.

Published

30-11-2021
Statistics
Abstract Display: 570
PDF Downloads: 483
Dimension Badge

How to Cite

“Syringic Acid Reversed Depression-Resembling Behavior Induced by Chronic Unpredictable Mild Stress Paradigm in Mice”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 13, no. 6, Nov. 2021, pp. 651-60, https://doi.org/10.25004/IJPSDR.2021.130608.

Issue

Section

Research Article

How to Cite

“Syringic Acid Reversed Depression-Resembling Behavior Induced by Chronic Unpredictable Mild Stress Paradigm in Mice”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 13, no. 6, Nov. 2021, pp. 651-60, https://doi.org/10.25004/IJPSDR.2021.130608.