HUTCHINSON-GILFORD PROGERIA SYNDROME: A PREMATURELY AGING DISORDER

Authors

  • Ahsas Goyal Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
  • Neetu Agrawal Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
  • Bhupesh C. Semwal Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
  • Yogesh Murti Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India

Abstract

Hutchinson-Gilford Progeria Syndrome (HGPS) is an extremely rare genetic disorder characterized by premature aging, involving aberrant splicing of the LMNA gene, resulting in the production of a disease-causing mutant lamin A protein called progerin. Clinical manifestations are evident by the first or second year of life and include the physical characteristics usually associated with the elderly. Because neither parent carries or expresses the mutation, each case is believed to represent a sporadic, new mutation that happens most notably in a single sperm or egg immediately prior to conception. Clinical trials investigating farnesyltransferase inhibitors (FTIs), statins, and bisphosphonates as HGPS treatments are currently underway. FTIs prevent farnesylation and localization of progerin to the cell membrane but do not repair the function of the abnormal progerin protein within the cytoplasm that may result in abnormalities in cell function and DNA repair that, therefore, would not be treated with these drugs. Thus some other novel treatment strategies are required for the more effective treatment. This review summarizes the clinical characteristics of this disease, the underlying mutation in the lamin A (LMNA) gene that results in this phenotype and the recent advances in treatment strategies.

Keywords:

Lamin A, Hutchinson-Gilford progeria syndrome, farnesyl transferase inhibitor

DOI

https://doi.org/10.25004/IJPSDR.2014.060401

References

1. Hutchinson J. Congenital absence of hair and mammary glands with atrophic condition of the skin and its appendages, in a boy whose mother had been almost wholly bald from alopecia areata from the age of six. Med Chir Trans. 1886; 69: 473-477.
2. Gilford H. On a condition of mixed premature and immature development. Med Chir Trans. 1897; 80: 17-46.
3. Brown WT. Progeria: a human-disease model of accelerated aging. Am J Clin Nutr. 1992; 55(6): 1222S-1224S.
4. Brown WT, Zebrower M, Kieras FJ. Progeria, a model disease for the study of accelerated aging. Basic Life Sci. 1985; 35: 375-396.
5. DeBusk FL. The Hutchinson-Gilford progeria syndrome. Report of 4 cases and review of the literature. J Pediatr. 1972; 80(4): 697-724.
6. Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB, Brewer CC, Zalewski C, Kim HJ, Solomon B, Brooks BP, Gerber LH, Turner ML, Domingo DL, Hart TC, Graf J, Reynolds JC, Gropman A, Yanovski JA, Gerhard-Herman M, Collins FS, Nabel EG, Cannon RO 3rd, Gahl WA, Introne WJ. Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med. 2008; 358(6): 592–604.
7. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M., Glover TW, Collins FS. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 2003; 423(6937): 293–298.
8. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Levy N. Lamin a truncation in Hutchinson-Gilford progeria. Science 2003; 300(5628): 2055.
9. Abdenur JE, Brown WT, Friedman S, Smith M, Lifshitz F. Response to nutritional and growth hormone treatment in progeria. Metabolism 1997; 46(8): 851-856.
10. Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 2003; 423(6937): 298-301.
11. Maciel AT. Evidence for autosomal recessive inheritance of progeria (Hutchinson Gilford). Am J Med Genet. 1988; 31(3): 483-487.
12. Khalifa MM. Hutchinson-Gilford progeria syndrome: report of a Libyan family and evidence of autosomal recessive inheritance. Clin Genet. 1989; 35(2): 125-132.
13. Pollex RL, Hegele RA. Hutchinson–Gilford Progeria. Clin Genet. 2004; 66(5): 375-381.
14. Plasilova M, Chattopadhyay C, Pal P, Schaub NA, Buechner SA, Mueller H, Miny P, Ghosh A, heinimann K. Homozygous missense mutation in the lamin A/C gene causes autosomal recessive Hutchinson-Gilford progeria syndrome. J Med Genet. 2004; 41(8): 609-614.
15. Wuyts W, Biervliet M, Reyniers E, D'Apice MR, Novelli G, Storm K. Somatic and gonadal mosaicism in Hutchinson-Gilford progeria. Am J Med Genet A. 2005; 135(1): 66-68.
16. Gordon LB, Brown WT, Collnis FS: Hutchinson-Gilford Progeria Syndrome (January 2011) in: GeneReviews at GeneTests: Medical Genetics Information Resource database online. Copyright, University of Washington, Seattle, 1997-2010. Available at www.genetests.org.
17. Sarkar PK, Shinton RA. Hutchinson-Guilford progeria syndrome. Postgraduate Medicine Journal 2001; 77(907): 312-317.
18. Hennekam RC. Hutchinson-Gilford progeria syndrome: review of the phenotype. Am J Med Genet A. 2006; 140(23): 2603–24.
19. Uitto J. Searching for clues to premature aging. Trends in Molecular Medicine 2002; 8(4): 155-157.
20. Ishii T. Progeria: autopsy report of one case, with a review of pathologic findings reported in the literature. J Am Geriatr Soc. 1976; 24(5): 193-202.
21. Labeille B, Dupuy P, Frey-Follezou I, Larregue M, Maquart FX, Borel JP. Gallet M, Risbourg B, Denoeux JP. Progeria de Hutchinson–Gilford neonatale avec atteinte cutanee sclerodermiforme. Ann Dermatol Venereol. 1987; 114(2): 233–242.
22. Gorlin RO, Sedano HO. Progeria Hutchinson-Gilford syndrome. Mod Med. 1968; 46: 62.
23. Batstone MD, Macleod AW. Oral and maxillofacial surgical considerations for a case of Hutchinson-Gilford progeria. Int J Paediatr Dent. 2002; 12(6): 429-432.
24. Dyck JD, David TE, Burke B, Webb GD, Henderson MA, Fowler RS. Management of coronary artery disease in Hutchinson–Gilford syndrome. J Pediatr. 1987; 111(3): 407–410.
25. Gupte S. Progeria with Marcus-Gunn phenomenon. Indian Pediatr. 1983; 20(9): 694–695.
26. Atkins L. Progeria: Report of a case with post-mortem findings. N Engl J Med. 1954; 250(25): 1065–1069.
27. Doub H. Progeria. Med Radiogr Photogr. 1953; 29(2-3): 60–62.
28. Baker PB, Baba N, Boesel CP. Cardiovascular abnormalities in Progeria. Arch Pathol Lab Med. 1981; 105(7): 384–386.
29. Nelson M. Progeria: Audiologic aspects. Arch Pediatr. 1962; 79: 87–90.
30. Schwarz E. Roentgen findings in Progeria. Radiology. 1962; 79: 411–414.
31. Kozlowski K. Radiographic study of senile dwarfism (progeria). Ann Radiol. 1965; 8: 92–96.
32. Monu JUV, Benka-Coker LBO, Fatunde Y. Hutchinson–Gilford Progeria syndrome in siblings. Skel Radiol. 1990; 19(8): 585–590.
33. Stehbens WE, Wakefield SJ, Gilbert-Barness E, Olson RE, Ackerman J. Histological and ultrastructural features of atherosclerosis in progeria. Cardiovasc Pathol. 1999; 8(1): 29–39.
34. Stehbens WE, Delahunt B, Shozawa T, Gilbert-Barness E. Smooth muscle cell depletion and collagen types in progeric arteries. Cardiovasc Pathol. 2001; 10(3): 133–136.
35. Orrico J, Strada F. Anatomico-clinical study of a case of senile dwarfism (progeria). Arch Med Enfant. 1927; 30: 385–398.
36. King CR, Lemmer J, Campbell JR, Atkins AR. Osteosarcoma in a patient with Hutchinson–Gilford Progeria. J Med Genet. 1978; 15(6): 481–484.
37. Baker PB, Baba N, Boesel CP. Cardiovascular abnormalities in Progeria. Arch Pathol Lab Med. 1981; 105(7): 384–386.
38. Shiraishi I, Hayashi S, Hirai E, Onouchi Z, Hamaoka K. Fatal pulmonary hypertension associated with an atypical case of Hutchinson–Gilford progeria. Pediatr Cardiol. 2001; 22(6): 530–533.
39. Olive M, Harten I, Mitchell R, Beers JK, Djabali K, Cao K, Erdos MR, Blair C, Funke B, Smoot L, Gerhard-Herman M, Machan JT, Kutys R, Virmani R, Collins FS, Wight TN, Nabel EG, Gordon LB. Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol. 2010; 30(11): 2301–2309.
40. Ackerman J, Gilbert-Barness E. Hutchinson-Gilford progeria syndrome: a pathologic study. Pediatr Pathol Mol Med. 2002; 21(1): 1-13.
41. Talbot NB, Butler AM, Pratt EL, MacLachlan EA, Tannheimer J. Progeria. Clinical, metabolic and pathologic studies on a patient. Amer J Dis Child. 1945; 69: 267–279.
42. Reichel W, Garcia-Bunuel R. Pathologic findings in Progeria: Myocardial fibrosis and lipofuscin pigment. Am J Clin Pathol. 1970; 53(2): 243–253.
43. Manschot WA. A Case of Progeronanism. (Progeria of Gilford). Ned Tijdschr Geneeskd. 1940; 84: 3774–3782.
44. Plunkett ER, Sawtelle WE, Hamblen EC. Report of a patient with typical progeria, including data from urinary hormone studies. J Clin Endocrinol. 1954; 14(7): 735–741.
45. Corcoy R, Aris A, de Leiva, A. Fertility in a case of progeria. Am J Med Sci. 1989; 297(6): 383-384.
46. Rosenbloom AL, Kappy MS, DeBusk FL, Francis GL, Philpot TJ, Maclaren NK. Progeria: Insulin resistance and hyperglycemia. J Pediatr. 1983; 102(3): 400–401.
47. Gabr M, Hashem N, Hashem M, Fahmi A, Safouh M. Progeria, a pathologic study. J Pediatr. 1960; 57: 70–77.
48. Cao H, Hegele RA. LMNA is mutated in Hutchinson–Gilford progeria (MIM 176670) but not in Wiedemann–Rautenstrauch progeroid syndrome (MIM 264090). J Hum Genet. 2003; 48(5): 271–274.
49. Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP. Nuclear lamins: building blocks of nuclear architecture. Genes Dev. 2002; 16(5): 533–547.
50. Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD. Nuclear lamins: Major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008; 22(7): 832–853.
51. Prokocimer M, Davidovich M, Nissim-Rafinia M, Wiesel-Motiuk N, Bar DZ, Barkan R, Meshorer E, Gruenbaum Y. Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med. 2009; 13(6): 1059–85.
52. Lin F, Worman HJ. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J Biol Chem. 1993; 268(22): 16321-16326.
53. Ye Q, Worman HJ. Protein-protein interactions between human nuclear lamins expressed in yeast. Exp Cell Res. 1995; 219(1): 292–298.
54. Stuurman N, Heins S, Aebi, U. Nuclear lamins: their structure, assembly, and interactions. J Struct Biol. 1998; 122(1-2): 42–66.
55. Hutchinson CJ. Lamins: building blocks or regulators of gene expression. Nat. Rev. Mol. Cell Biol. 2002; 3(11): 848–858.
56. Vergnes L, Peterfy M, Bergo MO, Young SG, Reue K. Lamin B1 is required for mouse development and nuclear integrity. Proc Natl Acad Sci USA. 2004; 101(28): 10428–33.
57. Davies BS, Fong LG, Yang SH, Coffinier C, Young SG. The posttranslational processing of prelamin A and disease. Annu Rev Genomics Hum Genet. 2009; 10: 153–74.
58. Weber K, Plessmann U, Traub P. Maturation of nuclear lamin A involves a specific carboxy-terminal trimming, which removes the polyisoprenylation site from the precursor; implications for the structure of the nuclear lamina. FEBS Lett. 1989b; 257: 411–414.
59. Beck LA, Hosick TJ, Sinensky M. Isoprenylation is required for the processing of the lamin A precursor. J Cell Biol. 1990; 110(5): 1489–1499.
60. Hennekes H, Nigg EA. The role of isoprenylation in membrane attachment of nuclear lamins. A single point mutation prevents proteolytic cleavage of the lamin A precursor and confers membrane binding properties. J Cell Sci. 1994; 107(Pt 4): 1019–1029.
61. Sinensky M, Fantle K, Trujillo M, McLain T, Kupfer A, Dalton M. The processing pathway of prelamin. A. J Cell Sci. 1994; 107(Pt 1): 61–67.
62. Silvius JR, Heureux F. Fluorimetric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry 1994; 33(10): 3014–22.
63. Boban M, Braun J, Foisner R. Lamins: ‘structure goes cycling’. Biochem Soc Trans. 2010; 38(Pt 1): 301–6.
64. Glynn MW, Glover TW. Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum Mol Genet. 2005; 14(20): 2959–2969.
65. Young SG, Fong LG, Michaelis S. Prelamin A, Zmpste24, misshapen cell nuclei, and progeria: new evidence suggesting that protein farnesylation could be important for disease pathogenesis. J Lipid Res. 2005; 46(12): 2531–2558.
66. Shackleton S, Smallwood DT, Clayton P, Wilson LC, Agarwal AK, Garg A, trembath RC. Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype. J Med Genet. 2005; 42(6): e36.
67. Cao K, Capell BC, Erdos MR, Djabali K, Collins FS. A lamin A protein isoform overexpressed in Hutchinson–Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci USA 2007; 104(12): 4949–4954.
68. Dechat T, Shimi T, Adam SA, Rusinol AE, Andres DA, Spielmann HP, Sinensky MS, Goldman RD. Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging. Proc Natl Acad Sci USA 2007; 104(12): 4955–4960.
69. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, Gruenbaum Y, Khuon S, Mendez M, Varga R, Collins FS. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 2004; 101(24): 8963–8968.
70. Scaffidi P, Misteli T. Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med. 2005; 11(4): 440–445.
71. Capell BC, Collins FS. Human laminopathies: nuclei gone genetically awry. Nat Rev Genet. 2006; 7(12): 940–952.
72. Cao K, Capell BC, Erdos MR, Djabali K, Collins FS. A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci USA. 2007; 104(12): 4949–4954.
73. Csoka AB, English SB, Simkevich CP, Ginzinger DG, Butte AJ, Schatten GP, Rothman FG, Sedivy JM. Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging Cell. 2004; 3(4): 235–243.
74. Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen PY, Chen DJ, Pei D, Pendas AM, Candinanos J, Lopez-Otin C, Tse HF, Hutchison C, Chen J, Cao Y, Cheah KS, Tryggvason K, Zhou Z. Genomic instability in laminopathy-based premature aging. Nat Med. 2005; 11(7): 780–785.
75. Liu Y, Rusinol A, Sinensky M, Wang Y, Zou Y. DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A. J Cell Sci. 2006; 119(Pt 22): 4644–4649.
76. Fong LG, Ng JK, Meta M, Cote N, Yang SH, Stewart CL, Sullivan T, Burghardt A, Majumdar S, Reue K, Bergo MO, Young SG. Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. Proc Natl Acad Sci USA. 2004; 101(52): 18111-18116.
77. Fong LG, Ng JK, Lammerding J, Vickers TA, Meta M, Cote N, Gavino B, Qiao X, Chang SY, Young SR, Yang SH, Stewart CL, Lee RT, Bennett CF, Bergo MO, Young SG. Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J Clin Invest. 2006; 116(3): 743-752.
78. Ly DH, Lockhart DJ, Lerner RA, Schultz PG. Mitotic misregulation and human aging. Science 2000; 287(5462): 2486–2492.
79. Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Misteli T. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 2006; 103(27): 10271–6.
80. Verstraeten VL, Ji JY, Cummings KS, Lee RT, Lammerding J. Increased mechanosensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors. Aging Cell 2008; 7(3): 383–393.
81. Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD, Stewart CL, Lee RT. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest. 2004; 113(3): 370–378.
82. Varela I, Pereira S, Ugalde AP, Navarro CL, Suarez MF, Cau P, Cadinanos J, Osorio FG, Foray N, Cobo J, de Carlos F, Levy N, Freije JM, Lopez-Otin C. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med. 2008; 14(7): 767–72.
83. Steen RL, Collas P. Mistargeting of B-type lamins at the end ofmitosis: implications on cell survival and regulation of lamins A/C expression. J Cell Biol. 2001; 153(3): 621–626.
84. Musich PR, Zou Y. Genomic Instability and DNA Damage Responses in Progeria Arising from Defective Maturation of Prelamin A. Aging (Albany NY) 2009; 1(1): 28–37.
85. Rosengardten Y, McKenna T, Grochová D, Eriksson M. Stem cell depletion in Hutchinson-Gilford progeria syndrome. Aging Cell 2011; 10(6): 1011-20.
86. Csoka AB, Cao H, Sammak PJ, Constantinescu D, Schatten GP, Hegele RA. Novel lamin A/C gene (LMNA) mutations in atypical progeroid syndromes. J Med Genet. 2004; 41(4): 304-308.
87. Fukuchi K, Katsuya T, Sugimoto K, Kuremura M, Kim HD, Li L, Ogihara T. LMNA mutation in a 45 year old Japanese subject with Hutchinson-Gilford progeria syndrome. J Med Genet. 2004; 41(5): e67.
88. Cao H, Hegele RA. LMNA is mutated in Hutchinson-Gilford progeria (MIM 176670) but not in Wiedemann-Rautenstrauch progeroid syndrome (MIM 264090). J Hum Genet. 2003; 48(5): 271-274.
89. Verstraeten VL, Broers JL, van Steensel MA, Zinn-Justin S, Ramaekers FC, Steijlen PM, Kamps M, Kuijpers HJ, Merckx D, Smeets HJ, Hennekam RC, Marcelis CL, van den Wijngaard A. Compound heterozygosity for mutations in LMNA causes a progeria syndrome without prelamin A accumulation. Hum Mol Genet. 2006; 15(16): 2509-2522.
90. Chen L, Lee L, Kudlow BA, Dos Santos HG, Sletvold O, Shafeghati Y, Botha EG, Garg A, Hanson NB, Martin GM, Mian IS, Kennedy BK, Oshima J. LMNA mutations in atypical Werner's syndrome. Lancet 2003; 362(9382): 440-445.
91. Kieras FJ, Brown WT, Houck GE, Zebrower M. Elevation of urinary hyaluronic acid in Werner syndrome and progeria. Biochem Med Metab Biol. 1985; 36(3): 276-82.
92. Zebrower M., Kieras FJ, Brown WT. Urinary hyaluronic acid elevation in Huthinson-Gilford progeria syndrome. Mech Ageing Dev. 1986; 35(1): 39-46.
93. Tonunaga M, Wakamatsu E, Soto K. Hyaluronuria in a case of progeria (Hutchinson – Gilford syndrome). J Am Geriatr Soc. 1978; 26(7): 296-302.
94. Varela I, Cadinanos J, Pendas AM, Gutierrez-Fernandez A, Folgueras AR, Sanchez LM, Zhou Z, Rodriguez FJ, Stewart CL, vega JA, Tryggvason K, Freije JM, Lopez-Otin C. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 2005; 437(7058): 564–568.
95. Stewart CL, Kozlov S, Fong LG, Young SG. Mouse models of the laminopathies. Exp Cell Res. 2007; 313(10): 2144-56.
96. Young SG, Meta M, Yang SH, Fong LG. Prelamin A Farnseylation and Progeroid Syndromes. J Biol Chem. 2006; 281(52): 39741-39745.
97. Yang SH, Bergo MO, Toth JI, Qiao X, Hu Y, Sandoval S, Meta M, Bendale P, Gelb MH, Young SG, Fong LG. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeriasyndrome mutation. Proc Natl Acad Sci USA 2005; 102(29): 10291-10296.
98. Toth JI, Yang SH, Qiao X, Beigneux AP, Gelb MH, Moulson CL, Miner JH, Young SG, Fong LG. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc Natl Acad Sci USA 2005; 102(36): 12873-12878.
99. Mallampalli MP, Huyer G, Bendale P, Gelb MH, Michaelis S. Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 2005; 102(40): 14416–14421.
100. Glynn MW, Glover TW. Incomplete processing of mutant lamin A in Hutchinson–Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum Mol Genet. 2005; 14(20): 2959–2969.
101. Capell BC, Erdos MR, Madigan JP, Fiordalisi JJ, Varga R, Conneely KN, Gordon LB, Der CJ, Cox AD, Collins FS. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 2005; 102(36): 12879–12884.
102. Broers JL, Hutchison CJ, Ramaekers FC. Laminopathies. J Pathol. 2004; 204(4): 478-488.
103. Lourim D, Krohne G. Membrane-associated lamins in Xenopus egg extracts: identification of two vesicle populations. J Cell Biol. 1993; 123(3): 501-512.
104. Taveras AG, Kirschmeier P, Baum CM. Sch-66336 (sarasar) and other benzocycloheptapyridyl farnesyl protein transferase inhibitors: discovery, biology and clinical observations. Curr Top Med Chem. 2003; 3(10): 1103-1114.
105. Sullivan T, Escalante-Alcade D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol. 1999; 147(5): 913-920.
106. Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo MO, Young SG, Fong LG. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest. 2006; 116(8): 2115–2121.
107. Yang SH, Andres DA, Spielmann HP, Young SG., Fong LG. Progerin elicits disease phenotypes of progeria in mice whether or not it is farnesylated. J Clin Invest. 2008; 118(10): 3291–3300.
108. Pendas AM, Zhou Z, Cadinanos J, Freije JM, Wang J, Hultenby K, Astudillo A, Wernerson A, Rodriguez F, Tryggvason K, Lopez-Otin C. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nature Genet. 2002; 31(1): 94–99.
109. Bergo MO, Gavino B, Ross J, Schmidt WK, Hong C, Kendall LV, mohr A, meta M, Genant H, Jiang Y, Wisner ER, Van Bruggen N, Carano RA, Michaelis S, Griffey SM, Young SG. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc. Natl Acad Sci USA 2002; 99(20): 13049–13054.
110. Fong LG, Frost D, Meta M, Qiao X, Yang SH, Coffinier C, Young SG. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 2006; 311(5767): 1621–1623.
111. Mehta IS, Eskiw CH, Arican HD, Kill IA, Bridger JM. Farnesyltransferase inhibitor treatment restores chromosome territory positions and active chromosome dynamics in Hutchinson-Gilford progeria syndrome cells. Genome Biol. 2011; 12(8): R74.
112. Progeria Research Foundation. cited 2011 February 26; Progeria Clinical Trials. Available from: http://www.progeriaresearch.org/clinical_trial.html.
113. Capell BC, Olive M, Erdos MR, Cao K, Faddah DA, Tavarez UL, Conneely KN, Qu X, San H, Ganesh SK, Chen X, Avallone H, Kolodqie FD, Virmani R, Nabel EG, Collins FS. A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci USA 2008; 105(41): 15902–15907.
114. Gordon LB, Kleinman ME, Miller DT, Neuberg D, Giobbie-Hurder A, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland R, Snyder BD Fligor B, Bishop WR Statkevich P, Regen A, Sonis A, Riley S, Ploski C, Correia A, Quinn N, Ullrich NJ, Nazarian A, Liang MG, huh SY, Schwartzman A, Kieran MW. Clinical Trial of a Farnesyltransferase Inhibitor in Children with Hutchinson-Gilford Progeria Syndrome. Proc Natl Acad Sci USA 2012; 109(41): 16666-16671.
115. Shumaker DK, Dechat T, Kohlmaier A Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS Jenuwein T, Goldman RD. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci USA 2006; 103(23): 8703–8708.
116. Garcia-Blanco MA. Making antisense of splicing. Curr Opin Mol Ther. 2005; 7(5), 476–482.
117. Huang S, Chen L, Libina N, Janes J, Martin GM, Campisi J, Oshima J. Correction of cellular phenotypes of Hutchinson–Gilford Progeria cells by RNA interference. Hum Genet. 2005; 118(3-4): 444–450.
118. Soret J, Bakkoui N, Maire S, Durand S, Zekri L, Gabut M, Fic W, Divita G, Rivalle C, Dauzonne D, Nguyen CH, Jeanteur P, Jamal T. Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors. Proc Natl Acad Sci USA 2005; 102(24): 8764–8769.
119. Matzke AJ, Matzke MA. Planting the seeds of a new paradigm. PLOS Biology 2004; 2(5): E133.
120. Sazani P, Gemignani F, Kang S H, Maier MA, Manoharan M, Persmark M, Bortner D, Kole R. Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nat Biotechnol. 2002; 20(12): 1228–1233.
121. Hua Y, Vickers TA, Baker BF, Bennett CF, Krainer AR. Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol. 2007; 5(4): e73.
122. Vickers TA, Zhang H, Graham MJ, Lemonidis KM, Zhao C, Dean NM. Modification of MyD88 mRNA splicing and inhibition of IL-1beta signaling in cell culture and in mice with a 2′-O-methoxyethyl-modified oligonucleotide. J Immunol. 2006; 176(6): 3652–3661.
123. Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet. 2008; 82(4): 834–848.
124. Osorio FG, Navarro CL, Cadiñanos J, Lopez-Mejia IC, Quiros PM, Bartoli C, Rivera J, Tazi J, Guzman G, Varela, I, Depetris D, de Carlos F, Cobo J, Andres V, De Sandre-Giovannoli A, Freije JM, Levy N, Lopez-Otin, C. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med. 2011; 3(106): 106ra107.
125. Fong LG, Vickers TA, Farber EA, Choi C, Yun UJ, Hu Y, Yang SH, Coffinier C, lee R, Yin L, Davies BS, Andres DA, Spielmann HP, Bennett CF, Young SG. Activating the synthesis of progerin, the mutant prelamin A in Hutchinson–Gilford progeria syndrome, with antisense oligonucleotides. Hum Mol Genet. 2009; 18(13): 2462–2471.
126. Hernandez L, Roux KJ, Wong ESM, Mounkes LC, Mutalif R, Navasankari R, Rai B, Cool S, Jeong JW, Wang H, Lee HS, Kozlov S, Grunert M, Keeble T, Jones CM, Meta MD Young SG, Daar IO, Burke B, perantoni AO, Stewart CL. Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev Cell. 2010; 19(3): 413–425.
127. Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR, Krainc K, Collins FS. Rapamycin Reverses Cellular Phenotypes and Enhances Mutant Protein Clearance in Hutchinson-Gilford Progeria Cells. Sci Transl Med. 2011; 3(89): 89ra58.
128. Cenni V, Capani C, Columbaro M, Ortolani M, D'Apice MR, Novelli G, Fini M, Marmiroli S, Scarano E, Maraldi NM, Squarzoni S, Prencipe S, Lattanzi G. Autophagic degradation of farnesylated prelamin A as a therapeutic approach to lamin-linked progeria. Eur J Histochem. 2011; 55(4): e36.
129. Graziotto JJ, Cao K, Collins FS, Krainc D. Rapamycin activates autophagy in Hutchinson-Gilford progeria syndrome: Implications for normal aging and age-dependent neurodegenerative disorders. Autophagy 2012; 8(1): 147–151.

Published

01-10-2014
Statistics
Abstract Display: 222
PDF Downloads: 312
Dimension Badge

How to Cite

“HUTCHINSON-GILFORD PROGERIA SYNDROME: A PREMATURELY AGING DISORDER”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 6, no. 4, Oct. 2014, pp. 253-62, https://doi.org/10.25004/IJPSDR.2014.060401.

Issue

Section

Review Article

How to Cite

“HUTCHINSON-GILFORD PROGERIA SYNDROME: A PREMATURELY AGING DISORDER”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 6, no. 4, Oct. 2014, pp. 253-62, https://doi.org/10.25004/IJPSDR.2014.060401.