ANTIOXIDANT ACTIVITY OF FLAVONOIDS ISOLATED FROM THE FRUITS OF XYLOPIA PARVIFLORA (A. RICH.) BENTH
Abstract
The present study evaluates the antioxidant activity of the different flavonoids of the fruits of Xylopia parviflora used in Cameroon as spice in common traditional dishes. The fruits were successively extracted with hexane and methanol. The isolation of flavonoids was guided by the DPPH-TLC technique. The methanol crude extract and isolated compounds were screened for antioxidant and free radical scavenging activities using DPPH radical-scavenging, β-carotene/linoleic acid and ferric reducing antioxidant power (FRAP) assays. The total phenolic content of the methanol crude extract was determined by Folin–Ciocalteu method. The DPPH-TLC technique led to the isolation of (+)-catechin (1), kaempferol 3-O-arabinofuranoside (2) and quercetin 3-O-arabinofuranoside (3) identified by NMR and mass spectra analysis. In the colorimetric DPPH test, compound 1 had the same activity (EC50 8.1µg/ml) as butylated hydroxytoluene (BHT) used as standard while compound 3 and the methanol crude extract were less active (EC50 17.2µg/ml). Compound 2 was completely inactive. The total phenolic content of the fruit extracts was 113.03 mg gallic acid equivalents per g of extract. In the carotene bleaching test at the highest concentration of 100µg/mL, the order of inhibition of β-carotene discoloration was BHT > crude extract > quercetin 3-O-arabinofuranoside (3) > catechin (1) > kaempferol 3-O- arabinofuranoside (2). In the reducing power assay, compound 3 was more active at concentrations 40-100µg/mL. The HPLC analysis of the methanol crude extract revealed the presence of compounds 1-3 and unidentified phenolic compounds. The antioxidant activity of the methanol extract is probably due to the presence of compounds 1 and 3.
Keywords:
Xylopia parviflora, fruits, isolation, flavonoids, antioxidant activityDOI
https://doi.org/10.25004/IJPSDR.2014.060409References
2. Kinsella JE, Frankel E, German B, Kanner J. Possible mechanisms for the protective role of antioxidants in wine and plant foods. Food Technol. 1993; 47: 85–89.
3. Shahidi F. Natural antioxidants: Chemistry, health effects, and applications. Urbana, IL: AOCS Press. 1997.
4. Silva EM, Souza JNS, Rogez H, Rees JF, Larondelle Y. Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chem. 2007; 101: 1012–1018.
5. Silva BA, Ferreres F, Malva JO, Dias ACP. Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem. 2005; 90: 157–167.
6. Hu C, Kitts DD. Dendelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro. Phytomedicine 2005; 12: 588–597.
7. Shahidi F, Wanasundara PKJPD. Phenolic antioxidants. Crit Rev Food Sci Nutr. 1992; 32: 67–103.
8. Pier-Giorgio P. Flavonoids as antioxidants. J Nat Prod. 2000; 63: 1035-1042.
9. Tchiégang C, Mbougueng PD. Composition chimique des épices utilisées dans la préparation du Nah-poh et du Nkui de l'ouest Cameroun. Tropicultura. 2005 ; 23: 193-200.
10. Nishiyama Y, Moriyasu M, Ichimaru M, Iwasa K, Kato A, Mathenge SG, Mutiso PBC, Juma FD. Secondary and tertiary isoquinoline alkaloids from Xylopia parviflora. Phytochemistry 2006; 67: 2671–2675.
11. Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Meth Enzymol. 1999; 299: 152-178.
12. Cuendet M, Hostettmann K, Potterat O. Iridoid glycosides with free radical scavenging properties from Fagrea blumei. Helv Chim Acta. 1997; 80: 1144-1152.
13. Yaya AJG, Feumba RD, Talla E, Tchinda AT, Fredérich M, Oben J. Antioxidant activity of compounds isolated from the root woods of Erythrina droogmansiana. Int J Pharm Sci Drug Res. 2014; 6(2): 160-163.
14. Miller HEA. A simplified method for the evaluation of antioxidant. J Amer Chem Soc. 1971; 45: 91-98.
15. Oyaizu M. Studies on product of browning reaction prepared from glucose amine. Japan J Nutr. 1986; 44: 307-315.
16. Young HS, Park JC, Choi JS. Isolation of (+)-catechin from the roots of Rosa rugosa. Kor J Pharmacog. 1987; 18: 177-179.
17. Olszewska M, Wolbis M. Flavonoids from the flowers of Prunus spinosa L. Acta Pol Pharm. 2001, 58: 367-372.
18. Huang D, Ou B, Prior RL. The Chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005; 53: 1841-1856.
19. Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoğlu B, Berker KI, Özyurt D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007; 12: 1496-1547.
20. Ren-Bo A, Hyun-Chul K, Yu-Hua T, Youn-Chul K. Free radical scavenging and hepatoprotective constituents from the leaves of Juglans sinensis. Arch Pharm Res. 2005; 28: 529-533.
21. Abdille MdH, Singh RP, Jayaprakasha GK, Jena BS. Antioxidant activity of the extracts from Dillenia indica fruits. Food Chem. 2005; 90:891–896.
22. Sharififar F, Dehghn-Nudeh G., Mirtajaldini M. Major flavonoids with antioxidant activity from Teucrium polium L. Food Chem. 2009; 112: 885–888.
23. Shalini, Srivastava R. Antifungal activity screening and HPLC analysis of crude extract from Tectona grandis, shilajit, Valeriana wallachi. Electron J Environ Agric Food Chem. 2009; 8: 218-229.
24. Nuengchamnong N, Krittasilp K, Ingkaninan K. Rapid screening and identification of antioxidants in aqueous extracts of Houttuynia cordata using LC–ESI–MS coupled with DPPH assay. Food Chem. 2009; 117: 750–756.
Published

