Evaluation of Healing Effect of Stromal Vascular Fraction and Platelet Rich Plasma Application on Ulcerative Ear Wound in Diabetic Rabbit
Abstract
A debilitating complication of diabetes mellitus is diabetic ulcers, which leads to increased overall morbidity in patients. The high growth factor content in Platelet Rich Plasma (PRP) makes it a widely used intervention for the treatment of diabetic foot ulcers. The topical application of Stromal Vascular Fraction (SVF) could possibly enhance wound healing. This study aims at evaluating the efficacy of combining SVF and PRP on wound healing in diabetic rabbit model. Diabetes was induced in New Zealand white rabbits by intravenous injection of 125 mg/Kg Alloxan. After two weeks of alloxan, three 6 mm diameter, full thickness excision wounds were made, on inner side of the right ear pinna. The animals after induction were allocated into 4 groups with [8 Diabetic (treated with SVF+PRP), 4 Diabetic (treated with 10% Povidone Iodine (PI)), 1 non-diabetic (treated with SVF+PRP), 1 non diabetic (treated with 10% PI)]. The effect of combined therapy was evaluated by assessing wound margin closure rate, histo-pathological evaluation, and inflammatory cell infiltration, epithelization of ulcerative region, neo-vascularization, and fibrosis. We observed that the rate of wound closure is enhanced in wounds treated with SVF+PRP as compared to the PI solution. Wound closure and healthy healing were demonstrated by histo-pathological analysis. The analysis clearly indicates that the healing process of PI treated animals is slower than that of SVF + PRP treated animals. In conclusion, based on wound healing assessment and histo-pathological examination, the diabetic rabbits treated with SVF + PRP exhibited early development of granulation tissue and early signs of wound closure as compared to diabetic animals with normal PI dressing.
Keywords:
alloxan, Platelet rich plasma, stromal vascular fraction, diabetes, wound healingDOI
https://doi.org/10.25004/IJPSDR.2022.140110References
Theoret C. Tissue engineering in wound repair: The three "R"s-- repair, replace, regenerate: Tissue engineering in wound repair. Vet Surg [Internet]. 2009;38(8):905–13. Available from: http://dx.doi. org/10.1111/j.1532-950X.2009.00585.x
Cavanagh PR, Lipsky BA, Bradbury AW, Botek G. Treatment for diabetic foot ulcers. Lancet [Internet]. 2005;366(9498):1725–35. Available from: http://dx.doi.org/10.1016/S0140-6736(05)67699-4
Fazeli Farsani S, van der Aa MP, van der Vorst MMJ, Knibbe CAJ, de Boer A. Global trends in the incidence and prevalence of type 2 diabetes in children and adolescents: a systematic review and evaluation of methodological approaches. Diabetologia [Internet]. 2013;56(7):1471–88. Available from: http://dx.doi.org/10.1007/ s00125-013-2915-z
Alavi A, Sibbald RG, Mayer D, Goodman L, Botros M, Armstrong DG, et al. Diabetic foot ulcers: Part I. Pathophysiology and prevention. J Am Acad Dermatol [Internet]. 2014;70(1):1.e1-18; quiz 19–20. Available from: http://dx.doi.org/10.1016/j.jaad.2013.06.055
Holstein P, Ellitsgaard N, Olsen BB, Ellitsgaard V. Decreasing incidence of major amputat ions in people with diabetes. Diabetologia [Internet]. 2000;43(7):844–7. Available from: http:// dx.doi.org/10.1007/s001250051459
Bigliardi PL, Alsagoff SAL, El-Kafrawi HY, Pyon J-K, Wa CTC, Villa MA. Povidone iodine in wound healing: A review of current concepts and practices. Int J Surg [Internet]. 2017;44:260–8. Available from: http://dx.doi.org/10.1016/j.ijsu.2017.06.073
Cooper RA. Iodine revisited. Int Wound J [Internet]. 2007;4(2):124– 37. Avai lable f rom: ht tp://dx.doi .org/10.1111/j .1742- 481X.2007.00314.x
Goldenheim PD. An appraisal of povidone-iodine and wound healing. Postgrad Med J. 1993;69 Suppl 3:S97-105.
Hong JP, Park SW. The combined effect of recombinant human epidermal growth factor and erythropoietin on full-thickness wound healing in diabetic rat model. Int Wound J [Internet]. 2014;11(4):373–8. Available from: http://dx.doi.org/10.1111/ j.1742-481X.2012.01100.x
Dinh T, Tecilazich F, Kafanas A, Doupis J, Gnardellis C, Leal E, et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes [Internet]. 2012;61(11):2937–47. Available from: http://dx.doi.org/10.2337/db12-0227
Steed DL. The role of growth factors in wound healing. Surg Clin North Am [Internet]. 1997;77(3):575–86. Available from: http:// dx.doi.org/10.1016/s0039-6109(05)70569-7
Desta T, Li J, Chino T, Graves DT. Altered fibroblast proliferation and apoptosis in diabet ic gingival wounds. J Dent Res [Internet]. 2010;89(6):609–14. Available from: http://dx.doi. org/10.1177/0022034510362960
Kwon DS, Gao X, Liu YB, Dulchavsky DS, Danyluk AL, Bansal M, et al. Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats. Int Wound J [Internet]. 2008;5(3):453–63. Available from: http://dx.doi.org/10.1111/ j.1742-481X.2007.00408.x
Anitua E, Sánchez M, Nurden AT, Nurden P, Orive G, Andía I. New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnol [Internet]. 2006;24(5):227–34. Available from: http://dx.doi.org/10.1016/j.tibtech.2006.02.010
Yang M, Sheng L, Zhang TR, Li Q. Stem cell therapy for lower extremity diabetic ulcers: where do we stand? Biomed Res Int [Internet]. 2013;2013:462179. Available from: http://dx.doi. org/10.1155/2013/462179
Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front Immunol [Internet]. 2013;4:201. Available from: http://dx.doi.org/10.3389/fimmu.2013.00201
Abdulrazzak H, De Coppi P, Guillot PV. Therapeutic potential of a m n iot ic f lu id s t em c el l s . Cu r r St em C el l R e s T her [Internet]. 2013;8(2):117–24. Available from: http://dx.doi. org/10.2174/1574888x11308020002
Konno M, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Nishikawa S, et al. Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ [Internet]. 2013;55(3):309–18. Available from: http://dx.doi.org/10.1111/dgd.12049
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science [Internet]. 1999;284(5411):143–7. Available from: http://dx.doi.org/10.1126/science.284.5411.143
Kim EK, Li G, Lee TJ, Hong JP. The effect of human adipose-derived stem cells on healing of ischemic wounds in a diabetic nude mouse model. Plast Reconstr Surg [Internet]. 2011;128(2): 387–94. Avai lable f rom: ht tp://dx .doi .org/10.1097/ PRS.0b013e31821e6de2
Kokai LE, Marra K, Rubin JP. Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl Res [Internet]. 2014;163(4):399–408. Available from: http://dx.doi. org/10.1016/j.trsl.2013.11.009
Nie C, Yang D, Xu J, Si Z, Zhang JX. Locally administered adiposederived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant.
Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells [Internet]. 2007;25(10):2648–59. Available from: http://dx.doi. org/10.1634/stemcells.2007-0226
Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, et al. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells [Internet]. 2004;22(5):812– 22. Available from: http://dx.doi.org/10.1634/stemcells.22-5-812
Akino K, Mineda T, Akita S. Early cellular changes of human mesenchymal stem cells and their interaction with other cells. Wound Repair Regen [Internet]. 2005;13(4):434–40. Available from: http://dx.doi.org/10.1111/j.1067-1927.2005.130411.x
Zhu X, Du J, Liu G. The comparison of multilineage differentiation of bone marrow and adipose-derived mesenchymal stem cells. Clin Lab. 2012;58(9–10):897–903.
Bayati V, Hashemitabar M, Gazor R, Nejatbakhsh R, Bijannejad D. Expression of surface markers and myogenic potential of rat bone marrow- and adipose-derived stem cells: a comparative study. Anat Cell Biol [Internet]. 2013;46(2):113–21. Available from: http:// dx.doi.org/10.5115/acb.2013.46.2.113
Zhang L, Zhang B, Liao B, Yuan S, Liu Y, Liao Z, et al. Platelet-rich plasma in combination with adipose-derived stem cells promotes skin wound healing through activating Rho GTPase-mediated signaling pathway. Am J Transl Res. 2019;11(7):4100–12.
Kocaoemer A, Kern S, Klüter H, Bieback K. Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells [Internet]. 2007;25(5):1270–8. Available from: http://dx.doi.org/10.1634/stemcells.2006-0627
Aydin O, Karaca G, Pehlivanli F, Altunkaya C, Uzun H, Özden H, et al. Platelet-rich plasma may offer a New Hope in suppressed wound healing when compared to mesenchymal stem cells. J Clin Med [Internet]. 2018;7(6):143. Available from: http://dx.doi. org/10.3390/jcm7060143
Pino-Sedeño D, Trujillo-Martín T, Andia MM. Plateletrich plasma for the treatment of diabetic foot ulcers: A metaanalysis. Wound Repair Regen.
Stessuk T, Puzzi MB, Chaim EA, Alves PCM, de Paula EV, Forte A, et al. Platelet-rich plasma (PRP) and adipose-derived mesenchymal stem cells: stimulatory effects on proliferation and migration of fibroblasts and keratinocytes in vitro. Arch Derm Res [Internet]. 2016;308(7):511–20. Available from: http://dx.doi.org/10.1007/ s00403-016-1676-1
Van Pham P, Bui KH-T, Ngo DQ, Vu NB, Truong NH, Phan NL-C, et al. Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage. Stem Cell Res Ther [Internet]. 2013;4(4):91. Available from: http://dx.doi. org/10.1186/scrt277
Mahmoudian-Sani M-R, Rafeei F, Amini R, Saidijam M. The effect of mesenchymal stem cells combined with platelet-rich plasma on skin wound healing. J Cosmet Dermatol [Internet]. 2018;17(5):650–9. Available from: http://dx.doi.org/10.1111/jocd.12512
Zielins ER, Atashroo DA, Maan ZN, Duscher D, Walmsley GG, Hu M, et al. Wound healing: an update. Regen Med [Internet]. 2014;9(6):817– 30. Available from: http://dx.doi.org/10.2217/rme.14.54
Villela DL, Santos VLCG. Evidence on the use of platelet-rich plasma for diabetic ulcer: a systematic review. Growth Factors [Internet]. 2010;28(2):111–6. Available from: http://dx.doi. org/10.3109/08977190903468185
Mazzucco L, Medici D, Serra M, Panizza R, Rivara G, Orecchia S, et al. The use of autologous platelet gel to treat difficult-to-heal wounds: a pilot study: PLT GEL IN THE TREATMENT OF UNHEALING WOUNDS. Transfusion [Internet]. 2004;44(7):1013–8. Available from: http:// dx.doi.org/10.1111/j.1537-2995.2004.03366.x
Ostvar O, Shadvar S, Yahaghi E, Azma K, Fayyaz AF, Ahmadi K, et al. Effect of platelet-rich plasma on the healing of cutaneous defects exposed to acute to chronic wounds: a clinicohistopathologic study in rabbits. Diagn Pathol.
Lee H-W, Reddy MS, Geurs N, Palcanis KG, Lemons JE, Rahemtulla FG, et al. Efficacy of platelet-rich plasma on wound healing in rabbits. J Periodontol [Internet]. 2008;79(4):691–6. Available from: http:// dx.doi.org/10.1902/jop.2008.070449
Pallua N, Wolter T, Markowicz M. Platelet-rich plasma in burns. Burns [Internet]. 2010;36(1):4–8. Available from: http://dx.doi. org/10.1016/j.burns.2009.05.002
Sommeling CE, Heyneman A, Hoeksema H, Verbelen J, Stillaert FB, Monstrey S. The use of platelet-rich plasma in plastic surgery: a systematic review. J Plast Reconstr Aesthet Surg [Internet]. 2013;66(3):301–11. Available from: http://dx.doi.org/10.1016/j. bjps.2012.11.009
Cervelli V, Gentile P, Scioli MG, Grimaldi M, Casciani CU, Spagnoli LG, et al. Application of platelet-rich plasma in plastic surgery: clinical and in vitro evaluation. Tissue Eng Part C Methods [Internet]. 2009;15(4):625–34. Available from: http://dx.doi.org/10.1089/ ten.TEC.2008.0518
Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, et al. Stem cells in wound healing: The future of regenerative medicine? A mini-review. Gerontology [Internet]. 2016;62(2):216– 25. Available from: http://dx.doi.org/10.1159/000381877
Kirby GTS, Mills SJ, Cowin AJ, Smith LE. Stem cells for cutaneous wound healing. Biomed Res Int [Internet]. 2015;2015:285869. Available from: http://dx.doi.org/10.1155/2015/285869
Dehkordi N, Babaheydari M, Chehelgerdi F, Dehkordi R. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther.
Chen YW, Scutaru TT, Ghetu N, Carasevici E, Lupascu CD, Ferariu D, et al. The effects of adipose-derived stem cell-fifferentiated adipocytes on skin burn wound healing in rats. J Burn Care Res.
Seo E, Lim JS, Jun J-B, Choi W, Hong I-S, Jun H-S. Exendin-4 in combination with adipose-derived stem cells promotes angiogenesis and improves diabetic wound healing. J Transl Med [Internet]. 2017;15(1). Available from: http://dx.doi.org/10.1186/ s12967-017-1145-4
van Dongen JA, Harmsen MC, van der Lei B, Stevens HP. Augmentation of dermal wound healing by adipose tissue-derived stromal cells (ASC). Bioengineering (Basel) [Internet]. 2018;5(4):91. Available from: http://dx.doi.org/10.3390/bioengineering5040091
Deng C, Wang L, Feng J, Lu F. Treatment of human chronic wounds with autologous extracellular matrix/stromal vascular fraction gel: A STROBE-compliant study: A STROBE-compliant study. Medicine (Baltimore) [Internet]. 2018;97(32):e11667. Available from: http:// dx.doi.org/10.1097/MD.0000000000011667
Sabol RA, Bowles AC, Côté A, Wise R, Pashos N, Bunnell BA. Therapeutic potential of adipose stem cells. Adv Exp Med Biol [Internet]. 2021;1341:15– 25. Available from: http://dx.doi.org/10.1007/5584_2018_248
Morris ME, Beare JE, Reed RM, Dale JR, Leblanc AJ, Kaufman CL, et al. Systemically delivered adipose stromal vascular fraction cells disseminate to peripheral artery walls and reduce vasomotor tone through a CD11b + celldependent mechanism. Stem Cells Transl Med.
Granel B, Daumas A, Jouve E, Harle JR, Nguyen PS, Chabannon C, et al. Safety, tolerability and potential efficacy of injection of autologous adiposederived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial. Ann Rheum Dis. Ann Rheum Dis.
Zhou L, Xu L, Shen J, Song Q, Wu R, Ge Y, et al. Preischemic administration of non-expanded adipose stromal vascular fraction attenuates acute renal ischemia/reperfusion injury and fibrosis. Stem Cells Transl Med.
Ahn ST, Mustoe TA. Effects of ischemia on ulcer wound healing: a new model in the rabbit ear. Ann Plast Surg [Internet]. 1990;24(1):17–23. Available from: http://dx.doi.org/10.1097/00000637-199001000- 00004
Kundu S, Biswas TK, Das P, Kumar S, De DK. Turmeric (Curcuma longa) rhizome paste and honey show similar wound healing potential: a preclinical study in rabbits. Int J Low Extrem Wounds [Internet]. 2005;4(4):205–13. Available from: http://dx.doi. org/10.1177/1534734605281674
Osterman C, McCarthy MBR, Cote MP, Beitzel K, Bradley J, Polkowski G, et al. Platelet-rich plasma increases anti-inflammatory markers in a human coculture model for osteoarthritis. Am J Sports Med [Internet]. 2015;43(6):1474–84. Available from: http://dx.doi. org/10.1177/0363546515570463
Ahmed H, Rashed H, Mahfouz LA, Hussein E, Alkaffas R, Mostafa M, et al. Can mesenchymal stem cells pretreated with platelet-rich plasma modulate tissue remodeling in a rat with burned skin. Biochem Cell Biol. 2017 Oct; 95(5):537-548. Available from 10.1139/ bcb-2016-0224
Published

