DENDRIMERS AS A POTENTIAL DRUG DELIVERY SYSTEM: A COMPREHENSIVE REVIEW

Authors

  • D. Nagasamy Venkatesh Department of Pharmaceutics, JSS College of Pharmacy, (A Constituent College of JSS University, Mysore), Udhagamandalam – 643 001, Tamil Nadu, India
  • H. C Kiran Department of Pharmaceutics, JSS College of Pharmacy, (A Constituent College of JSS University, Mysore), Udhagamandalam – 643 001, Tamil Nadu, India
  • S. Shashikumar Department of Pharmaceutics, JSS College of Pharmacy, (A Constituent College of JSS University, Mysore), Udhagamandalam – 643 001, Tamil Nadu, India
  • V. Indurekha Department of Pharmaceutics, JSS College of Pharmacy, (A Constituent College of JSS University, Mysore), Udhagamandalam – 643 001, Tamil Nadu, India
  • K. J Thirumalai Subramaniam Department of Pharmaceutics, JSS College of Pharmacy, (A Constituent College of JSS University, Mysore), Udhagamandalam – 643 001, Tamil Nadu, India
  • A. Uma Rani Department of Pharmaceutics, JSS College of Pharmacy, (A Constituent College of JSS University, Mysore), Udhagamandalam – 643 001, Tamil Nadu, India

Abstract

Dendrimers are synthetic, highly branched, monodisperse macromolecules of nanometer dimensions with exact and large number of functional groups, distributed with unprecedented control, makes them a promising scaffolds, for drug delivery. Dendrimers serves as an ideal vehicle for cancer therapy, immunology, vaccines, antivirals, biosensors for diagnostics, neuron capture therapy, photodynamic therapy and photo thermal therapy. Dendrimers chemistry is one of the most fascinating and rapidly expanding areas in the field of chemistry. Prior to the dendrimer technology, nanoparticle drug delivery systems were one of the choicest systems owing to their selectivity and stability of therapeutic agents incorporated into the system. However, few drawbacks such as reticuloendothelial system (RES) uptake, drug leakage, immunogenicity, hemolytic toxicity, cytotoxicity, hydrophobicity etc., impede the usage of these nanostructures. Further, these shortcomings shall be circumvented by modifying the surface engineering, such as poly ester dendrimer, arginine dendrimer, glycol dendrimer, PEGylated dendrimers etc., Unique properties of uniform size, water solubility, modifiable surface functionality and availability of internal cavities makes them intriguing carrier for biological and drug delivery system. In the present review, we focused on the bioactive agents that can be easily encapsulated into the interior cavity (or) chemical attachment, conjugation (or) physically adsorbed on to the dendrimer surface to serve the desired properties of the carrier to cater specific needs of the active components, its characterization and application.

Keywords:

Dendrimers, nanostructures, permeability, monomer, oligonucleotides

DOI

https://doi.org/10.25004/IJPSDR.2015.070401

References

1. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. A new class of polymers: starburst-dendritic macromolecules. Polymer Journal 1985; 17(1): 117-132.
2. Jain NK, Khopade AJ. Dendrimers as potential delivery system for bioactives. Advances in controlled and novel drug delivery 2001; 361-380.
3. Senthil KM, Valarmathi S, Priyanka B, Prudhvi DS, Raja A. Dendrimers: A novel drug delivery system, Journal of Pharmaceutical Science and Technology 2012; 4(7): 972-984.
4. Pillai O, Panchagnula R. Polymers in drug delivery. Curr Opin Chem Biol. 2001; 5: 447-451.
5. Frechet JMJ, Tomalia D. eds (2001). Dendrimers and other dendritic polymers. John Wiley and Sons.
6. New Kone GR (2001). Dendrimers and dendrons: concepts, synthesis, applications, Wiley-VCH.
7. Lee CC, Mackay JA, Frechet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005; 23: 1517-1526.
8. Yang H, Kao WJ. Dendrimers for pharmaceutical and biomedical applications. J Biomat Sci Polym. 2006; 17: 3-19.
9. Svenson S, Tomalia DA. Dendrimers in biomedical applications: reflections on the field. Adv Drug Del Rev. 2005; 57: 2106-2129.
10. Gilles ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discovery today 2005; 10: 35-43.
11. Tomalia DA, Reyna LA, Svenson S. Dendrimers as multipurpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007; 35:61-67.
12. Khan MK, Nigarekar SS, Mine LD, Karipper MS, Nair BM, Lesniak WG, Balogh LP. In vivo biodistribution of dendrimers and dendrimer nanocomposites-implications for cancer imaging and therapy. Technol Cancer Res Treat. 2005; 4: 603-613.
13. Dai H, Navath RS, Balakrishnan B, Guru BR, Mishra Mk. Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine 2010; 5: 1317-1329.
14. Aulenta F, Hayes W, Rannard S. Dendrimers: A new class of nanoscopic containers and delivery devices. Euro Polym J. 2003; 39: 1741-1771.
15. Stiriba SE, Frey H, Haag R. Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew Chem Int Ed Engl. 2002; 41(8):1329-1334.
16. Patri AK, Majoros IJ, Baker JR. Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol. 2002; 6: 466-471.
17. Boas V, Heegaard PMH. Dendrimers in drug research. Chem Soc Rev. 2004; 33: 43-63.
18. Jansen JFGA, Brabander-Vanden Berg EMM, Meijer EW. Encapsulation of guest molecules into a dendritic box. Science 1994; 266: 1226-1229.
19. Caminade AM, Laurent R, Majoral JP. Characterisation of dendrimers. Adv Drug Del Rev. 2005; 57(15), 2130-2146.
20. Esfand R, Tmalia DA. Poly (amidoamine) (PAMAM) dendrimers from biochemistry to drug delivery and biomedical applications. Drug Discov Today 2001; 6:427-436.
21. Liu M, Frechet MJ. Designing dendrimers for drug delivery. Pharm Sci Technol Today 1999; 2: 393-401.
22. Tomalia DA. Starburst dendrimers nanoscopic super molecules according to dendric rules and principles. Macromol Syrup 1996; 101: 243-255.
23. Hawker CJ, Frechet JMJ. Preparation of polymers with controlled molecular architecture. A new covergent approach to dendritic macromolecules. J Am Chem Soc. 1990; 112: 7638-7647.
24. Fischer M, Vogtle F. Dendrimers from design to application-a progress report. Angrew Chem Int Ed Engl. 1999; 38: 884-905.
25. Tomalia DA, Majoros I. Dentrimetric supramolecular and supramacromolecular assemblies. In: Ciferri, A. (Ed.). Supramolecular Polymers, Marcel Dekker, New York, pp. 359-435.
26. Bosma AW, Janssen HM, Meijeret EW. About dendrimers: structure, physical properties and applications. Chem Rev. 1999; 99: 1665-1688.
27. Newkone GR, Yao Z, Baker GR, Gupta VK. Cascade molecules: a new approach to micelles A [27]-arborol. J Org Chem. 1985; 50(11):2003-2004.
28. Tomalia DA, Esfand R. Dendrons, dentrimrs and dendrigraft. Chem Ind. 1997; 11: 416-420.
29. Twyman LJ, Beezer AE, Esfand R, Hardy MJ, Mitchell JC. The synthesis of water soluble dendrimers and their application as possible drug delivery system. Tetrahedron Lett. 1999; 40: 1743-1746.
30. Konda SD, Aref M, Wang S, Brechbiel M, Wiener EC. Specific targeting of folate-dendrimer MRI contrast agents to high affinity folate receptor expressed in ovarian tumour xenografts. Magn reson Mater Phys Biol Med. 2001; 12: 104-113.
31. Baker JR, Quintana A, Pichler L, Banazak Holl M, tomalia DA, Raczka E. The synthesis and testing of anti-cancer therapeutic nanodevices. Biomed Microdevices. 2001; 3:61-69.
32. Kono K, Liu M, Frechet JMJ. Design of dendritic macromolcules containing folate or methotrexate residues. Bioconjugate Chem. 1999, 10: 1115-1121.
33. Gnesch T, Hofkens J, Heirmann A, Tsuda K, Verheijen W, Vosch T. Flourescence detection from single dendrimers with multiple chromophores. Angew Chem Int Ed Engl. 1999; 38: 3752-3756.
34. Gilat SL, Adronov A, and Frechet JJ. Light harvesting and energy transfer in novel convergently constructed dendrimers. Chem Int Edn. 1999; 38:1422-27.
35. Newkome GR, Young JK, Baker GR, Potter RL, Audoly L, Cooper D, Weis CD, Morris KF, Johnson CS. Cascade Polymers: pH dependence of hydrodynamic radii of acid terminated dendrimers. Macromolecules 1993; 26: 2394-2396.
36. Sideratou A, Tsuourvas D, Paleos CM. Quaternized poly(propylene imine) dendrimers as novel pH-sensitive controlled-release systems. Langmuir. 2000; 16: 1766-1769.
37. Barth RF, Adams DM, Soloway AH, Alam F, Darby MV. Boronated starburst dendrimer-monoclonal antibody immunoconjugates: evaluation as a potential delivery system for neutron capture therapy. Bioconjug Chem. 1994 Jan-Feb; 5(1):58-66.
38. Prosa TJ, Bauer BJ, Amis EJ, Tomalia DA, Scherrenberg R. A SAXS study of the internal structure of dendritic polymer systems. J Polym Sci - Part B 1997; 35:2913–2924.
39. Vandamme THF, Brobeck L. Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Rel. 2005; 102:23–38.
40. Newkome GR, Patri, AK. Approach towards dendritic networks: design, syntheses, and metal complexes of dendritic biquinoline ligands. Polym. Mater. Sci. Eng. 1999; 80: 66-67.
41. Bielinska AU, Chen C, Johnson J, Baker JR. DNA complexing with polyamidoamine dendrimers: Implications for transfection. Bioconjug Chem. 1999; 10:843-50.
42. Pushkar S, Philip A, Pathak K. Dendrimers: Nanotechnology derived novel polymers in drug delivery. Ind J Pharm Edu Res. 2006; 40:153-157.
43. Barth RF, Soloway AH, Fairchild RG, Brugger RM. Boron neutron capture therapy for cancer. Realities and prospects. Cancer 1992 Dec 15;, 70(12):2995-3007.
44. Arora N, Agarwal S, Murthy RSR. Latest technology advances in cosmaceuticals. Int J Pharma Sci Drug Res. 2012; 4(3): 168-182.

Published

01-07-2015
Statistics
Abstract Display: 292
PDF Downloads: 465
Dimension Badge

How to Cite

“DENDRIMERS AS A POTENTIAL DRUG DELIVERY SYSTEM: A COMPREHENSIVE REVIEW”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 7, no. 4, July 2015, pp. 308-14, https://doi.org/10.25004/IJPSDR.2015.070401.

Issue

Section

Review Article

How to Cite

“DENDRIMERS AS A POTENTIAL DRUG DELIVERY SYSTEM: A COMPREHENSIVE REVIEW”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 7, no. 4, July 2015, pp. 308-14, https://doi.org/10.25004/IJPSDR.2015.070401.

Most read articles by the same author(s)