Physiology monitoring as a tool of effective venom research
Abstract
The commercial availability of the snake venom antiserum (SVA) significantly improved the chances of survival of snakebite victims and eventually, the research on phytotherapeutics for snake envenomation declined. India is the capital of snakebite deaths and needs safer molecules for treatment. Systematic investigations on phytotherapeutics are carried out on many animals, and most of them are sacrificed. The study evaluates the possibility of reducing the number of animals sacrificed in venom research by monitoring physiological parameters. Respiratory and electrocardiographic (ECG) monitoring was done in anaesthetized rats after administration of Naja naja (neurotoxic) and Daboia russelii (cytotoxic) venoms separately. Anti-venom action of Woodfordia fruticosa (Lythraceae) extract was evaluated against these venoms and SVA was used as the positive control. Physiological parameters were recorded with the LabChart® program and PowerLab® system coupled with 3 electrode ECG bioamplifier and a respiratory flow-head with a custom-designed mask. Sinus bradycardia was a major cardiac effect imparted by both venoms. The absence or inverted appearance of P-waves, PR prolongation, changes in QRS configuration and QT prolongation were induced by venoms. Significant respiratory depression was observed with N. naja venom and significant ECG changes were observed with D. russelii venom. W. fruticosa extract significantly prevented envenomed animals from developing sinus bradycardia (P < 0.001) for both venoms comparable to the action of SVA. W. fruticosa extract reversed severe respiratory depression induced by N. naja venom up to 70% and D. russelii venom up to 91%. Prolongation of PR and QT intervals induced by both the venoms was significantly reversed by W. fruticosa extract (p < 0.001). Development of RSR’ configuration in ECG and changes to cardiac axis induced by D. russelii venom were reversed by W. fruticosa. Possible mechanisms of venom toxicity and their reversal can be studied with such well-designed methods, and using sub-lethal venom doses would reduce animal sacrifices. Correlating prospective clinical case studies of snakebite victims with these controlled animal studies can generate base data for future venom research.
Keywords:
Anti-venom, Daboia russelii, ECG, Naja naja, Respiratory depression, Sinus bradycardia, Woodfordia fruticosaDOI
https://doi.org/10.25004/IJPSDR.2022.140306References
Reid HA, Theakston RDG. The management of snake bite. Bull World Health Organ. 1983; 61(6):885-895.
Mohapatra B, Warrell DA, Suraweera W, Bhatia P, Dhingra N, Jotkar RM, et al. Snakebite mortality in India: a nationally representative mortality survey. PLOS Negl Trop Dis. 2011; 5(4):e1018. doi: 10.1371/journal.pntd.0001018.
Meenatchisundaram S, Michael A. Snake bite and therapeutic measures: Indian scenario. Indian J Sci Technol. 2009; 2(10):69-73. doi: 10.17485/ijst/2009/v2i10/30725.
Bottrall JL, Madaras F, Biven CD, Venning MG, Mirtschin PJ. Proteolytic activity of Elapid and Viperid Snake venoms and its implication to digestion. J Venom Res. 2010; 1:18-28.
Whitaker R. Common Indian Snakes - A field Guide. Chennai: Macmillan Publishers India Ltd.; 2006.
Ode OJ, Asuzu IU. The anti-snake venom activities of the methanolic extract of the bulb of Crinum jagus (Amaryllidaceae). Toxicon. 2006; 48(3):331-342. doi: 10.1016/j.toxicon.2006.06.003.
Alam MI, Gomes A. Snake venom neutralization by Indian medicinal plants (Vitex negundo and Emblica officinalis) root extracts. J Ethnopharmacol. 2003; 86(1):75-80. doi: 10.1016/S0378- 8741(03)00049-7.
Martz W. Plants with a reputation against snakebite. Toxicon. 1992; 30(10):1131-1142. doi: 10.1016/0041-0101(92)90429-9.
Mors WB, Célia do Nascimento M, Ruppelt Pereira BM, Pereira NA. Plant natural products active against snake bite—the molecular approach. Phytochemistry. 2000; 55(6):627-642. doi: 10.1016/ S0031-9422(00)00229-6.
Houghton PJ, Osibogun IM. Flowering plants used against snakebite. J Ethnopharmacol. 1993; 39(1):1-29. doi: 10.1016/0378- 8741(93)90047-9.
Pade SD. Vanaushadhi Gunadarsha. Pune: Shri Gajanan Book Depot; 1893.
Pade SD. Aryabhishak arthat hindusthancha vaidyaraj. Pune: Rajesh Prakashan; 1893.
Pade SD, Patil PB, Gadre DV, Padhye-Gurjar AB. Aushadhi Baad. Pune: Rajesh Prakashan; 2010.
Sathe KN. Gharguti Aushadhe. 16th ed. Mumbai: Shailaja Anil Sathe; 2003.
Deshpande AM, Sastry KV, Bhise SB. Neutralization of Naja naja and Daboia russelii snake-venoms by aqueous plant extracts. Journal of Applied Pharmaceutical Science. 2022:[In press].
Konopelski P, Ufnal M. Electrocardiography in Rats: a Comparison to Human. Physiol Res. 2016; 65:717-725. doi: 10.33549/ physiolres.933270.
Kumar SK, Joseph JK, Joseph S, Varghese AM, Jose MP. Cardiac Involvement in Vasculotoxic and Neurotoxic Snakebite - A not so Uncommon Complication. J Assoc Phys India. 2020; 68(11): 38-41.
Glaab T, Taube C, Braun A, Mitzner W. Invasive and noninvasive methods for studying pulmonary function in mice. Respir Res. 2007; 8:63. doi: 10.1186/1465-9921-8-63.
Whitaker R, Whitaker S. Venom, antivenom production and the medically important snakes of India. Curr Sci. 2012; 103(6):635-643.
OECD. 423 Guidelines for the Testing of Chemicals: Acute Oral Toxicity – Acute Toxic Class Method. Organisation for Economic Co-operation and Development; 2001.
Shah SL, Mali VR, Zambare GN, Bodhankar SL. Cardioprotective activity of methanol extract of fruit of Trichosanthes cucumerina on doxorubicin-induced cardiotoxicity in Wistar rats. Toxicol Int. 2012; 19(2):167. doi: 10.4103/0971-6580.97218.
Mishra P, Singh U, Pandey CM, Mishra P, Pandey G. Application of Student’s t test, Analysis of Variance, and Covariance. Ann Card Anaesth. 2019; 22:407-411. doi: 10.4103/aca.ACA_94_19.
Mayo PR, Jamali F. Methoxyflurane anesthesia augments the chronotropic and dromotropic effects of verapamil. J Pharm Pharm Sci. 1999; 2(1):30-35.
Zorniak M, Mitrega K, Bialka S, Porc M, Krzeminski TF. Comparison of Thiopental, Urethane, and Pentobarbital in the Study of Experimental Cardiology in Rats In Vivo. J Cardiovasc Pharmacol. 2010; 56(1):38-44. doi: 10.1097/FJC.0b013e3181dd502c.
Xu Q, Ming Z, Dart AM, Du XJ. Optimizing dosage of Ketamine and Xylazine in murine echocardiography. Clin Exp Pharmacol Physiol. 2007; 34(5‐6):499-507. doi: 10.1111/j.1440-1681.2007.04601.x.
Gaertner DJ, Hallman TM, Hankenson FC, Batchelder MA. Anesthesia and Analgesia for Laboratory Rodents. In: Karas RE, editor. Anesthesia and Analgesia in Laboratory Animals. Second Edition ed. San Diego: Academic Press; 2008. pp. 239-297.
Singh S, Pall A, Kirar RS. Study of electrocardiographic changes pattern in cases of snake bites in a tertiary care hospital of Mahakaushal area of central India. Int J Res Med Sci. 2019; 7(5):1450-1454. doi: 10.18203/2320-6012.ijrms20191545.
Prabha V, Giri PP, Reddy T, Madhuvan HS, Ravishankar SN. Varying AV Block Following Snake bite - A Rare Case Report. Int J Health Inform Med Res. 2014; 1(2):16-19.
Lalloo DG, Trevett AJ, Nwokolo N, Laurenson IF, Naraqi S, Kevau I, et al. Electrocardiographic abnormalities in patients bitten by taipans (Oxyuranus scutellatus canni) and other elapid snakes in Papua New Guinea. Trans R Soc Trop Med Hyg. 1997; 91(1):53-56. doi: 10.1016/ s0035-9203(97)90394-1.
Antzelevitch C, Sicouri S, Litovsky SH, Lukas A, Krishnan SC, Di Diego JM, et al. Heterogeneity Within the Ventricular Wall Electrophysiol¬ogy and Pharmacology of Epicardial, Endocardial, and M Cells. Circ Res. 1991; 69(6):1427-1449. doi: 10.1161/01.RES.69.6.1427.
Sambhi MP, White FN. The Electrocardiogram of the Normal and Hypertensive Rat. Circ Res. 1960; 8:129-134. doi: 10.1161/01. RES.8.1.129.
Wehrens XHT, Kirchhoff S, Doevendans PA. Mouse electrocardiogra¬phy An interval of thirty years. Cardiovasc Res. 2000; 45(1):231-237. doi: 10.1016/s0008-6363(99)00335-1.
Bealer SL, Metcalf CS, Little JG. Methods for ECG evaluation of indicators of cardiac risk, and susceptibility to aconitine-induced arrhythmias in rats following status epilepticus. J Vis Exp. 2011; (50). doi: 10.3791/2726.
Roden DM. Drug-Induced Prolongation of the QT Interval. N Engl J Med. 2004; 350(10):1013-1022. doi: 10.1056/NEJMra032426.
Ohtani H, Hanada E, Yamamoto K, Sawada Y, Iga T. Pharmacokinetic-pharmacodynamic analysis of the electrocardiographic effects of terfenadine and quinidine in rats. Biol Pharm Bull. 1996; 19(9):1189- 1196. doi: 10.1248/bpb.19.1189.
Funck-Brentano C, Jaillon P. Rate-corrected QT interval: techniques and limitations. Am J Cardiol. 1993; 72(6):B17-B22. doi: 10.1016/0002-9149(93)90035-B.
Kmecova J, Klimas J. Heart rate correction of the QT duration in rats. Eur J Pharmacol. 2010; 641(2-3):187-192. doi: 10.1016/j. ejphar.2010.05.038.
Yates C, Manini AF. Utility of the Electrocardiogram in Drug Overdose and Poisoning: Theoretical Considerations and Clinical Implications. Curr Cardiol Rev. 2012; 8(2):137-151. doi: 10.2174/157340312801784961.
Pai VB, Nahata MC. Cardiotoxicity of Chemotherapeutic Agents. Drug Saf. 2000; 22(4):263-302. doi: 10.2165/00002018-200022040- 00002.
Laxme RRS, Khochare S, de Souza HF, Ahuja B, Suranse V, Martin G, et al. Beyond the ‘big four’: Venom profiling of the medically important yet neglected Indian snakes reveals disturbing antivenom deficiencies. PLOS Negl Trop Dis. 2019; 13(12):e0007899. doi: 10.1371/journal.pntd.0007899.
Published

