ANTI-HYPERGLYCEMIC AND ANTIOXIDANT POTENTIAL OF WATER-ETHANOL EXTRACT OF MUSANGA CECROPIOIDES STEM BARK
Abstract
The study investigated the effect of Musanga cecropioides (MC) water-ethanol stem bark extract on blood glucose level in both hyperglycemic loaded glucose rats and streptozotocin (STZ)-induced diabetic rats, and evaluated its antioxidant capacity. The Wistar rats were induced diabetes after fasting. Oral Glucose Tolerance Test (OGTT) was conducted on normoglycemic rats, and anti-hyperglycemic test on diabetic rats; five groups with five rats each were constituted. Group 1: negative control was treated with vehicle; Group 2, Group 3, and Group 4 were treated with increasing water-ethanol extract (200, 300 and 400 mg/kg b.w); Group 5 was the positive control, treated with glibenclamide. The antioxidant capacity of the extract was also evaluated by measuring the Ferric Reducing Antioxidant Power, Total Phenolic Content, Total Flavonoid Content, and radical scavenging activity of water-ethanol stem bark extract. In OGTT the water-ethanol extract of MC, at the dose of 300 mg/kg, significantly lowered the Area under Curve (AUC) induced by glucose. In STZ diabetic rats, the extract significantly lowered the AUC of blood glucose, at all doses. Glibenclamide was more efficient in both OGTT and anti-hyperglycemic test. The MC extract presented relevant antioxidant activity with IC50 = 6.23 mg/mL. Both the Total Phenolic Content and the Total Flavonoid Content increased in a dose-dependent manner. The correlation of DPPH % free radical scavenged and Total Flavonoid Content was positive and statistically significant. MC water-ethanol extract possesses a good antioxidant potential, and could be helpful to lower hyperglycemic state associated with diabetes.
Keywords:
Musanga cecropioides, antioxidant, STZ-diabetic rats, IC50, polyphenols, flavonoidsDOI
https://doi.org/10.25004/IJPSDR.2016.080107References
2. Adeneye AA, Ajagbonna OP, Mojiminiyi FBO, Odigie IP, Etarrh RR, Ojobor PD, Adeneye AK. The hypotensive mechanisms for the aqueous extract of Musanga cecropioides stem bark in rats. J Ethnopharmacol. 2006; 106:203-207.
3. Sowemimo, Abimbola, Okwuchuku, Eboji, Samuel, Fageyinbo Muyiwa, Ayoola, Olowokudejo, Mutiat, Ibrahim. Musanga cecropioides leaf extract exhibits anti-inflammatory and anti-nociceptive activities in animal models. Rev Bras Farmacogn. 2015; 25:506-512.
4. Burkill HM. The Useful Plants of West Tropical Africa. Families A-D. Royal, vol. 1. edn 2. United Kingdom, Botanic Gardens, 1985.
5. Ayinde BA, Omogbai EKI, Onwukaeme DN. Pharmacognostic characteristics and hypotensive effect of the stem bark of Musanga cecropioides R. Br. (Moraceae). West Afr. J. Pharmacol Drug Res. 2003; 19:37-41.
6. Lontsi D, Sondengam BL, Ayafor JF, Connolly JD. Cecropiacic acid, A new pentacyclic A – Ring Seco triterpenoid from Musanga cecropioides. Tetrahedron Lett. 1987; 28:6683-6686.
7. Lontsi D, Sondengam BL, Ayafor JF. Chemical Studies on the Cecropiaceae - A novel A - ring seco triterpene from Musanga cecropioides. J Nat Prod. 1989; 52:52-56.
8. Lontsi D, Sondengam BL, Ayafor JF, Tsoupras MB, Taracchi R. Further Triterpenoids of Musanga cecropioides - the Structure of Cecropic acid. Planta Med. 1990; 56:287-289.
9. Lontsi D, Sondengam BL, Martin MT, Bodo B. Musancropic and Musancropic acid B-A-ring contracted triterpenes from Musanga cecropioides. Phytochem. 1991a; 30:2361-2364.
10. Lontsi D, Sondengam BL, Martin MT, Bodo B. Seco-ring-A-triterpenoids from the root wood of Musanga cecropioides. Phytochem. 1991b; 30:1621-1624.
11. Lontsi D, Sondengam BL, Martin MT, Bodo B. Musangicic acid, a triterpenoid constituent of Musanga cecropioides. Phytochem. 1992; 31:4285-4288.
12. Lontsi D, Sondengam BL, Bodo B, Martin MT. Kalaic acid, a new Ursane - type Saponin from Musanga cecropioides. Planta Med. 1998a; 64:189-191.
13. Lontsi D, Sondengam BL, Bodo B, Martin MT. Cecropioic acid - a pentacyclic triterpene from Musanga cecropioides. Phytochem. 1998b; 48:171-174.
14. Lacaille-Dubois MA, Frank U, Wagner H. Search for potential Angiotensin converting enzymes (ACE) - inhibitors from Plants. Phytomed. 2001; 8:47-52.
15. Yanishlieva NY, Marinova EY, Pokorný J. Natural antioxidants from herbs and spices. Eur J Lipid Sci Tech. 2006; 108 (9):776-793.
16. Emran TB, Rahman MA, Zahid Hosen SM, Saha D, Chowdhury S, Saha D, Dey TK. Antioxidant property of ethanolic extract of Leucas aspera Linn. Bull. Pharm. Res. 2012; 2(1):46-49.
17. Chiasson JL, Rabasa-Lhoret R, Srivastava AK. Oxidative Stress in the Development of Diabetes and its Complications. Edn 2, Springer, New York, 2006. pp. 381-398.
18. Clifford M, Brown JE. Dietary Flavonoids and Health - Broadening the Perspective. Edn 1, Taylor and Francis, New York, 2006. pp. 319-370.
19. Mojtahedzadeh M, Rouini MR, Kajbaf F, Najafi A, Gholipour A, Mofid AR, Abdollahi M. Advantage of adjunct metformin and insulin therapy in the management of glycemia in critically ill patients. Evidence for nonoccurrence of lactic acidosis and needing to parenteral metformin. Arch Med Sci. 2008; 4:174-181.
20. Dewanjee S, Maiti A, Das AK, Mandal SC, Dey SP. Swietenine: A potential oral hypoglycemic from Swietenia macrophylla seed. Fitoterapia. 2009; 80:249-251.
21. Narender T, Khaliq T, Singh AB, Joshi MD, Mishra P, Chaturvedi JP, Srivastava AK, Maurya R, Agarwal SC. Synthesis of α-amyrin derivatives and their in vivo anti-hyperglycemic activity. Eur J Med Chem. 2009; 44:1215-1222.
22. Adeneye AA, Ajagbonna OP, Ayodele OW. The hypoglycemic and antidiabetic activities of the stem bark aqueous and alcohol extracts of Musanga cecropioides in normal and alloxan-induced diabetic rats. Fitoterapia. 2007; 78:502-505.
23. Pesez M, Bartos J. Colorimetric and Fluorimetric Analysis of Organic compounds and Drugs. Marcel Dekker, Inc., New-York, 1974.
24. Evans WC. Trease and Evans Pharmacognosy, 15th Edition, London, W.B. Saunders, 2002.
25. Szkudelski T. The mechanism of alloxan and streptozotocin action in beta cells of the rat pancreas. Physiological Res. 2001; 50:537-546.
26. Schoenfelder T, Cirimbelli TM, Citadini-Zanette V. Acute effect of Trema micrantha (Ulmaceae) on serum glucose levels in normal and diabetic rats. J Ethnopharmacol. 2006; 107:456-459.
27. Vinson JA, Su X, Zubik L, Bose P. Phenol antioxidant quantity and quality in foods: fruits. J Agric Food Chem. 2001; 49 (11):5315-5321.
28. Chang L, Yen W, Huang S, Duh P. Antioxidant activity of sesame coat. Food Chem. 2002; 78:347-354.
29. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal Biochem. 1996; 239:70-76
30. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958; 181:1199-1200.
31. Mythili MD, Vyas R, Akila G, Gunasekaran S. Effect of streptozotocin on the ultra structure of rat pancreatic islets. Microsc Res Tech. 2004; 63:274-281.
32. Vishwanath J, Sai Vishal D, Ranjith Babu V, Harisha B, Ravi Chandra Sekhara Reddy D. Antidiabetic activity of hydro-alcoholic extract of Cissampelos pareira linn. leaves in streptozotocin induced diabetic rats. Int J Pharm Technol. 2011; 3 (4):3601-3611.
33. Melander A, Muralidhara K, Viswanatha S. Glucose uptake by hemidiaphram. Diabetic Med. 1996; 13:143.
34. Hayashi T, Maruyama H, Kasai R, Hattori K, Takasuga S, Hazeki O, Yamasaki K, Tanaka T. Ellagitannins from Lagerstroemia speciosa as activators of glucose transport in fat cells. Planta Med. 2002; 68:173-175.
35. Hossam M, Abdallah, Maha M, Salama, Enas H, Abd-elrahman, Shohda A El-Maraghy. Antidiabetic activity of phenolic compounds from Pecan barks in streptozotocin-induced diabetic rats. Phytochem Lett. 2011; 4 (3):337-341.
36. Mosa RA, Cele ND, Mabhida SE, Shabalala SC, Penduka D, Opoku AR. In vivo anti-hyperglycemic activity of a lanosteryl triterpene from Protorhus longifolia. Molecules. 2015; 20 (7): 13374-13383.
37. Tiong SH, Looi CY, Arya A, Wong WF, Hazni H, Mustafa MR, Awang K. Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia. 2015; 102:182-188.
38. Sarkar M, Biswas P, Samanta A. Study of hypoglycemic activity of aqueous extract of Leucas indica Linn. aerial parts on streptozotocin induced diabetic rats. Int. J. Pharm. Sci. Drug Res. 2013; 5(2):50-55.
39. Liu X, Zhao M, Wang J, Yang B, Jiang Y. Antioxidant activity of methanolic extract of emblica fruit (Phyllanthus emblica L.) from six regions in China. J Food Compost Anal. 2008; 21(3): 219-228.
40. Wong SP, Leong LP, William Koh JH. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 2006; 99: 775-783.
41. Karagözler AA, Erdağ B, Emek YÇ, Uygun DA. Antioxidant activity and proline content of leaf extracts from Dorystoechas hastata. Food Chem. 2008; 111 (2):400-407.
42. Maisuthisakul P, Pasuk S, Rithiruangdej P. Relationship between antioxidant properties and chemical composition of some Thai plants. J. Food Comp Anal. 2008; 21:229-240.
43. Surinut P, Kaewsutthi S, Surakarnkul R. Radical scavenging activity in fruit extracts. Acta Hortic. 2005; 679:201-203.
44. Silva MM, Santos MR, Caroço G, Rocha R, Justino G, Mira L. Structure-Antioxidant Activity Relationships of Flavonoids: A Re-examination. Free Radic Res. 2002; 36:1219-1227.
45. Apak R, Gorinstein S, Böhm V, Schaich KM, Özyürek M, Güçlü K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report) Pure Appl Chem. 2013; 85:957-998.
46. Katalinić V, Možina S, Skroza D, Generalić I, Abramoviĉ H, Miloš M, Boban, M. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010; 119:715-723.
47. Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005; 53:4290-4302.
Published

