EFFECT OF DAIDZEIN, NARINGENIN AND ICARIIN ON CISPLATIN-INDUCED NEPHROTOXICITY IN EXPERIMENTAL MICE
Abstract
Cisplatin is one of the most widely used and most potent chemotherapy drugs. However, side effects in normal tissues and organs, notably nephrotoxicity in the kidneys, limit the use of cisplatin and related platinum-based therapeutics. Renoprotective approaches are being discovered, but the protective effects are mostly partial, suggesting the need for combinatorial strategies. The cytoprotective efficacy of Daidzein, Naringenin, and Icariin against Cisplatin-induced nephrotoxicity in female Swiss mice was examined in this work. All animals were divided into two sets i.e. pre-cisplatin (BA) and post-cisplatin (AA) administration and treated with Daidzein, Naringenin, and Icariin. Nephrotoxicity was assessed by body weight and biochemical parameters i.e. Serum Creatinine, Urea, uric acid During this study body weight of the experimental animal changed by 5% maximum observed in both sets. Biochemical tests of kidney showed that pre-treated and post-treated with Daidzein groups were most effective against nephrotoxicity. These findings are also confirmed by histopathology. The study has proven that pre-treatment with flavonoids was found more effective against cisplatin-induced cytotoxicity as compared to post-treatment.
Keywords:
Cytoprotective, Flavonoids, Cisplatin Cytotoxicity, nephrotoxicity, hepatotoxicity.DOI
https://doi.org/10.25004/IJPSDR.2022.140413References
Klaunig JE. Carcinogenesis. An Introd to Interdiscip Toxicol. Published online 2020:97-110. doi:10.1016/B978-0-12-813602-7.00008-9
World Cancer Research Fund. Cancer Facts and Figures 2021. World Cancer Res Fund Int. Published online 2021:1-4. http://www.wcrf.org/int/cancer-facts-figures/worldwide-data
Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2(2):141-160. doi:10.20517/cdr.2019.10
Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869-1883. doi:10.1038/onc.2011.384
Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-378. doi:10.1016/j.ejphar.2014.07.025
Yimit A, Adebali O, Sancar A, Jiang Y. Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. Nat Commun. 2019;10(1). doi:10.1038/s41467-019-08290-2
Basu A, Krishnamurthy S. Cellular responses to cisplatin-induced DNA damage. J Nucleic Acids. 2010;2010. doi:10.4061/2010/201367
Li LY, Guan Y Di, Chen XS, Yang JM, Cheng Y. DNA Repair Pathways in Cancer Therapy and Resistance. Front Pharmacol. 2021;11(February):1-13. doi:10.3389/fphar.2020.629266
Jadon AS, Bhadauriya P, Sharma M. An integrative review of Cisplatin: the first metal Anti-Tumor drug. J Drug Deliv Ther. 2019;9(3):673-677. http://jddtonline.info
Aldossary SA. Review on pharmacology of cisplatin: Clinical use, toxicity and mechanism of resistance of cisplatin. Biomed Pharmacol J. 2019;12(1):7-15. doi:10.13005/bpj/1608
Andres AL, Gong X, Di K, Bota DA. Low-doses of cisplatin injure hippocampal synapses: A mechanism for ‘chemo’ brain? Exp Neurol. 2014;255:137-144. doi:10.1016/J.EXPNEUROL.2014.02.020
Wang Z, Sun W, Sun X, Wang Y, Zhou M. Kaempferol ameliorates Cisplatin induced nephrotoxicity by modulating oxidative stress, inflammation and apoptosis via ERK and NF-κB pathways. AMB Express. 2020;10(1). doi:10.1186/s13568-020-00993-w
Pasetto LM, D’Andrea MR, Brandes AA, Rossi E, Monfardini S. The development of platinum compounds and their possible combination. Crit Rev Oncol Hematol. 2006;60(1):59-75. doi:10.1016/j.critrevonc.2006.02.003
Cornelison TL, Reed E. Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecol Oncol. 1993;50(2):147-158. doi:10.1006/gyno.1993.1184
Kurihara N, Kubota T, Hoshiya Y, et al. Pharmacokinetics of cis-diamminedichloroplatinum (II) given as low-dose and high-dose infusions. J Surg Oncol. 1996;62(2):135-138. doi:10.1002/(SICI)1096-9098(199606)62:2<135::AID-JSO10>3.0.CO;2-7
Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. 2014;2014. doi:10.1155/2014/967826
Crona DJ, Faso A, Nishijima TF, McGraw KA, Galsky MD, Milowsky MI. A Systematic Review of Strategies to Prevent Cisplatin-Induced Nephrotoxicity. Oncologist. 2017;22(5):609-619. doi:10.1634/theoncologist.2016-0319
Holditch SJ, Brown CN, Lombardi AM, Nguyen KN, Edelstein CL. Recent advances in models, mechanisms, biomarkers, and interventions in Cisplatin-Induced acute kidney injury. Int J Mol Sci. 2019;20(12):1-25. doi:10.3390/ijms20123011
Perše M. Cisplatin mouse models: Treatment, toxicity and translatability. Biomedicines. 2021;9(10):1406. doi:10.3390/biomedicines9101406
Wills BK, Aks S, Maloney GE, Rhee J, Brand R, Sekosan M. The effect of amifostine, a cytoprotective agent, on paraquat toxicity in mice. J Med Toxicol. 2007;3(1):1-6. doi:10.1007/BF03161031
Eun Jeong Choi G-HK. Hepatoprotective effects of daidzein against 7,12- dimetylbenz[a]anthracene-induced oxidative stress in mice. Int J Mol Med. 2009;23(4):659-664. doi:10.3892/ijmm
Hermenean A, Ardelean A, Stan M, et al. Protective effects of naringenin on carbon tetrachloride-induced acute nephrotoxicity in mouse kidney. Chem Biol Interact. 2013;205(2):138-147. doi:10.1016/j.cbi.2013.06.016
Li C, Li Q, Mei Q, Lu T. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci. 2015;126:57-68. doi:10.1016/j.lfs.2015.01.006
Published

