Evaluation of total phenolic content and antioxidant activities of three species of marine algae from Thirumullavaram, Kerala, Southwest coast of India
Abstract
Antioxidants from natural sources are gaining demand in various industries since they are the safest alternatives to synthetic antioxidants. Marine macroalgae are rich sources of antioxidants and polyphenols. In the present study, in vitro antioxidant activities of the acetone extract, aqueous extract, and acetone: water extracts (7:3 v/v) of three macroalgae (Ulva fasciata, Gracilaria corticata, and Hypnea valentiae) collected from Thirumullavaram, Kerala, Southwestern coast of India were evaluated using three in vitro assays, viz., DPPH, ABTS+, NO* radical scavenging activities. The total phenolic content of the extracts was determined using the Folin-ciocalteau method and the results are expressed in milligrams of phloroglucinol equivalents per gram of dry weight (mg PGA g-1 DW). The highest DPPH radical scavenging was shown by acetone: water extract of U. fasciata (IC50 2.21 mg ml-1) and the highest ABTS+ radical scavenging was shown by the aqueous extract of G. corticata (IC50 0.13 mg ml-1) followed by the acetone extract of H. valentiae (IC50 0.14 mg ml-1). The highest NO* radical scavenging was exhibited by H. valentiae (IC50 0.06 mg ml-1). The acetone: water extracts of U. fasciata and G. corticata exhibited very high phenolic content (59.13 mg PGA g-1 DW and 59.85 mg PGA g-1 DW, respectively). The study indicated that all three species showed increasing radical scavenging activities corresponding to the concentration of the extract and the solvent used for extraction. The presence of secondary metabolites like phenols, and terpenes also seem to have contributed to the radical scavenging activities.
Keywords:
antioxidants, radical scavenging, total phenolic content, polyphenols, Ulva fasciata, Gracilaria corticata, Hypnea valentiaeDOI
https://doi.org/10.25004/IJPSDR.2022.140416References
Sonani RR, Rastogi RP, Madamwar D. Natural Antioxidants From Algae: A Therapeutic Perspective. Algal Green Chemistry: Recent Progress in Biotechnology. Elsevier; 2017.pp. 91–120 p. http://dx.doi.org/10.1016/B978-0-444-63784-0.00005-9
Rastogi RP, Sinha RP. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv. 2009; 27(4): 521–39.
Domettila C, Sarasabai T, Brintha S, Sukumaran S, Jeeva S. Diversity and distribution of seaweeds in the Muttom coastal waters, south-west coast of India. Biodivers J. 2013; 4(1): 105–10.
El Gamal AA. Biological importance of marine algae. Saudi Pharm J [Internet]. 2010; 18(1): 1–25. http://dx.doi.org/10.1016/j.jsps.2009.12.001
Lincoln R., Strupinski K, Walker J. Bioactive Compounds from Algae. Life Chemistry Reports Vol. 8, Scientific Research Publishing. 1991.
Shebis Y, Iluz D, Kinel-Tahan Y, Dubinsky Z, Yehoshua Y. Natural Antioxidants: Function and Sources. Food Nutr Sci. 2013; 04(06): 643–9.
Mahendran S, Maheswari P, Sasikala V, Rubika J jaya, Pandiarajan J. In vitro antioxidant study of polyphenol from red seaweeds dichotomously branched gracilaria Gracilaria edulis and robust sea moss Hypnea valentiae. Toxicol Reports. 2021; 8(6):1404–11. https://doi.org/10.1016/j.toxrep.2021.07.006
Namiki M. Antioxidants/antimutagens in food. Crit Rev Food Sci Nutr. 1990; 29(4): 273–300.
Desikachary T., Krishnamurthy V, Balakrishnan M. Rhodophyta Vol. II. Part- II(B). Chennai: Madras Science Foundation; 1998. 91–123, pp. 154–160.
Krishnamurthy V. Algae of India and neighbouring countries I. Chlorophycota. New Delhi: Oxford & IBH Publishing Co Pvt Ltd; 2000. pp. 98–104.
Jha B, Reddy CR., Thakur M. ., Rao U. Seaweeds of India – The Diversity and Distribution of Seaweeds of Gujarat Coast. Seaweeds of India. 2009. pp. 198.
Sahoo D. Common Seaweeds of India. IK International Pvt Ltd; 2010.
Stiger-Pouvreau V, Jégou C, Cérantola S, Guérard F, Lann K Le. Phlorotannins in sargassaceae species from brittany (France): Interesting molecules for ecophysiological and valorisation purposes [Internet]. Vol. 71, Advances in Botanical Research. Elsevier; 2014. pp. 379–411. http://dx.doi.org/10.1016/B978-0-12-408062-1.00013-5
Harborne JB. Phytochemical Methods : A Guide to Modern Techniques of Plant Analysis. second ed., Chapman and Hall, New York, USA. Chapmer and Hall. 1984. pp. 1–214
Le Lann K, Surget G, Couteau C, Coiffard L, Cérantola S, Gaillard F, et al. Sunscreen, antioxidant, and bactericide capacities of phlorotannins from the brown macroalga Halidrys siliquosa. J Appl Phycol. 2016; 28(6): 3547–3559. http://dx.doi.org/10.1007/s10811-016-0853-0
Hari V, Jothieswari D, Maheswaramma KS. Total Phenolic , Flavonoid Content , and Antioxidant Activity of Justicia tranquebariensis LF and Cycas Beddomei Dyer . Leaves. Int J Pharm Sci Drug Res. 2022; 14(1): 48–53.
Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol. 1995; 28(1): 25–30.
Anthony KP, Saleh MA. Free radical scavenging and antioxidant activities of silymarin components. Antioxidants. 2013; 2(4): 398–407.
R VK, Kumar S, Shashidhara S, Anitha S, Manjula M. Comparison of the Antioxidant Capacity of an Important Hepatoprotective Plants. Int J Pharm Sci Drug Res. 2011; 3(1): 48–51.
Re R, Nicoletta P, Anna P, Ananth P, Min Y, Catherine R-E. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999; 26(9-10): 1231–7.
Alian Désiré A, Ascension NM, Foe N, Florentine C, Steve VO, Christine FM, et al. Antibacterial and Antioxidant Activities of Ethanolic Leaves Extracts of Dissotis multiflora triana (Melastomataceae). Int J Pharm Sci Drug Res. 2016 ;8(01): 50–56. https://ijpsdronline.com/index.php/journal/article/view/480
Patel A, Patel A, Patel NM. Determination of polyphenols and free radical scavenging activity of Tephrosia purpurea linn leaves (Leguminosae). Pharmacognosy Res. 2010; 2(3): 152–158.
Chakraborthy GS. Antioxidant Activity of the Successive Extracts of Aesculus indica Leaves. Int J Pharm Sci Drug Res. 2009; 1(2): 121–123.
Wang HMD, Li XC, Lee DJ, Chang JS. Potential biomedical applications of marine algae. Bioresour Technol. 2017; 244(5):1407–1415. http://dx.doi.org/10.1016/j.biortech.2017.05.198
Raj GA, Chandrasekaran M, Jegan S, Venkatesalu V, Chandrasekaran M. Phytochemical Analysis, Antibacterial and Antifungal Activities of Different Crude Extracts of Marine Red Alga Gracilaria corticata From The Gulf of Mannar South Coast, Navaladi, South India. Int J Pharm Sci Drug Res. 2017; 9(2): 55–63. https://ijpsdronline.com/index.php/journal/article/view/507
Arulkumar A, Rosemary T, Paramasivam S, Rajendran RB. Phytochemical composition, in vitro antioxidant, antibacterial potential and GC-MS analysis of red seaweeds (Gracilaria corticata and Gracilaria edulis) from Palk Bay, India. Biocatal Agric Biotechnol. 2018; 15: 63–71. https://doi.org/10.1016/j.bcab.2018.05.008
Narasimhan MK, Pavithra SK, Krishnan V, Chandrasekaran M. In vitro analysis of antioxidant, antimicrobial and antiproliferative activity of Enteromorpha antenna, Enteromorpha linza and Gracilaria corticata extracts. Jundishapur J Nat Pharm Prod. 2013; 8(4): 151–9. http://www.ncbi.nlm.nih.gov/pubmed/24624206%0A
Ashwini S, Shantaram M. Antioxidant capacity of extracts of red seaweed gracilaria corticata (J.Agardh) J.Agardh. Pharmanest. 2017; 8(3): 13–8.
Anis M, Yasmeen A, Baig SG, Ahmed S, Rasheed M, Hasan MM. Phycochemical and pharmacological studies on Ulva fasciata Delile. Pak J Pharm Sci. 2018; 31(3): 875–83.
Abirami RG, Kowsalya S. Quantification and Correlation Study on Derived Phenols and Antioxidant Activity of Seaweeds from Gulf of Mannar. J Herbs, Spices Med Plants. 2017; 23(1): 9–17. http://dx.doi.org/10.1080/10496475.2016.1240132
Divya, S. R and Chandramohan A. Phytochemical Analysis and Screening of Total flavonoid, Tannin and Phenolic Contents In Gracilaria edulis and Hypnea valentiae. Int J Adv Res. 2013; 3(5): 875–8.
Wang T, Jónsdóttir R, Ólafsdóttir G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009; 116(1): 240–8.http://dx.doi.org/10.1016/j.foodchem.2009.02.041
García V, Uribe E, Vega-Gálvez A, Delporte C, Valenzuela-Barra G, López J, et al. Health-promoting activities of edible seaweed extracts from chilean coasts: Assessment of antioxidant, anti-diabetic, anti-inflammatory and antimicrobial potential. Rev Chil Nutr. 2020; 47(5): 792–800.
Carmona-Hernandez JC, Taborda-Ocampo G, González-Correa CH. Folin-Ciocalteu Reaction Alternatives for Higher Polyphenol Quantitation in Colombian Passion Fruits. Int J Food Sci. 2021; 2021: 1–10.
Bedoux G, Hardouin K, Burlot AS, Bourgougnon N. Bioactive components from seaweeds: Cosmetic applications and future development. Vol. 71, Advances in Botanical Research. Elsevier; 2014. pp. 345–378. http://dx.doi.org/10.1016/B978-0-12-408062-1.00012-3
Vijayavel K, Martinez JA. In vitro antioxidant and antimicrobial activities of two Hawaiian marine Limu: Ulva fasciata (Chlorophyta) and Gracilaria salicornia (Rhodophyta). J Med Food. 2010; 13(6): 1494–9.
Rabecca R, Doss A. Evaluation of antioxidant activity of Hypnea valentiae (Red algae), Gulf of Manner, Rameshwaram, Tamil Nadu. Jounral Adv Sci Res. 2021; 12(3): 195–200. http://www.sciensage.info/journal/1359303580JASR_3006121.pdf
Sreejamole KL, Greeshma PM. Antioxidant and brine shrimp cytotoxic activities of ethanolic extract of red alga Gracilaria corticata (J. Agardh) J. Agardh. Indian J Nat Prod Resour. 2013; 4(3): 233–7.
Gager L, Lalegerie F, Connan S, Stiger-Pouvreau V. Marine algal derived phenolic compounds and their biological activities for medicinal and cosmetic applications. In: Recent Advances in Micro and Macroalgal Processing: Food and Health Perspectives. 2021. pp. 278–334.
Published

