Protein Interaction Network Analysis of β-catenin to Map its Crucial Interacting Genes using Systems Biology Approach

Authors

  • PREEMA KARAL ANDRADE Department of PG Studies and Research in Biotechnology & Bioinformatics, Kuvempu University, Shivamogga, Karnataka, India
  • Manjunatha Hanumanthappa Department of PG Studies and Research in Biochemistry, Jnana Bharathi, Bangalore University, Bangalore, Karnataka, India
  • Vijayalakshmi Venkataramanaiah Department of PG Studies and Research in Biotechnology & Bioinformatics, Kuvempu University, Shivamogga, Karnataka, India
  • Nayana Prakash Department of PG Studies and Research in Biochemistry, Jnana Bharathi, Bangalore University, Bangalore, Karnataka, India

Abstract

β-catenin (CTNNB1), a scaffold protein plays a vital role in embryonic development, adult tissue homeostasis, neurodegenerative diseases, bone diseases, chronic obstructive pulmonary diseases, wound healing, and pigment disorders. β-catenin is the crucial component in the Wnt-signaling pathway. β-catenin levels in the cytosol balances the Wnt-signaling pathway. The activated Wnt-signaling pathway allows the accumulation of β-catenin in the nucleus and further act as a promoter to initiate transcription of several oncogenes responsible for carcinogenesis. In the present study, we have used systems biology approach to map β-catenin interactors. Primary protein-protein interaction databases such as PubChem, CTD, and STITCH databases were used to collect all the experimentally valid β-catenin interactors and their sub-cellular location was traced using UniProtKB database. The interactome was constructed and analyzed by utilizing STRING and Cytoscape tools. MCODE, Cytoscape tool was utilized to construct and analyze the sub-networks. Correlation between modular seed proteins and β-catenin was studied using UALCAN database. Functional enrichment analysis was done using DAVID database. Cytohubba, a Cytoscape tool was utilized to identify the top gene interactors of β-catenin. Further, expression and gene ontology of each β-catenin gene interactors were analyzed using UALCAN and CleuGO tools. The analysis reveals β-catenin interactors, TP53, EP300, RPS27A, UBC, HDAC1, SRC, AKT1, EGFR, HSP90AA1, and CREBBP as the first top gene interactors. This study uses systems biology driven approach and successful in identifying and understanding the biological roles of the top β-catenin interactors.

Keywords:

β-catenin, Wnt-signaling pathway, protein-protein interaction, Cytoscape, functional enrichment, Cytohubba

DOI

https://doi.org/10.25004/IJPSDR.2023.150209

References

Hodgins-Davis A, O'Meara TR. Systems biology of host-Candida interactions: understanding how we shape each other. Curr Opin Microbiol. 2020; 58:1-7. https://doi.org/10.1016/j.mib.2020.04.001

Peng H, Tan H, Zhao W, Jin G, Sharma S, Xing F, Watabe K, Zhou X. Computational systems biology in cancer brain metastasis. Front Biosci (Schol Ed). 2016; 8(1):169-86. https://doi.org/10.2741/s456

Athanasios A, Charalampos V, Vasileios T, Ashraf GM. Protein-Protein Interaction (PPI) Network: Recent Advances in Drug Discovery. Curr Drug Metab. 2017; 18(1):5-10. https://doi.org/10.2174/138920021801170119204832

Wahab Khattak F, Salamah Alhwaiti Y, Ali A, Faisal M, Siddiqi MH. Protein-Protein Interaction Analysis through Network Topology (Oral Cancer). J Healthc Eng. 2021; 2021:6623904. https://doi.org/10.1155/2021/6623904

Qiu J, Chen K, Zhong C, Zhu S, Ma X. Network-based protein-protein interaction prediction method maps perturbations of cancer interactome. PLoS Genet. 2021; 17(11): e1009869. https://doi.org/10.1371/journal.pgen.1009869

Zhang X, Wang L, Qu Y. Targeting the β-catenin signaling for cancer therapy. Pharmacol Res. 2020; 160:104794. https://doi.org/10.1016/j.phrs.2020.104794

Wang Z, Li Z, Ji H. Direct targeting of β-catenin in the Wnt signaling pathway: Current progress and perspectives. Med Res Rev. 2021; 41(4):2109-2129. https://doi.org/10.1002/med.21787

Shang S, Hua F, Hu ZW. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget. 2017; 8(20):33972-33989. https://doi.org/10.18632/oncotarget.15687

Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin. EMBO J. 2012; 31(12):2714-36. https://doi.org/10.1038/emboj.2012.150

Shawky E. Prediction of potential cancer-related molecular targets of North African plants constituents using network pharmacology-based analysis. J Ethnopharmacol. 2019; 238:111826. https://doi.org/10.1016/j.jep.2019.111826

Mattingly CJ, Rosenstein MC, Colby GT, Forrest JN Jr, Boyer JL. The Comparative Toxicogenomics Database (CTD): a resource for comparative toxicological studies. J Exp Zool A Comp Exp Biol. 2006; 305(9):689-92. https://doi.org/10.1002/jez.a.307

Davis AP, Grondin CJ, Johnson RJ, Sciaky D, Wiegers J, Wiegers TC, Mattingly CJ. Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res. 2021; 49(D1): D1138-D1143. https://doi.org/10.1093/nar/gkaa891

Kim S, Cheng T, He S, Thiessen PA, Li Q, Gindulyte A, Bolton EE. PubChem Protein, Gene, Pathway, and Taxonomy Data Collections: Bridging Biology and Chemistry through Target-Centric Views of PubChem Data. J Mol Biol. 2022; 434(11):167514. https://doi.org/10.1016/j.jmb.2022.167514

Liu F, Wei T, Liu L, Hou F, Xu C, Guo H, Zhang W, Ma M, Zhang Y, Yu Q, Wang J. Role of Necroptosis and Immune Infiltration in Human Stanford Type A Aortic Dissection: Novel Insights from Bioinformatics Analyses. Oxid Med Cell Longev. 2022; 2022:6184802. https://doi.org/10.1155/2022/6184802

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021; 49(D1): D605-D612. https://doi.org/10.1093/nar/gkaa1074

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11):2498-504. https://doi.org/10.1101/gr.1239303

Xia QD, Xun Y, Lu JL, Lu YC, Yang YY, Zhou P, Hu J, Li C, Wang SG. Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID-19. Cell Prolif. 2020; 53(12): e12949. https://doi.org/10.1111/cpr.12949

Thakur Z, Dharra R, Saini V, Kumar A, Mehta PK. Insights from the protein-protein interaction network analysis of Mycobacterium tuberculosis toxin-antitoxin systems. Bioinformation. 2017; 13(11):380-387. https://doi.org/10.6026/97320630013380

Iqbal S, Malik MZ, Pal D. Network-based identification of miRNAs and transcription factors and in silico drug screening targeting δ-secretase involved in Alzheimer's disease. Heliyon. 2021; 7(12): e08502. https://doi.org/10.1016/j.heliyon.2021.e08502

Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003; 4:2. https://doi.org/10.1186/1471-2105-4-2

Ren C, Li M, Du W, Lü J, Zheng Y, Xu H, Quan R. Comprehensive Bioinformatics Analysis Reveals Hub Genes and Inflammation State of Rheumatoid Arthritis. Biomed Res Int. 2020; 2020:6943103. https://doi.org/10.1155/2020/6943103

Deng B, Liu XP, Wang X. Prognostic and Immunological Role of THBS2 in Colorectal cancer. Biomed Res Int. 2021; 2021:1124985. https://doi.org/10.1155/2021/1124985

Song Q, Yu H, Cheng Y, Han J, Li K, Zhuang J, Lv Q, Yang X, Yang H. Bladder cancer-derived exosomal KRT6B promotes invasion and metastasis by inducing EMT and regulating the immune microenvironment. J Transl Med. 2022; 20(1):308. https://doi.org/10.1186/s12967-022-03508-2

Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003; 4(5): P3.

Yang WX, Pan YY, You CG. CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 May Be Potential Therapeutic Targets for Hepatocellular Carcinoma Using Integrated Bioinformatic Analysis. Biomed Res Int. 2019; 2019:1245072. https://doi.org/10.1155/2019/1245072

Fang T, Liu L, Liu W. Network pharmacology-based strategy for predicting therapy targets of Tripterygium wilfordii on acute myeloid leukemia. Medicine (Baltimore). 2020; 99(50): e23546. https://doi.org/10.1097/md.0000000000023546

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Ko MT. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014; 8 Suppl 4(Suppl 4): S11. https://doi.org/10.1186/1752-0509-8-s4-s11

Guo A, Wang W, Shi H, Wang J, Liu T. Identification of Hub Genes and Pathways in a Rat Model of Renal Ischemia-Reperfusion Injury Using Bioinformatics Analysis of the Gene Expression Omnibus (GEO) Dataset and Integration of Gene Expression Profiles. Med Sci Monit. 2019; 25:8403-8411. https://doi.org/10.12659/msm.920364

Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD, Morris Q. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010; 38(Web Server issue): W214-20. https://doi.org/10.1093/nar/gkq537

Zhao X, Zhang L, Wang J, Zhang M, Song Z, Ni B, You Y. Identification of key biomarkers and immune infiltration in systemic lupus erythematosus by integrated bioinformatics analysis. J Transl Med. 2021; 19(1):35. https://doi.org/10.1186/s12967-020-02698-x

Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi, BVSK, Varambally S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia. 2017; 19(8):649-658. https://doi.org/10.1016/j.neo.2017.05.002

Deng JL, Xu YH, Wang G. Identification of Potential Crucial Genes and Key Pathways in Breast Cancer Using Bioinformatic Analysis. Front Genet. 2019; 10:695. https://doi.org/10.3389/fgene.2019.00695

Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009; 25(8):1091-3. https://doi.org/10.1093/bioinformatics/btp101

Mlecnik B, Galon J, Bindea G. Automated exploration of gene ontology term and pathway networks with ClueGO-REST. Bioinformatics. 2019; 35(19):3864-3866. https://doi.org/10.1093/bioinformatics/btz163

Chen Z, Lin T, Liao X, Li Z, Lin R, Qi X, Chen G, Sun L, Lin L. Network pharmacology-based research into the effect and mechanism of Yinchenhao Decoction against Cholangiocarcinoma. Chin Med. 2021; 16(1):13. https://doi.org/10.1186/s13020-021-00423-4

Teodoro D, Knafou J, Naderi N, Pasche E, Gobeill J, Arighi CN, Ruch P. UPCLASS: a deep learning-based classifier for UniProtKB entry publications. Database (Oxford). 2021; baaa026. https://doi.org/10.1093/database/baaa026

Huang Z, Shi X, Li X, Zhang L, Wu P, Mao J, Xing R, Zhang N, Wang P. Network Pharmacology Approach to Uncover the Mechanism Governing the Effect of Simiao Powder on Knee Osteoarthritis. Biomed Res Int. 2020; 6971503. https://doi.org/10.1155/2020/6971503

Assenov Y, Ramírez F, Schelhorn SE, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics. 2008; 24(2):282-4. https://doi.org/10.1093/bioinformatics/btm554

Masuda N, Sakaki M, Ezaki T, Watanabe T. Clustering Coefficients for Correlation Networks. Front Neuroinform. 2018; 12:7. https://doi.org/10.3389/fninf.2018.00007

Di Paola L, De Ruvo M, Paci P, Santoni D, Giuliani A. Protein contact networks: an emerging paradigm in chemistry. Chem Rev. 2013; 113(3):1598-613. https://doi.org/10.1021/cr3002356

Zhou B, Meng X, Stanley HE. Power-law distribution of degree-degree distance: A better representation of the scale-free property of complex networks. Proc Natl Acad Sci U S A. 2020; 117(26):14812-14818. https://doi.org/10.1073/pnas.1918901117

Goldstein R, Vitevitch MS. The Influence of Closeness Centrality on Lexical Processing. Front Psychol. 2017; 8:1683. https://doi.org/10.3389/fpsyg.2017.01683

Wang X, Hu T, Yang Q, Jiao D, Yan Y, Liu L. Graph-theory based degree centrality combined with machine learning algorithms can predict response to treatment with antiepileptic medications in children with epilepsy. J Clin Neurosci. 2021; 91:276-282. https://doi.org/10.1016/j.jocn.2021.07.016

Zheng S, Baak JP, Li S, Xiao W, Ren H, Yang H, Gan Y, Wen C. Network pharmacology analysis of the therapeutic mechanisms of the traditional Chinese herbal formula Lian Hua Qing Wen in Corona virus disease 2019 (COVID-19), gives fundamental support to the clinical use of LHQW. Phytomedicine. 2020; 79:153336. https://doi.org/10.1016/j.phymed.2020.153336

Blackman MCNM, Capeloa T, Rondeau JD, Zampieri LX, Benyahia Z, Van de Velde JA, Fransolet M, Daskalopoulos EP, Michiels C, Beauloye C, Sonveaux P. Mitochondrial Protein Cox7b Is a Metabolic Sensor Driving Brain-Specific Metastasis of Human Breast Cancer Cells. Cancers (Basel). 2022; 14(18):4371. https://doi.org/10.3390/cancers14184371

Kong P, Lei P, Zhang S, Li D, Zhao J, Zhang B. Integrated microarray analysis provided a new insight of the pathogenesis of Parkinson's disease. Neurosci Lett. 2018; 662:51-58. https://doi.org/10.1016/j.neulet.2017.09.051

Song P, Liu S, Liu D, Keijzers G, Bakula D, Duan S, de Wind N, Ye Z, Vakhrushev SY, Scheibye-Knudsen M, Rasmussen LJ. CNOT6: A Novel Regulator of DNA Mismatch Repair. Cells. 2022; 11(3):521. https://doi.org/10.3390/cells11030521

Mittal S, Aslam A, Doidge R, Medica R, Winkler GS. The Ccr4a (CNOT6) and Ccr4b (CNOT6L) deadenylase subunits of the human Ccr4-Not complex contribute to the prevention of cell death and senescence. Mol Biol Cell. 2011; 22(6):748-58. https://doi.org/10.1091/mbc.e10-11-0898

Kaindl AM. Autosomal recessive primary microcephalies (MCPH). Eur J Paediatr Neurol. 2014; 18(4);547-8. https://doi.org/10.1016/j.ejpn.2014.03.010

Morris-Rosendahl DJ, Kaindl AM. What next-generation sequencing (NGS) technology has enabled us to learn about primary autosomal recessive microcephaly (MCPH). Mol Cell Probes. 2015; 29(5):271-81. https://doi.org/10.1016/j.mcp.2015.05.015

Naveed M, Kazmi SK, Amin M, Asif Z, Islam U, Shahid K, Tehreem S. Comprehensive review on the molecular genetics of autosomal recessive primary microcephaly (MCPH). Genet Res (Camb). 2018; 8:100: e7. https://doi.org/10.1017/s0016672318000046

Sens-Abuázar C, Napolitano E, Ferreira E, Osório CA, Krepischi AC, Ricca TI, Castro NP, da Cunha IW, Maciel Mdo S, Rosenberg C, Brentani MM, Soares FA, Rocha RM, Carraro DM. Down-regulation of ANAPC13 and CLTCL1: Early Events in the Progression of Preinvasive Ductal Carcinoma of the Breast. Transl Oncol. 2012; 5(2):113-23. https://doi.org/10.1593/tlo.11280

Braun B, Pfirrmann T, Menssen R, Hofmann K, Scheel H, Wolf DH. Gid9, a second RING finger protein contributes to the ubiquitin ligase activity of the Gid complex required for catabolite degradation. FEBS Lett. 2011; 585(24):3856-61. https://doi.org/10.1016/j.febslet.2011.10.038

Huffman N, Palmieri D, Coppola V. The CTLH Complex in Cancer Cell Plasticity. J Oncol. 2019; 2019:4216750. https://doi.org/10.1155/2019/4216750

Ishii K, Washio T, Uechi T, Yoshihama M, Kenmochi N, Tomita M. Characteristics and clustering of human ribosomal protein genes. BMC Genomics. 2006; 7:37. https://doi.org/10.1186/1471-2164-7-37

Artero-Castro A, Castellvi J, García A, Hernández J, Ramón y Cajal S, Lleonart ME. Expression of the ribosomal proteins Rplp0, Rplp1, and Rplp2 in gynecologic tumors. Hum Pathol. 2011; 42(2):194-203. https://doi.org/10.1016/j.humpath.2010.04.020

Handschuh L, Kaźmierczak M, Milewski MC, Góralski M, Łuczak M, Wojtaszewska M, Uszczyńska-Ratajczak B, Lewandowski K, Komarnicki M, Figlerowicz M. Gene expression profiling of acute myeloid leukemia samples from adult patients with AML-M1 and -M2 through boutique microarrays, real-time PCR and droplet digital PCR. Int J Oncol. 2018; 52(3):656-678. https://doi.org/10.3892/ijo.2017.4233

Rebensburg SV, Wei G, Larue RC, Lindenberger J, Francis AC, Annamalai AS, Morrison J, Shkriabai N, Huang SW, KewalRamani V, Poeschla EM, Melikyan GB, Kvaratskhelia M. Sec24C is an HIV-1 host dependency factor crucial for virus replication. Nat Microbiol. 2021; 6(4):435-444. https://doi.org/10.1038/s41564-021-00868-1

Kovalchuk V, Nałęcz, KA. Trafficking to the Cell Surface of Amino Acid Transporter SLC6A14 Upregulated in Cancer Is Controlled by Phosphorylation of SEC24C Protein by AKT Kinase. Cells. 2021; 10(7):1800. https://doi.org/10.3390/cells10071800

Song M, Bode AM, Dong Z, Lee MH. AKT as a Therapeutic Target for Cancer. Cancer Res. 2019; 79(6):1019-1031. https://doi.org/10.1158/0008-5472.can-18-2738

Revathidevi S, Munirajan AK. Akt in cancer: Mediator and more. Semin Cancer Biol. 2019; 59:80-91. https://doi.org/10.1016/j.semcancer.2019.06.002

Sanchez-Arrones L, Cardozo M, Nieto-Lopez F, Bovolenta P. Cdon and Boc: Two transmembrane proteins implicated in cell-cell communication. Int J Biochem Cell Biol. 2012; 44(5):698-702. https://doi.org/10.1016/j.biocel.2012.01.019

Hong M, Christ A, Christa A, Willnow TE, Krauss RS. Cdon mutation and fetal alcohol converge on Nodal signaling in a mouse model of holoprosencephaly. Elife. 2020; 9: e60351. https://doi.org/10.7554/elife.60351

Jeong MH, Kim HJ, Pyun JH, Choi KS, Lee DI, Solhjoo S, O'Rourke B, Tomaselli GF, Jeong DS, Cho H, Kang JS. Cdon deficiency causes cardiac remodeling through hyperactivation of WNT/β-catenin signaling. Proc Natl Acad Sci U S A. 2017; 114(8): E1345-E1354. https://doi.org/10.1073/pnas.1615105114

D'Esposito F, Randazzo V, Cennamo G, Centore N, Maltese PE, Malesci R, D'Andrea L, Bertelli M, Marciano E, de Crecchio G, Pioppo A, Magli A, Cordeiro MF. Novel USH1G homozygous variant underlying USH2-like phenotype of Usher syndrome. Eur J Ophthalmol. 2021; 31(2): NP18-NP22. https://doi.org/10.1177/1120672119879392

Castiglione A, Möller C. Usher Syndrome. Audiol Res. 2022; 12(1):42-65. https://doi.org/10.3390/audiolres12010005

Maria Oonk AM, van Huet RA, Leijendeckers JM, Oostrik J, Venselaar H, van Wijk E, Beynon A, Kunst HP, Hoyng CB, Kremer H, Schraders M, Pennings RJ. Nonsyndromic hearing loss caused by USH1G mutations: widening the USH1G disease spectrum. Ear Hear. 2015; 36(2):205-11. https://doi.org/10.1097/aud.0000000000000095

Jouret G, Poirsier C, Spodenkiewicz M, Jaquin C, Gouy E, Arndt C, Labrousse M, Gaillard D, Doco-Fenzy M, Lebre AS. Genetics of Usher Syndrome: New Insights From a Meta-analysis. Otol Neurotol. 2019; 40(1):121-129. https://doi.org/10.1097/mao.0000000000002054

Bettayeb K, Hooli BV, Parrado AR, Randolph L, Varotsis D, Aryal S, Gresack J, Tanzi RE, Greengard P, Flajolet M. Relevance of the COPI complex for Alzheimer's disease progression in vivo. Proc Natl Acad Sci U S A. 2016; 113(19):5418-23. https://doi.org/10.1073/pnas.1604176113

Zhang Y, Lin Y, Lv D, Wu X, Li W, Wang X, Jiang D. Identification and validation of a novel signature for prediction the prognosis and immunotherapy benefit in bladder cancer. PeerJ. 2022; 10: e12843. https://doi.org/10.7717/peerj.12843

Shtutman M, Baig M, Levina E, Hurteau G, Lim CU, Broude E, Nikiforov M, Harkins TT, Carmack CS, Ding Y, Wieland F, Buttyan R, Roninson IB. Tumor-specific silencing of COPZ2 gene encoding coatomer protein complex subunit ζ 2 renders tumor cells dependent on its paralogous gene COPZ1. Proc Natl Acad Sci U S A. 2011; 108(30):12449-54. https://doi.org/10.1073/pnas.1103842108

Liu S, Xie X, Lei H, Zou B, Xie L. Identification of Key circRNAs/lncRNAs/miRNAs/mRNAs and Pathways in Preeclampsia Using Bioinformatics Analysis. Med Sci Monit. 2019; 25:1679-1693. https://doi.org/10.12659/msm.912801

Wilkinson MF, Shyu AB. Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm. Bioessays. 2001; 23(9):775-87. https://doi.org/10.1002/bies.1113

Su W, Zhao Y, Wei Y, Zhang X, Ji J, Yang S. Exploring the Pathogenesis of Psoriasis Complicated With Atherosclerosis via Microarray Data Analysis. Front Immunol. 2021; 12:667690. https://doi.org/10.3389/fimmu.2021.667690

Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, Netto GJ, Qin ZS, Kumar S, Manne U, Creighton CJ, Varambally S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia. 2022; 25:18-27. https://doi.org/10.1016/j.neo.2022.01.001

Wu L, Hao Y, Dai C, Zhang Z, Ijaz M, Ibrahim SM, Murtaza G, Yao Z. Network Pharmacological Study of Achyranthis bidentatae Radix Effect on Bone Trauma. Biomed Res Int. 2021; 2021:5692039. https://doi.org/10.1155/2021/5692039

Shen Y, Liu J, Zhang L, Dong S, Zhang J, Liu Y, Zhou H, Dong W. Identification of Potential Biomarkers and Survival Analysis for Head and Neck Squamous Cell Carcinoma Using Bioinformatics Strategy: A Study Based on TCGA and GEO Datasets. Biomed Res Int. 2019; 2019:7376034. https://doi.org/10.1155/2019/7376034

Xiong Y, Mi BB, Liu MF, Xue H, Wu QP, Liu GH. Bioinformatics Analysis and Identification of Genes and Molecular Pathways Involved in Synovial Inflammation in Rheumatoid Arthritis. Med Sci Monit. 2019; 25:2246-2256. https://doi.org/10.12659/msm.915451

Published

30-03-2023
Statistics
Abstract Display: 368
PDF Downloads: 428
Dimension Badge

How to Cite

“Protein Interaction Network Analysis of β-Catenin to Map Its Crucial Interacting Genes Using Systems Biology Approach”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 15, no. 2, Mar. 2023, pp. 176-88, https://doi.org/10.25004/IJPSDR.2023.150209.

Issue

Section

Research Article

How to Cite

“Protein Interaction Network Analysis of β-Catenin to Map Its Crucial Interacting Genes Using Systems Biology Approach”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 15, no. 2, Mar. 2023, pp. 176-88, https://doi.org/10.25004/IJPSDR.2023.150209.