The Effectiveness of Selective Stem Cell Placement on Gait Performance in Patients with Multiple Sclerosis: a Phase I Clinical Trial
Abstract
This report describes a Phase I clinical trial of a novel selective stem cell placement (SSCP) protocol using autologous bone marrow mononuclear stem cells (BM-MNSCs) to treat patients with multiple sclerosis (MS) with post-operative functional changes measured by gait performance. Previous studies have demonstrated that clinically significant gait deviations occur at all stages of MS that involve walking. Consequently, to determine the functional benefit of SSCP, the timed 25-foot walk (T25FW) was administered to 31 MS patients before and after treatment. The time and number of steps taken to complete the test significantly decreased post-intervention. This suggests that recovery of function in MS patients is possible and that SSCP using BM-MNSCs should be considered for future clinical trials as a possible treatment for MS. Study limitations and directions for future research are also discussed.
Keywords:
Multiple Sclerosis – Stem Cells – Trial – Gait – Bone Marrow.DOI
https://doi.org/10.25004/IJPSDR.2019.110301References
Larochelle C, Uphaus T, Prat A, Zipp F. Secondary progression in multiple sclerosis: neuronal exhaustion or distinct pathology? Trends Neurosci. 2016;39(5):325-39.
Chahine NA, Wehbe T, Rashed J, Hilal R, Elias N. Autologous bone marrow derived stem cells for the treatment of multiple sclerosis. International journal of stem cells. 2016;9(2):207.
Alonso A, Hernán MA. Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology. 2008;71(2):129-35.
Hirtz D, Thurman D, Gwinn-Hardy K, Mohamed M, Chaudhuri A, Zalutsky R. How common are the “common” neurologic disorders? Neurology. 2007;68(5):326-37.
Compston A, Coles A. Seminar Multiple sclerosis. Lancet. 2008;372:1502-17.
Hartung DM, Bourdette DN, Ahmed SM, Whitham RH. The cost of multiple sclerosis drugs in the US and the pharmaceutical industry: too big to fail? Neurology. 2015;84(21):2185-92.
Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Front Neuroendocrinol. 2014;35(3):347-69.
Magistrale G, Pisani V, Argento O, Incerti CC, Bozzali M, Cadavid D, et al. Validation of the World Health Organization Disability Assessment Schedule II (WHODAS-II) in patients with multiple sclerosis. Multiple Sclerosis Journal. 2015;21(4):448-56.
Ghezzi A, Deplano V, Faroni J, Grasso M, Liguori M, Marrosu G, et al. Multiple sclerosis in childhood: clinical features of 149 cases. Multiple Sclerosis Journal. 1997;3(1):43-6.
Ruggieri M, Polizzi A, Pavone L, Grimaldi LM. Multiple sclerosis in children under 6 years of age. Neurology. 1999;53(3):478-.
Boiko A, Vorobeychik G, Paty D, Devonshire V, Sadovnick D. Early onset multiple sclerosis: a longitudinal study. Neurology. 2002;59(7):1006-10.
Noseworthy J. Lucchinetti C Rodriguez M, et. al. Medical progress: multiple sclerosis NEJM. 2000;343:938-52.
Tettey P, Simpson Jr S, Taylor BV, van der Mei IA. Vascular comorbidities in the onset and progression of multiple sclerosis. J Neurol Sci. 2014;347(1-2):23-33.
Christiansen CF, Christensen S, Farkas DK, Miret M, Sørensen HT, Pedersen L. Risk of arterial cardiovascular diseases in patients with multiple sclerosis: a population-based cohort study. Neuroepidemiology. 2010;35(4):267-74.
Schelling F. Multiple sclerosis: the image and its message. The meaning of the classic lesion forms www multiple-sclerosis-abc org. 2007.
Minagar A, Alexander JS. Blood-brain barrier disruption in multiple sclerosis. Multiple Sclerosis Journal. 2003;9(6):540-9.
Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood–brain barrier in multiple sclerosis? FEBS Lett. 2011;585(23):3770-80.
Troletti CD, de Goede P, Kamermans A, de Vries HE. Molecular alterations of the blood–brain barrier under inflammatory conditions: the role of endothelial to mesenchymal transition. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2016;1862(3):452-60.
Kerkis I, Haddad MS, Valverde CW, Glosman S. Neural and mesenchymal stem cells in animal models of Huntington’s disease: Past experiences and future challenges. Stem Cell Res Ther. 2015; 14;6:232.
Rossignol J, Fink KD, Crane AT, Davis KK, Bombard MC, Clerc S, Bavar AM, Lowrance SA, Song C, et al. Reductions in behavioral deficits and neuropathology in the R6/2 mouse model of Huntington’s disease following transplantation of bone-marrow-derived mesenchymal stem cells is dependent on passage number. Stem Cell Res Ther. 2015; 19;6:9.
Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells-current trends and future prospective. Biosci Rep. 2015;35(2):e00191.
Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. Journal of aging and physical activity. 2015;23(2):314-22.
Nogueira LAC, dos Santos LT, Sabino PG, Alvarenga RMP, Santos Thuler LC. Factors for lower walking speed in persons with multiple sclerosis. Multiple sclerosis international. 2013;2013.
Adell E, Wehmhörner S, Rydwik E. The test-retest reliability of 10 meters maximal walking speed in older people living in a residential care unit. J Geriatr Phys Ther. 2013;36(2):74-7.
Rydwik E, Bergland A, Forsen L, Frändin K. Investigation into the reliability and validity of the measurement of elderly people's clinical walking speed: a systematic review. Physiother Theory Pract. 2012;28(3):238-56.
Verghese J, Wang C, Holtzer R. Relationship of clinic-based gait speed measurement to limitations in community-based activities in older adults. Arch Phys Med Rehabil. 2011;92(5):844-6.
Behrens J, Pfüller C, Mansow-Model S, Otte K, Paul F, Brandt AU. Using perceptive computing in multiple sclerosis-the Short Maximum Speed Walk test. J Neuroeng Rehabil. 2014;11(1):89.
Cutter GR, Baier ML, Rudick RA, Cookfair DL, Fischer JS, Petkau J, et al. Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain. 1999;122(5):871-82.
Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444-.
Johnson KL, Kuehn CM, Yorkston KM, Kraft GH, Klasner E, Amtmann D. Patient perspectives on disease-modifying therapy in multiple sclerosis. International Journal of MS Care. 2006;8(1):11-8.
McGinley MP, Moss BP, Cohen JA. Safety of monoclonal antibodies for the treatment of multiple sclerosis. Expert Opin Drug Saf. 2017;16(1):89-100.
Makinodan T, SANTOS GW, Quinn R. Immunosuppressive drugs. Pharmacol Rev. 1970;22(2):189-247.
Vial T, Descotes J. Immunosuppressive drugs and cancer. Toxicology. 2003;185(3):229-40.
Kappos L, Li D, Calabresi PA, O'Connor P, Bar-Or A, Barkhof F, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. The Lancet. 2011;378(9805):1779-87.
Chaudhuri A. Ocrelizumab in multiple sclerosis: risks and benefits. The Lancet. 2012;379(9822):1196-7.
Trounson A. New perspectives in human stem cell therapeutic research. BMC Med. 2009;7(1):29.
Wright DE BE, Wagers AJ, Butcher EC, Weissman IL. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med. 2002.
Le Blanc K, Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med. 2007;262(5):509-25.
Schelling F S. Damaging venous reflux into the skull or spine: relevance to multiple sclerosis. Med Hypotheses. 1986.
Oraee-Yazdani S, Hafizi M, Atashi A, Ashrafi F, Seddighi A, Hashemi S, et al. Co-transplantation of autologous bone marrow mesenchymal stem cells and Schwann cells through cerebral spinal fluid for the treatment of patients with chronic spinal cord injury: safety and possible outcome. Spinal Cord. 2016;54(2):102.
Kamphuis W, Derada Troletti C, Reijerkerk A, A Romero I, E de Vries H. The blood-brain barrier in multiple sclerosis: microRNAs as key regulators. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2015;14(2):157-67.
Susienka MJ, Medici D. Vascular endothelium as a novel source of stem cells for bioengineering. Biomatter. 2013;3(3):e24647.
Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 2003;425(6961):968.
Karussis D, Kassis I, Kurkalli BGS, Slavin S. Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/ neurodegenerative diseases. J Neurol Sci. 2008;265(1-2):131-5.
Tropel P, Platet N, Platel JC, Noël D, Albrieux M, Benabid AL, et al. Functional neuronal differentiation of bone marrow‐derived mesenchymal stem cells. Stem Cells. 2006;24(12):2868-76.
Yang J, Rostami A, Zhang G-X. Cellular remyelinating therapy in multiple sclerosis. J Neurol Sci. 2009;276(1-2):1-5.
Published

