A review on Biomarkers for predicting radioresistance and role of natural radiosensitizers in Triple-Negative Breast Cancer
Abstract
Breast cancer mortality rate is fifth among all cancer and increasing day by day due to modern lifestyles. Its molecular subtype is classified as per their significant receptor expression, such as estrogen receptor (ER), progesterone receptor (PR) & human epidermal growth receptor 2 (Her2). Triple-negative breast cancer (TNBC) is an aggressive subgroup among breast cancer subtypes and clinically challenging to treat due to loss of all three receptor (ER/PR/Her2) expression. Treatment modalities of TNBC include surgery, chemotherapy, radiotherapy and immunotherapy. Postoperative radiation therapy (RT) improves locoregional control and overall survival in TNBC patients. The powerful ionizing radiation (IR) response to RT is contributed by the inherent radiosensitivity of the tumor, which is influenced by genes associated with the cell cycle, DNA damage repair, apoptosis, etc. This review article narrates the role of biomarkers obtained through data mining and manual curation of published literature to predict radioresistance in patients receiving radiotherapy. Further, the role of natural radiosensitizers in overcoming radioresistance for effectively managing TNBC is also discussed.
Keywords:
Triple-negative breast cancer (TNBC), radiotherapy (RT), ionizing radiation (IR), radiosensitivity, radioresistance, DNA repairDOI
https://doi.org/10.25004/IJPSDR.2023.150418References
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30207593.
Jonnada PK, Sushma C, Karyampudi M, Dharanikota A. Prevalence of Molecular Subtypes of Breast Cancer in India: a Systematic Review and Meta-analysis. Indian J Surg Oncol. 2021;12(Suppl 1):152-63. Available from: https://www.ncbi.nlm.nih.gov/pubmed/33994741.
India State-Level Disease Burden Initiative Cancer C. The burden of cancers and their variations across the states of India: the Global Burden of Disease Study 1990-2016. Lancet Oncol. 2018;19(10):1289-306. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30219626.
McDonald JA, Rao R, Gibbons M, Janardhanan R, Jaswal S, Mehrotra R, et al. Symposium report: breast cancer in India-trends, environmental exposures and clinical implications. Cancer Causes Control. 2021;32(6):567-75. Available from: https://www.ncbi.nlm.nih.gov/pubmed/33909208.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49. Available from: https://www.ncbi.nlm.nih.gov/pubmed/33538338.
Rangarajan B, Shet T, Wadasadawala T, Nair NS, Sairam RM, Hingmire SS, et al. Breast cancer: An overview of published Indian data. South Asian J Cancer. 2016;5(3):86-92. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27606288.
Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-52. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10963602.
Torre LA, Siegel RL, Ward EM, Jemal A. Global Cancer Incidence and Mortality Rates and Trends--An Update. Cancer Epidemiol Biomarkers Prev. 2016;25(1):16-27. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26667886.
Tsang JYS, Tse GM. Molecular Classification of Breast Cancer. Adv Anat Pathol. 2020;27(1):27-35. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31045583.
Xiao W, Zheng S, Yang A, Zhang X, Zou Y, Tang H, et al. Breast cancer subtypes and the risk of distant metastasis at initial diagnosis: a population-based study. Cancer Manag Res. 2018;10:5329-38. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30464629.
Malorni L, Shetty PB, De Angelis C, Hilsenbeck S, Rimawi MF, Elledge R, et al. Clinical and biologic features of triple-negative breast cancers in a large cohort of patients with long-term follow-up. Breast Cancer Res Treat. 2012;136(3):795-804. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23124476.
Ensenyat-Mendez M, Llinas-Arias P, Orozco JIJ, Iniguez-Munoz S, Salomon MP, Sese B, et al. Current Triple-Negative Breast Cancer Subtypes: Dissecting the Most Aggressive Form of Breast Cancer. Front Oncol. 2021;11:681476. Available from: https://www.ncbi.nlm.nih.gov/pubmed/34221999.
Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS One. 2016;11(6):e0157368. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27310713.
Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688-98. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25208879.
Jezequel P, Kerdraon O, Hondermarck H, Guerin-Charbonnel C, Lasla H, Gouraud W, et al. Identification of three subtypes of triple-negative breast cancer with potential therapeutic implications. Breast Cancer Res. 2019;21(1):65. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31101122.
Zhang D, Tang DG, Rycaj K. Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Semin Cancer Biol. 2018;52(Pt 2):94-106. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29752993.
Najafi M, Majidpoor J, Toolee H, Mortezaee K. The current knowledge concerning solid cancer and therapy. J Biochem Mol Toxicol. 2021;35(11):e22900. Available from: https://www.ncbi.nlm.nih.gov/pubmed/34462987.
Overgaard M, Hansen PS, Overgaard J, Rose C, Andersson M, Bach F, et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. Danish Breast Cancer Cooperative Group 82b Trial. N Engl J Med. 1997;337(14):949-55. Available from: https://www.ncbi.nlm.nih.gov/pubmed/9395428.
Vinh-Hung V, Verschraegen C. Breast-conserving surgery with or without radiotherapy: pooled-analysis for risks of ipsilateral breast tumor recurrence and mortality. J Natl Cancer Inst. 2004;96(2):115-21. Available from: https://www.ncbi.nlm.nih.gov/pubmed/14734701.
Ragaz J, Jackson SM, Le N, Plenderleith IH, Spinelli JJ, Basco VE, et al. Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N Engl J Med. 1997;337(14):956-62. Available from: https://www.ncbi.nlm.nih.gov/pubmed/9309100.
Overgaard M, Jensen MB, Overgaard J, Hansen PS, Rose C, Andersson M, et al. Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomised trial. Lancet. 1999;353(9165):1641-8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10335782.
Group EBCTC. Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group. Lancet. 2000;355(9217):1757-70. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10832826.
Cuzick J, Stewart H, Rutqvist L, Houghton J, Edwards R, Redmond C, et al. Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol. 1994;12(3):447-53. Available from: https://www.ncbi.nlm.nih.gov/pubmed/8120544.
Van de Steene J, Soete G, Storme G. Adjuvant radiotherapy for breast cancer significantly improves overall survival: the missing link. Radiother Oncol. 2000;55(3):263-72. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10869741.
Joshi SC, Khan FA, Pant I, Shukla A. Role of radiotherapy in early breast cancer: an overview. Int J Health Sci (Qassim). 2007;1(2):259-64. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21475437.
Dawood S. Triple-negative breast cancer: epidemiology and management options. Drugs. 2010;70(17):2247-58. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21080741.
Panoff JE, Hurley J, Takita C, Reis IM, Zhao W, Sujoy V, et al. Risk of locoregional recurrence by receptor status in breast cancer patients receiving modern systemic therapy and post-mastectomy radiation. Breast Cancer Res Treat. 2011;128(3):899-906. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21475999.
Abdulkarim BS, Cuartero J, Hanson J, Deschenes J, Lesniak D, Sabri S. Increased risk of locoregional recurrence for women with T1-2N0 triple-negative breast cancer treated with modified radical mastectomy without adjuvant radiation therapy compared with breast-conserving therapy. J Clin Oncol. 2011;29(21):2852-8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21670451.
Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet. 2017;389(10087):2430-42. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27939063.
Guo L, Xie G, Wang R, Yang L, Sun L, Xu M, et al. Local treatment for triple-negative breast cancer patients undergoing chemotherapy: breast-conserving surgery or total mastectomy? BMC Cancer. 2021;21(1):717. Available from: https://www.ncbi.nlm.nih.gov/pubmed/34147061.
Newman LA, Kaljee LM. Health Disparities and Triple-Negative Breast Cancer in African American Women: A Review. JAMA Surg. 2017;152(5):485-93. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28355428.
Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071-8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19847258.
Sak A, Stuschke M. Use of gammaH2AX and other biomarkers of double-strand breaks during radiotherapy. Semin Radiat Oncol. 2010;20(4):223-31. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20832014.
Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11(4):239-53. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21430696.
Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193-9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22408567.
Gluck S, Guey B, Gulen MF, Wolter K, Kang TW, Schmacke NA, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol. 2017;19(9):1061-70. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28759028.
Tam SY, Wu VW, Law HK. Influence of autophagy on the efficacy of radiotherapy. Radiat Oncol. 2017;12(1):57. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28320471.
Sia J, Szmyd R, Hau E, Gee HE. Molecular Mechanisms of Radiation-Induced Cancer Cell Death: A Primer. Front Cell Dev Biol. 2020;8:41. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32117972.
Huo D, Liu S, Zhang C, He J, Zhou Z, Zhang H, et al. Hypoxia-Targeting, Tumor Microenvironment Responsive Nanocluster Bomb for Radical-Enhanced Radiotherapy. ACS Nano. 2017;11(10):10159-74. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28992409.
Schreiner LJ, Joshi CP, Darko J, Kerr A, Salomons G, Dhanesar S. The role of Cobalt-60 in modern radiation therapy: Dose delivery and image guidance. J Med Phys. 2009;34(3):133-6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20098559.
Sankaranarayanan K, Wassom JS. Ionizing radiation and genetic risks XIV. Potential research directions in the post-genome era based on knowledge of repair of radiation-induced DNA double-strand breaks in mammalian somatic cells and the origin of deletions associated with human genomic disorders. Mutat Res. 2005;578(1-2):333-70. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16084534.
Liu X, Sun C, Jin X, Li P, Ye F, Zhao T, et al. Genistein enhances the radiosensitivity of breast cancer cells via G(2)/M cell cycle arrest and apoptosis. Molecules. 2013;18(11):13200-17. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24284485.
Karran P. DNA double strand break repair in mammalian cells. Curr Opin Genet Dev. 2000;10(2):144-50. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10753787.
Salimi M, Mozdarani H. γ-H2AX as a protein biomarker for radiation exposure response in ductal carcinoma breast tumors: Experimental evidence and literature review %J International Journal of Radiation Research. 2014;12(1):1-11. Available from: http://ijrr.com/article-1-1156-en.html.
Dickey JS, Redon CE, Nakamura AJ, Baird BJ, Sedelnikova OA, Bonner WM. H2AX: functional roles and potential applications. Chromosoma. 2009;118(6):683-92. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19707781.
Belyaev IY. Radiation-induced DNA repair foci: spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Mutat Res. 2010;704(1-3):132-41. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20096808.
Shao G, Patterson-Fortin J, Messick TE, Feng D, Shanbhag N, Wang Y, et al. MERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks. Genes Dev. 2009;23(6):740-54. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19261746.
Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES, et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell. 2009;136(3):420-34. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19203578.
Suzuki M, Suzuki K, Kodama S, Watanabe M. Phosphorylated histone H2AX foci persist on rejoined mitotic chromosomes in normal human diploid cells exposed to ionizing radiation. Radiat Res. 2006;165(3):269-76. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16494514.
Yamauchi M, Oka Y, Yamamoto M, Niimura K, Uchida M, Kodama S, et al. Growth of persistent foci of DNA damage checkpoint factors is essential for amplification of G1 checkpoint signaling. DNA Repair (Amst). 2008;7(3):405-17. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18248856.
Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol. 2013;3:113. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23675572.
Facoetti A, Mariotti L, Ballarini F, Bertolotti A, Nano R, Pasi F, et al. Experimental and theoretical analysis of cytokine release for the study of radiation-induced bystander effect. Int J Radiat Biol. 2009;85(8):690-9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19637080.
Popanda O, Marquardt JU, Chang-Claude J, Schmezer P. Genetic variation in normal tissue toxicity induced by ionizing radiation. Mutat Res. 2009;667(1-2):58-69. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19022265.
H. Mozdarani MS, N. Bakhtari. Inherent radiosensitivity and its impact on breast cancer chemo-radiotherapy. International Journal of Radiation Research. 2017;15:325-41.
Seibold P, Hall P, Schoof N, Nevanlinna H, Heikkinen T, Benner A, et al. Polymorphisms in oxidative stress-related genes and mortality in breast cancer patients--potential differential effects by radiotherapy? Breast. 2013;22(5):817-23. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23489758.
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756-60. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17051156.
Huang T, Yin L, Wu J, Gu JJ, Wu JZ, Chen D, et al. MicroRNA-19b-3p regulates nasopharyngeal carcinoma radiosensitivity by targeting TNFAIP3/NF-kappaB axis. J Exp Clin Cancer Res. 2016;35(1):188. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27919278.
Luo M, Ding L, Li Q, Yao H. miR-668 enhances the radioresistance of human breast cancer cell by targeting IkappaBalpha. Breast Cancer. 2017;24(5):673-82. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28138801.
Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res. 2018;37(1):87. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29688867.
Toulany M, Schickfluss TA, Eicheler W, Kehlbach R, Schittek B, Rodemann HP. Impact of oncogenic K-RAS on YB-1 phosphorylation induced by ionizing radiation. Breast Cancer Res. 2011;13(2):R28. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21392397.
Bur H, Haapasaari KM, Turpeenniemi-Hujanen T, Kuittinen O, Auvinen P, Marin K, et al. Low Rap1-interacting factor 1 and sirtuin 6 expression predict poor outcome in radiotherapy-treated Hodgkin lymphoma patients. Leuk Lymphoma. 2018;59(3):679-89. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28786706.
Jang NY, Kim DH, Cho BJ, Choi EJ, Lee JS, Wu HG, et al. Radiosensitization with combined use of olaparib and PI-103 in triple-negative breast cancer. BMC Cancer. 2015;15:89. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25884663.
de Sousa MML, Bjoras KO, Hanssen-Bauer A, Solvang-Garten K, Otterlei M. p38 MAPK signaling and phosphorylations in the BRCT1 domain regulate XRCC1 recruitment to sites of DNA damage. Sci Rep. 2017;7(1):6322. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28740101.
Jang J, Huh YJ, Cho HJ, Lee B, Park J, Hwang DY, et al. SIRT1 Enhances the Survival of Human Embryonic Stem Cells by Promoting DNA Repair. Stem Cell Reports. 2017;9(2):629-41. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28689995.
Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A. 2007;104(2):618-23. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17202265.
Wang H, Hu B, Liu R, Wang Y. CHK1 affecting cell radiosensitivity is independent of non-homologous end joining. Cell Cycle. 2005;4(2):300-3. Available from: https://www.ncbi.nlm.nih.gov/pubmed/15655357.
Wu Y, Kantake N, Sugiyama T, Kowalczykowski SC. Rad51 protein controls Rad52-mediated DNA annealing. J Biol Chem. 2008;283(21):14883-92. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18337252.
Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69(4):1302-13. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19190339.
Chen Y, Li Z, Dong Z, Beebe J, Yang K, Fu L, et al. 14-3-3sigma Contributes to Radioresistance By Regulating DNA Repair and Cell Cycle via PARP1 and CHK2. Mol Cancer Res. 2017;15(4):418-28. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28087741.
Wang B. Analyzing cell cycle checkpoints in response to ionizing radiation in mammalian cells. Methods Mol Biol. 2014;1170:313-20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24906320.
Peng Y, Fu S, Hu W, Qiu Y, Zhang L, Tan R, et al. Glutamine synthetase facilitates cancer cells to recover from irradiation-induced G2/M arrest. Cancer Biol Ther. 2020;21(1):43-51. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31526079.
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020;5(1):60. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32355263.
Reda M, Ngamcherdtrakul W, Gu S, Bejan DS, Siriwon N, Gray JW, et al. PLK1 and EGFR targeted nanoparticle as a radiation sensitizer for non-small cell lung cancer. Cancer Lett. 2019;467:9-18. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31563561.
Zhou X, Zheng J, Tang Y, Lin Y, Wang L, Li Y, et al. EBV encoded miRNA BART8-3p promotes radioresistance in nasopharyngeal carcinoma by regulating ATM/ATR signaling pathway. Biosci Rep. 2019;39(9). Available from: https://www.ncbi.nlm.nih.gov/pubmed/31471531.
Wei F, Tang L, He Y, Wu Y, Shi L, Xiong F, et al. BPIFB1 (LPLUNC1) inhibits radioresistance in nasopharyngeal carcinoma by inhibiting VTN expression. Cell Death Dis. 2018;9(4):432. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29568064.
Metheetrairut C, Slack FJ. MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev. 2013;23(1):12-9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23453900.
Arechaga-Ocampo E, Lopez-Camarillo C, Villegas-Sepulveda N, Gonzalez-De la Rosa CH, Perez-Anorve IX, Roldan-Perez R, et al. Tumor suppressor miR-29c regulates radioresistance in lung cancer cells. Tumour Biol. 2017;39(3):1010428317695010. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28345453.
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-97. Available from: https://www.ncbi.nlm.nih.gov/pubmed/14744438.
Perez-Anorve IX, Gonzalez-De la Rosa CH, Soto-Reyes E, Beltran-Anaya FO, Del Moral-Hernandez O, Salgado-Albarran M, et al. New insights into radioresistance in breast cancer identify a dual function of miR-122 as a tumor suppressor and oncomiR. Mol Oncol. 2019;13(5):1249-67. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30938061.
Harada H. How can we overcome tumor hypoxia in radiation therapy? J Radiat Res. 2011;52(5):545-56. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21952313.
Yeom CJ, Goto Y, Zhu Y, Hiraoka M, Harada H. Microenvironments and cellular characteristics in the micro tumor cords of malignant solid tumors. Int J Mol Sci. 2012;13(11):13949-65. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23203043.
Dewhirst MW. Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress. Radiat Res. 2009;172(6):653-65. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19929412.
Vaupel P, Hockel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal. 2007;9(8):1221-35. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17536958.
Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544(7649):250-4. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28371798.
Zheng X, Fang Z, Liu X, Deng S, Zhou P, Wang X, et al. Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. J Clin Invest. 2018;128(5):2104-15. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29664018.
Han Y, Fan S, Qin T, Yang J, Sun Y, Lu Y, et al. Role of autophagy in breast cancer and breast cancer stem cells (Review). Int J Oncol. 2018;52(4):1057-70. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29436618.
Yang L, Tang Y, Xiong F, He Y, Wei F, Zhang S, et al. LncRNAs regulate cancer metastasis via binding to functional proteins. Oncotarget. 2018;9(1):1426-43. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29416704.
Abd El-Aziz YS, Gillson J, Jansson PJ, Sahni S. Autophagy: A promising target for triple negative breast cancers. Pharmacol Res. 2021;175:106006. Available from: https://www.ncbi.nlm.nih.gov/pubmed/34843961.
Chaachouay H, Ohneseit P, Toulany M, Kehlbach R, Multhoff G, Rodemann HP. Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother Oncol. 2011;99(3):287-92. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21722986.
Liu EY, Xu N, O'Prey J, Lao LY, Joshi S, Long JS, et al. Loss of autophagy causes a synthetic lethal deficiency in DNA repair. Proc Natl Acad Sci U S A. 2015;112(3):773-8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25568088.
Zhou ZR, Yang ZZ, Wang SJ, Zhang L, Luo JR, Feng Y, et al. The Chk1 inhibitor MK-8776 increases the radiosensitivity of human triple-negative breast cancer by inhibiting autophagy. Acta Pharmacol Sin. 2017;38(4):513-23. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28042876.
Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66(19):9339-44. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16990346.
Krause M, Dubrovska A, Linge A, Baumann M. Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments. Adv Drug Deliv Rev. 2017;109:63-73. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26877102.
Peitzsch C, Perrin R, Hill RP, Dubrovska A, Kurth I. Hypoxia as a biomarker for radioresistant cancer stem cells. Int J Radiat Biol. 2014;90(8):636-52. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24844374.
Qiang L, Wu T, Zhang HW, Lu N, Hu R, Wang YJ, et al. HIF-1alpha is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ. 2012;19(2):284-94. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21818118.
Bijlsma MF, Groot AP, Oduro JP, Franken RJ, Schoenmakers S, Peppelenbosch MP, et al. Hypoxia induces a hedgehog response mediated by HIF-1alpha. J Cell Mol Med. 2009;13(8B):2053-60. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18774959.
Choi H, Chun YS, Kim TY, Park JW. HIF-2alpha enhances beta-catenin/TCF-driven transcription by interacting with beta-catenin. Cancer Res. 2010;70(24):10101-11. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21159632.
Perez White BE, Getsios S. Eph receptor and ephrin function in breast, gut, and skin epithelia. Cell Adh Migr. 2014;8(4):327-38. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25482622.
Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, et al. Notch promotes radioresistance of glioma stem cells. Stem Cells. 2010;28(1):17-28. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19921751.
Cojoc M, Peitzsch C, Kurth I, Trautmann F, Kunz-Schughart LA, Telegeev GD, et al. Aldehyde Dehydrogenase Is Regulated by beta-Catenin/TCF and Promotes Radioresistance in Prostate Cancer Progenitor Cells. Cancer Res. 2015;75(7):1482-94. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25670168.
Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F, et al. Cancer stem cells: A review from origin to therapeutic implications. J Cell Physiol. 2020;235(2):790-803. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31286518.
Abbaszadegan MR, Bagheri V, Razavi MS, Momtazi AA, Sahebkar A, Gholamin M. Isolation, identification, and characterization of cancer stem cells: A review. J Cell Physiol. 2017;232(8):2008-18. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28019667.
Park JH, Kim YH, Shim S, Kim A, Jang H, Lee SJ, et al. Radiation-Activated PI3K/AKT Pathway Promotes the Induction of Cancer Stem-Like Cells via the Upregulation of SOX2 in Colorectal Cancer. Cells. 2021;10(1). Available from: https://www.ncbi.nlm.nih.gov/pubmed/33445526.
Kamble D, Mahajan M, Dhat R, Sitasawad S. Keap1-Nrf2 Pathway Regulates ALDH and Contributes to Radioresistance in Breast Cancer Stem Cells. Cells. 2021;10(1). Available from: https://www.ncbi.nlm.nih.gov/pubmed/33419140.
Pitroda SP, Wakim BT, Sood RF, Beveridge MG, Beckett MA, MacDermed DM, et al. STAT1-dependent expression of energy metabolic pathways links tumour growth and radioresistance to the Warburg effect. BMC Med. 2009;7:68. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19891767.
Shimura T, Noma N, Sano Y, Ochiai Y, Oikawa T, Fukumoto M, et al. AKT-mediated enhanced aerobic glycolysis causes acquired radioresistance by human tumor cells. Radiother Oncol. 2014;112(2):302-7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25150637.
Yu L, Sun Y, Li J, Wang Y, Zhu Y, Shi Y, et al. Silencing the Girdin gene enhances radio-sensitivity of hepatocellular carcinoma via suppression of glycolytic metabolism. J Exp Clin Cancer Res. 2017;36(1):110. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28810896.
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-33. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19460998.
Fan C, Tang Y, Wang J, Xiong F, Guo C, Wang Y, et al. Role of long non-coding RNAs in glucose metabolism in cancer. Mol Cancer. 2017;16(1):130. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28738810.
Li L, Li W. Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther. 2015;150:33-46. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25595324.
Fang J, Zhou SH, Fan J, Yan SX. Roles of glucose transporter-1 and the phosphatidylinositol 3kinase/protein kinase B pathway in cancer radioresistance (review). Mol Med Rep. 2015;11(3):1573-81. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25376370.
Quennet V, Yaromina A, Zips D, Rosner A, Walenta S, Baumann M, et al. Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice. Radiother Oncol. 2006;81(2):130-5. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16973228.
Voelxen NF, Blatt S, Knopf P, Henkel M, Appelhans C, Righesso LAR, et al. Comparative metabolic analysis in head and neck cancer and the normal gingiva. Clin Oral Investig. 2018;22(2):1033-43. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28735466.
Fujiwara S, Wada N, Kawano Y, Okuno Y, Kikukawa Y, Endo S, et al. Lactate, a putative survival factor for myeloma cells, is incorporated by myeloma cells through monocarboxylate transporters 1. Exp Hematol Oncol. 2015;4:12. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25909034.
Sandulache VC, Chen Y, Skinner HD, Lu T, Feng L, Court LE, et al. Acute Tumor Lactate Perturbations as a Biomarker of Genotoxic Stress: Development of a Biochemical Model. Mol Cancer Ther. 2015;14(12):2901-8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26376962.
Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res. 2006;66(2):632-7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16423989.
Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007;109(9):3812-9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17255361.
Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B, et al. Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene. 2017;36(42):5829-39. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28604752.
Hirschhaeuser F, Sattler UG, Mueller-Klieser W. Lactate: a metabolic key player in cancer. Cancer Res. 2011;71(22):6921-5. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22084445.
Harada H. Hypoxia-inducible factor 1-mediated characteristic features of cancer cells for tumor radioresistance. J Radiat Res. 2016;57 Suppl 1:i99-i105. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26983985.
Slominski A, Kim TK, Brozyna AA, Janjetovic Z, Brooks DL, Schwab LP, et al. The role of melanogenesis in regulation of melanoma behavior: melanogenesis leads to stimulation of HIF-1alpha expression and HIF-dependent attendant pathways. Arch Biochem Biophys. 2014;563:79-93. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24997364.
Lee SL, Ryu H, Son AR, Seo B, Kim J, Jung SY, et al. TGF-beta and Hypoxia/Reoxygenation Promote Radioresistance of A549 Lung Cancer Cells through Activation of Nrf2 and EGFR. Oxid Med Cell Longev. 2016;2016:6823471. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26904167.
Headley MB, Bins A, Nip A, Roberts EW, Looney MR, Gerard A, et al. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature. 2016;531(7595):513-7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26982733.
Santos JC, Lima NDS, Sarian LO, Matheu A, Ribeiro ML, Derchain SFM. Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci Rep. 2018;8(1):829. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29339789.
Rodrigues CFD, Serrano E, Patricio MI, Val MM, Albuquerque P, Fonseca J, et al. Stroma-derived IL-6, G-CSF and Activin-A mediated dedifferentiation of lung carcinoma cells into cancer stem cells. Sci Rep. 2018;8(1):11573. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30069023.
Yoshida GJ, Saya H. Therapeutic strategies targeting cancer stem cells. Cancer Sci. 2016;107(1):5-11. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26362755.
Yang CF, Yang GD, Huang TJ, Li R, Chu QQ, Xu L, et al. EB-virus latent membrane protein 1 potentiates the stemness of nasopharyngeal carcinoma via preferential activation of PI3K/AKT pathway by a positive feedback loop. Oncogene. 2016;35(26):3419-31. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26568302.
Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, et al. The roles of glucose metabolic reprogramming in chemo- and radio-resistance. J Exp Clin Cancer Res. 2019;38(1):218. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31122265.
Boominathan L. The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev. 2010;29(4):613-39. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20922462.
Paquet-Fifield S, Koh SL, Cheng L, Beyit LM, Shembrey C, Molck C, et al. Tight Junction Protein Claudin-2 Promotes Self-Renewal of Human Colorectal Cancer Stem-like Cells. Cancer Res. 2018;78(11):2925-38. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29510994.
Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817-26. Available from: https://www.ncbi.nlm.nih.gov/pubmed/15591335.
Bougen NM, Steiner M, Pertziger M, Banerjee A, Brunet-Dunand SE, Zhu T, et al. Autocrine human GH promotes radioresistance in mammary and endometrial carcinoma cells. Endocr Relat Cancer. 2012;19(5):625-44. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22807498.
Emerald BS, Chen Y, Zhu T, Zhu Z, Lee KO, Gluckman PD, et al. AlphaCP1 mediates stabilization of hTERT mRNA by autocrine human growth hormone. J Biol Chem. 2007;282(1):680-90. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17085453.
Wu ZS, Yang K, Wan Y, Qian PX, Perry JK, Chiesa J, et al. Tumor expression of human growth hormone and human prolactin predict a worse survival outcome in patients with mammary or endometrial carcinoma. J Clin Endocrinol Metab. 2011;96(10):E1619-29. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21849525.
Torres-Roca JF. A molecular assay of tumor radiosensitivity: a roadmap towards biology-based personalized radiation therapy. Per Med. 2012;9(5):547-57. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23105945.
Lucenay KS, Doostan I, Karakas C, Bui T, Ding Z, Mills GB, et al. Cyclin E Associates with the Lipogenic Enzyme ATP-Citrate Lyase to Enable Malignant Growth of Breast Cancer Cells. Cancer Res. 2016;76(8):2406-18. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26928812.
Porter DC, Zhang N, Danes C, McGahren MJ, Harwell RM, Faruki S, et al. Tumor-specific proteolytic processing of cyclin E generates hyperactive lower-molecular-weight forms. Mol Cell Biol. 2001;21(18):6254-69. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11509668.
Duong MT, Akli S, Macalou S, Biernacka A, Debeb BG, Yi M, et al. Hbo1 is a cyclin E/CDK2 substrate that enriches breast cancer stem-like cells. Cancer Res. 2013;73(17):5556-68. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23955388.
Alexander A, Karakas C, Chen X, Carey JP, Yi M, Bondy M, et al. Cyclin E overexpression as a biomarker for combination treatment strategies in inflammatory breast cancer. Oncotarget. 2017;8(9):14897-911. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28107181.
Speers C, Zhao SG, Chandler B, Liu M, Wilder-Romans K, Olsen E, et al. Androgen receptor as a mediator and biomarker of radioresistance in triple-negative breast cancer. NPJ Breast Cancer. 2017;3:29. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28840192.
Gunawan I, Hatta M, Benyamin AF, Islam AA. The Hypoxic Response Expression as a Survival Biomarkers in Treatment-Naive Advanced Breast Cancer. Asian Pac J Cancer Prev. 2020;21(3):629-37. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32212787.
Choi J, Jung WH, Koo JS. Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry. Pathobiology. 2013;80(1):41-52. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22832328.
Pinheiro C, Sousa B, Albergaria A, Paredes J, Dufloth R, Vieira D, et al. GLUT1 and CAIX expression profiles in breast cancer correlate with adverse prognostic factors and MCT1 overexpression. Histol Histopathol. 2011;26(10):1279-86. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21870331.
Tan EY, Yan M, Campo L, Han C, Takano E, Turley H, et al. The key hypoxia regulated gene CAIX is upregulated in basal-like breast tumours and is associated with resistance to chemotherapy. Br J Cancer. 2009;100(2):405-11. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19165203.
Yi J, Li S, Wang C, Cao N, Qu H, Cheng C, et al. Potential applications of polyphenols on main ncRNAs regulations as novel therapeutic strategy for cancer. Biomed Pharmacother. 2019;113:108703. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30870719.
Banerjee M, Chattopadhyay S, Choudhuri T, Bera R, Kumar S, Chakraborty B, et al. Cytotoxicity and cell cycle arrest induced by andrographolide lead to programmed cell death of MDA-MB-231 breast cancer cell line. J Biomed Sci. 2016;23:40. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27084510.
Peng Y, Wang Y, Tang N, Sun D, Lan Y, Yu Z, et al. Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway. J Exp Clin Cancer Res. 2018;37(1):248. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30314513.
Wang J, Liu Q, Yang Q. Radiosensitization effects of berberine on human breast cancer cells. Int J Mol Med. 2012;30(5):1166-72. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22895634.
Sak K. Radiosensitizing Potential of Curcumin in Different Cancer Models. Nutr Cancer. 2020;72(8):1276-89. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31648572.
Saravanan M, Vahidi H, Medina Cruz D, Vernet-Crua A, Mostafavi E, Stelmach R, et al. Emerging Antineoplastic Biogenic Gold Nanomaterials for Breast Cancer Therapeutics: A Systematic Review. Int J Nanomedicine. 2020;15:3577-95. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32547015.
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, et al. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin Transl Oncol. 2019;21(3):268-79. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30136132.
Aghamiri S, Jafarpour A, Zandsalimi F, Aghemiri M, Shoja M. Effect of resveratrol on the radiosensitivity of 5-FU in human breast cancer MCF-7 cells. J Cell Biochem. 2019;120(9):15671-7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31069826.
Xia YF, Ye BQ, Li YD, Wang JG, He XJ, Lin X, et al. Andrographolide attenuates inflammation by inhibition of NF-kappa B activation through covalent modification of reduced cysteine 62 of p50. J Immunol. 2004;173(6):4207-17. Available from: https://www.ncbi.nlm.nih.gov/pubmed/15356172.
Hossain MS, Urbi Z, Sule A, Hafizur Rahman KM. Andrographis paniculata (Burm. f.) Wall. ex Nees: a review of ethnobotany, phytochemistry, and pharmacology. ScientificWorldJournal. 2014;2014:274905. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25950015.
Chao CY, Lii CK, Hsu YT, Lu CY, Liu KL, Li CC, et al. Induction of heme oxygenase-1 and inhibition of TPA-induced matrix metalloproteinase-9 expression by andrographolide in MCF-7 human breast cancer cells. Carcinogenesis. 2013;34(8):1843-51. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23615401.
Nantajit D, Jetawattana S, Suriyo T, Grdina DJ, Satayavivad J. Andrographis paniculata Diterpenoids Protect against Radiation-Induced Transformation in BALB/3T3 Cells. Radiat Res. 2017;188(1):66-74. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28492344.
Liu Z, Liu Q, Xu B, Wu J, Guo C, Zhu F, et al. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage. Mutat Res. 2009;662(1-2):75-83. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19159633.
Peng PL, Kuo WH, Tseng HC, Chou FP. Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer: the contribution of autophagic cell death. Int J Radiat Oncol Biol Phys. 2008;70(2):529-42. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18207031.
Wang YX, Pang WQ, Zeng QX, Deng ZS, Fan TY, Jiang JD, et al. Synthesis and biological evaluation of new berberine derivatives as cancer immunotherapy agents through targeting IDO1. Eur J Med Chem. 2018;143:1858-68. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29133053.
Bhattacharya T, Dutta S, Akter R, Rahman MH, Karthika C, Nagaswarupa HP, et al. Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules. 2021;11(8). Available from: https://www.ncbi.nlm.nih.gov/pubmed/34439842.
Karthika C, Hari B, Mano V, Radhakrishnan A, Janani SK, Akter R, et al. Curcumin as a great contributor for the treatment and mitigation of colorectal cancer. Exp Gerontol. 2021;152:111438. Available from: https://www.ncbi.nlm.nih.gov/pubmed/34098006.
Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012;39(3):283-99. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22118895.
Akter R, Najda A, Rahman MH, Shah M, Wesolowska S, Hassan SSU, et al. Potential Role of Natural Products to Combat Radiotherapy and Their Future Perspectives. Molecules. 2021;26(19). Available from: https://www.ncbi.nlm.nih.gov/pubmed/34641542.
Anthwal A, Thakur BK, Rawat MS, Rawat DS, Tyagi AK, Aggarwal BB. Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-alpha-induced NF-kappaB activation. Biomed Res Int. 2014;2014:524161. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25157362.
Aravindan S, Natarajan M, Herman TS, Awasthi V, Aravindan N. Molecular basis of 'hypoxic' breast cancer cell radio-sensitization: phytochemicals converge on radiation induced Rel signaling. Radiat Oncol. 2013;8:46. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23452621.
Yeung PK, Wong FT, Wong JT. Mimosine, the Allelochemical from the leguminous tree Leucaena leucocephala, selectively enhances cell proliferation in dinoflagellates. Appl Environ Microbiol. 2002;68(10):5160-3. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12324368.
Park SY, Im JS, Park SR, Kim SE, Wang HJ, Lee JK. Mimosine arrests the cell cycle prior to the onset of DNA replication by preventing the binding of human Ctf4/And-1 to chromatin via Hif-1alpha activation in HeLa cells. Cell Cycle. 2012;11(4):761-6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22374673.
Alonso-Gonzalez C, Gonzalez A, Menendez-Menendez J, Martinez-Campa C, Cos S. Melatonin as a Radio-Sensitizer in Cancer. Biomedicines. 2020;8(8). Available from: https://www.ncbi.nlm.nih.gov/pubmed/32726912.
Kiefer T, Ram PT, Yuan L, Hill SM. Melatonin inhibits estrogen receptor transactivation and cAMP levels in breast cancer cells. Breast Cancer Res Treat. 2002;71(1):37-45. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11859872.
Lopes J, Arnosti D, Trosko JE, Tai MH, Zuccari D. Melatonin decreases estrogen receptor binding to estrogen response elements sites on the OCT4 gene in human breast cancer stem cells. Genes Cancer. 2016;7(5-6):209-17. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27551335.
Shankar S, Singh G, Srivastava RK. Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front Biosci. 2007;12:4839-54. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17569614.
Rahman MH, Akter R, Behl T, Chowdhury MAR, Mohammed M, Bulbul IJ, et al. COVID-19 Outbreak and Emerging Management through Pharmaceutical Therapeutic Strategy. Curr Pharm Des. 2020;26(41):5224-40. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32660401.
Tagde P, Tagde P, Tagde S, Bhattacharya T, Garg V, Akter R, et al. Natural bioactive molecules: An alternative approach to the treatment and control of glioblastoma multiforme. Biomed Pharmacother. 2021;141:111928. Available from: https://www.ncbi.nlm.nih.gov/pubmed/34323701.
Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol. 2017;1. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28989978.
Published

