Design, Synthesis, Molecular Docking, Antitubercular, Antimicrobial and Antioxidant Studies of Some Novel 3-(((1H-Benzo[d]imidazol-2-yl)methyl)thio)-5H-[1,2,4] Triazino[5,6-b]indole Derivatives

Authors

  • Sreelatha Kamera Department of Pharmaceutical Chemistry, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, India
  • Vishnu Kumar Sharma Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
  • Srivani M Department of Pharmaceutical Chemistry, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, India
  • Achaiah Garlapati Department of Pharmaceutical Chemistry, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, India

Abstract

A series of novel 3-(((1H-benzo[d]imidazol-2-yl)methyl)thio)-5H-[1,2,4]triazino[5,6-b]indole derivatives (3a-3j) were synthesized by reacting different substituted 5H-[1,2,4]triazino[5,6-b]indole-3-thiols with substituted (2-chloromethyl)-1H-benzo(d)imidazoles in the presence of  KOH and water in good yields. The structures of the newly synthesized compounds were confirmed by spectroscopic techniques such as 1H-NMR, 13C-NMR, IR and mass spectrometry. The in vitro antitubercular activity of the synthesized compounds was evaluated against Mycobacterium tuberculosis (Mtb) H37Rv (ATCC 27294) using MABA (Microplate Alamar Blue Assay) method. Compounds 3b, 3c, and 3i showed good antitubercular activity against Mtb with MIC value of 6.25±0.00 μg/ml. Also, the in vitro antimicrobial activities of the compounds were evaluated against various bacterial and fungal strains using the two-fold serial dilution technique and most of the compounds exhibited moderate activities with MIC values in the range of 63.33±1.44 to >500

Keywords:

Benzimidazole, Indole, Antitubercular, Antibacterial, Antifungal, Antioxidant activity, Molecular docking, Mycobacterium tuberculosis, InhA

DOI

https://doi.org/10.25004/IJPSDR.2023.150414

References

Hayman J. Mycobacterium ulcerans: an infection from jurassic time? The Lancet. 1984; 324(8410):1015–6.

Hershkovitz I, Donoghue HD, Minnikin DE, May H, Lee OY, Feldman M, Galili E, Spigelman M, Rothschild BM, Bar-Gal GK. Tuberculosis origin: the Neolithic scenario. Tuberculosis. 2015; 95:S122–6.

World Health Organization. Global tuberculosis report 2022. Available from: https://www.who.int/publications/i/item/9789240061729

Sakula A. Robert Koch: centenary of the discovery of the tubercle bacillus, 1882. Thorax. 1982; 37(4):246–51.

Brock TD. Robert Koch: a life in medicine and bacteriology. Science Tech Publishers, Madison, WI, USA. 1988; 96-104.

Kumar V, Abbas AK, Fausto N, Mitchell R. Robbins basic pathology. 8th ed. Elsevier. 2007; 810-1.

Golden MP, Vikram HR. Extrapulmonary tuberculosis: an overview. Am Fam Physician. 2005; 72(9):1761–8.

Houben RMGJ, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLoS Med. 2016; 3(10).

Vynnycky E, Fine PEM. Lifetime risks, incubation period, and serial interval of tuberculosis. Am J Epidemiol. 2000; 152(3):247–63.

WHO consolidated guidelines on tuberculosis: module 4: treatment: drug-susceptible tuberculosis treatment. 2022. Available from: https://www.who.int/publications/i/item/9789240048126

Seung KJ, Keshavjee S, Rich ML. Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harb Perspect Med. 2015; 5(9).

Pontali E, Raviglione MC, Migliori GB. Regimens to treat multidrug-resistant tuberculosis: past, present and future perspectives and the writing group members of the Global TB Network Clinical Trials Committee. 2019; 28(152).

WHO consolidated guidelines on tuberculosis. Module 4: treatment - drug-resistant tuberculosis treatment, 2022 update. Available from: https://www.who.int/publications/i/item/9789240063129

van Heeswijk RPG, Dannemann B, Hoetelmans RMW. Bedaquiline: A review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemother. 2014; 69(9):2310–8.

Nguyen TVA, Anthony RM, Bañuls AL, Vu DH, Alffenaar JWC. Bedaquiline Resistance: Its Emergence, Mechanism, and Prevention. Clin Infect Dis. 2018; 66(10):1625–30.

Fujiwara M, Kawasaki M, Hariguchi N, Liu Y, Matsumoto M. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis. 2018; 108:186–94.

Keam SJ. Pretomanid: First Approval. Drugs. 2019; 79(16):1797–803.

Tetali SR, Kunapaeddi E, Mailavaram RP, Singh V, Borah P, Deb PK, Venugopala KN, Hourani W, Tekade RK. Current advances in the clinical development of anti-tubercular agents. Tuberculosis. 2020; 125:101989.

Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem. 2014; 57(24):10257–74.

Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules. 2020; 25(8):1909.

Bansal Y, Silakari O. The therapeutic journey of benzimidazoles: A review. Bioorg Med Chem. 2012; 20(21):6208-36.

Brishty SR, Hossain MJ, Khandaker MU, Faruque MR, Osman H, Rahman SM. A comprehensive account on recent progress in pharmacological activities of benzimidazole derivatives. Front Pharmacol. 2021; 2863.

Zhang L, Addla D, Ponmani J, Wang A, Xie D, Wang YN, Zhang SL, Geng RX, Cai GX, Li S, Zhou CH. Discovery of membrane active benzimidazole quinolones-based topoisomerase inhibitors as potential DNA-binding antimicrobial agents. Eur J Med Chem. 2016; 111:160-82.

Wang YS, Huang YJ, Chen WC, Yen JH. Effect of carbendazim and pencycuron on soil bacterial community. J Hazard Mater. 2009; 172(1):84-91.

Jadhavar PS, Patel KI, Dhameliya TM, Saha N, Vaja MD, Krishna VS, Sriram D, Chakraborti AK. Benzimidazoquinazolines as new potent anti-TB chemotypes: Design, synthesis, and biological evaluation. Bioorg Chem. 2020; 99:103774.

Ebenezer O, Oyetunde-Joshua F, Omotoso OD, Shapi M. Benzimidazole and its derivatives: Recent Advances (2020–2022). Results in Chemistry. 2023; 100925.

Akhtar W, Khan MF, Verma G, Shaquiquzzaman M, Rizvi MA, Mehdi SH, Akhter M, Alam MM. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur J Med Chem. 2017; 126:705-53.

Omar AM, Eshba NH, Aboushleib HM. Synthesis, 13C‐NMR characterization and antimicrobial properties of a novel series of 3‐(N‐Substituted thiocarbamoyl) hydrazino‐1, 2, 4‐triazino‐[5, 6‐b] indole derivatives. J Heterocyclic Chem. 1986; 23(6):1731-5.

Al Osaimi AG, Ali RS, Saad HA, El Sayed Aly MR. Synthesis and antimicrobial activity of novel fused [1,2,4]triazino[5,6-b]indole derivatives. Russ J Gen Chem. 2017; 87(6):1246–55.

Bawazir WA. Synthesis of Some New Thioethers and 4-Thiazolidinones Bearing 3-(Pyridine-4'-yl)-1, 2, 4-Triazino [5, 6-b] Indole Moiety as Antifungal Agents. Int J Org Chem. 2019; 09(01):37–46.

Ngo HX, Green KD, Gajadeera CS, Willby MJ, Holbrook SY, Hou C, Garzan A, Mayhoub AS, Posey JE, Tsodikov OV, Garneau-Tsodikova S. Potent 1, 2, 4-triazino [5, 6 b] indole-3-thioether inhibitors of the kanamycin resistance enzyme Eis from Mycobacterium tuberculosis. ACS Infect Dis. 2018; 4(6):1030–40.

Prnova MS, Ballekova J, Majekova M, Stefek M. Antioxidant action of 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid, an efficient aldose reductase inhibitor, in a 1,1′-diphenyl-2-picrylhydrazyl assay and in the cellular system of isolated erythrocytes exposed to tert-butyl hydroperoxide. Redox Report. 2015; 20(6):282–8.

Gladych JM, Hornby R, Hunt JH, Jack D, Boyle JJ, Ferlauto RJ, Haff RF, Kormendy CG, Stanfield FJ, Stewart RC. Antiviral agents. 5H-as-Triazino [5, 6-b] indoles. J Med Chem. 1972; 15(3):277-81.

Monge A, Palop J, Ramirez C, Font M, Fernandez-Alvarez E. New 5H-1, 2, 4-triazino [5, 6-b] indole and aminoindole derivatives. Synthesis and studies as inhibitors of blood platelet aggregation, anti-hypertensive agents and thromboxane synthetase inhibitors. Eur J Med Chem. 1991; 26(2):179-88.

Kgokong JL, Smith PP, Matsabisa GM. 1,2,4-Triazino-[5,6b]indole derivatives: Effects of the trifluoromethyl group on in vitro antimalarial activity. Bioorg Med Chem. 2005; 13(8):2935–42.

Tomchin AB, Uryupov OY, Zhukova TI, Kuznetsova TA, Kostycheva MV, Smirnov AV. Thiourea and thiosemicarbazide derivatives: Structure, transformations, and pharmacological activity. Part II. Antihypoxic activity of 1, 2, 4-triazino [5, 6-b] indole derivatives. Pharm Chem J. 1997; 31:125-33.

Gupta L, Sunduru N, Verma A, Srivastava S, Gupta S, Goyal N, Chauhan PM. Synthesis and biological evaluation of new [1, 2, 4] triazino [5, 6-b] indol-3-ylthio-1, 3, 5-triazines and [1, 2, 4] triazino [5, 6-b] indol-3-ylthio-pyrimidines against Leishmania donovani. Eur J Med Chem. 2010; 45(6):2359–65.

Sharma R, Pandey AK, Shivahare R, Srivastava K, Gupta S, Chauhan PMS. Triazino indole-quinoline hybrid: A novel approach to antileishmanial agents. Bioorg Med Chem Lett. 2014; 24(1):298–301.

Shelke SM, Bhosale SH. Synthesis, antidepressant evaluation and QSAR studies of novel 2-(5H-[1,2,4]triazino[5,6-b]indol-3-ylthio)-N-(substituted phenyl)acetamides. Bioorg Med Chem Lett. 2010; 20(15):4661–4.

Pola S, Banoth KK, Sankaranarayanan M, Ummani R, Garlapati A. Design, synthesis, in silico studies, and evaluation of novel chalcones and their pyrazoline derivatives for antibacterial and antitubercular activities. Med Chem Res. 2020; 29(10):1819–35.

Nara, S., & Garlapati, A. Design, Synthesis and molecular docking study of hybrids of quinazolin-4(3H)-one as anticancer agents. Ars Pharm. 2018; 59(3):121-31. Retrieved from https://revistaseug.ugr.es/index.php/ars/article/view/7360

Macha B, Kulkarni R, Bagul C, Garige AK, Akkinepally R, Garlapati A. Molecular hybridization based design and synthesis of new benzo[5,6]chromeno[2,3-b]-quinolin-13(14H)-one analogs as cholinesterase inhibitors. Med Chem Res. 2021; 30(3):685–701.

Vine KL, Locke JM, Ranson M, Pyne SG, Bremner JB. An investigation into the cytotoxicity and mode of action of some novel N-alkyl-substituted isatins. J Med Chem. 2007; 50(21):5109–17.

Arshad M, Bhat AR, Hoi KK, Choi I, Athar F. Synthesis, characterization and antibacterial screening of some novel 1,2,4-triazine derivatives. Chin Chem Lett. 2017; 28(7):1559–65.

Parekh P, Petkar K, Mehta P, Kumari A, Baro A. Synthesis & evaluation of 2-chloromethyl-1H-benzimidazole derivatives as antifungal agents. Int J Pharm Pharm Sci. 2013; 5(2):115-9.

Redayan MA, Ali WB, Mohammed AM. Synthesis, characterization and antibacterial evaluation of some novel benzimidazole derivatives containing 1,3,4-thiadiazole moiety. Orient J Chem. 2017; 33(6):3138–43.

Sivendran S, Jones V, Sun D, Wang Y, Grzegorzewicz AE, Scherman MS, Napper AD, McCammon JA, Lee RE, Diamond SL, McNeil M. Identification of triazinoindol-benzimidazolones as nanomolar inhibitors of the Mycobacterium tuberculosis enzyme TDP-6-deoxy-d-xylo-4-hexopyranosid-4-ulose 3, 5-epimerase (RmlC). Bioorg Med Chem. 2010; 18(2):896–908.

Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, Degnan MT, Cook MB, Quenzer VK, Ferguson RM, Gilman RH. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J Clin Microbiol. 1998; 36(2):362-6.

Lourenco MC, de Souza MV, Pinheiro AC, Ferreira MD, Gonçalves RS, Nogueira TC, Peralta MA. Evaluation of anti-tubercular activity of nicotinic and isoniazid analogues. Arkivoc. 2007; 15(15):181-91.

Cappuccino JG, Sherman N. Microbiology-A laboratory manual. 4th edn. Addision Wesley Longman, Inc. Sydney, Australia. 1999; 471.

Brand-Williams W, Cuvelier ME, Berset C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT - Food Sci Technol. 1995; 28(1):25-30.

Blois MS. Antioxidant determinations by the use of stable free radical. Nature. 1958; 181:1199-1200.

He X, Alian A, Stroud R, Ortiz De Montellano PR. Pyrrolidine carboxamides as a novel class of inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis. J Med Chem. 2006; 49(21):6308–23.

Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004; 47(7):1739–49.

Schrödinger Release 2020-3. Glide, Schrödinger, LLC, New York, NY, 2020.

Schrödinger Release 2020-3. Maestro, Schrödinger, LLC, New York, NY, 2020.

Schrödinger Release 2020-3. Prime, Schrödinger, LLC, New York, NY, 2020.

Schrödinger Release 2020-3. Epik, Schrödinger, LLC, New York, NY, 2020.

Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013; 27(3):221–34.

Schrödinger Release 2020-3. LigPrep, Schrödinger, LLC, New York, NY, 2020.

Cheng F, Li W, Liu G, Tang Y. In Silico ADMET Prediction: Recent Advances, Current Challenges and Future Trends. Curr Top Med Chem. 2013; 13(11):1273–89.

Schrödinger Release 2020-3. QikProp, Schrödinger, LLC, New York, NY, 2020.

Bharatam PV, Khanna S, Francis SM. Modeling and informatics in drug design. Preclinical development handbook: ADME and biopharmaceutical properties. 2008; 1-45.

Meng XY, Zhang HX, Mezei M, Cui M. Molecular Docking: A powerful approach for tructure-based drug discovery. Curr Comput Aided Drug Des. 2011; 7(2):146–157.

Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, De Lisle G, Jacobs Jr WR. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994; 263(5144):227–30.

Dessen A, Quémard A, Blanchard JS, Jacobs WR, Sacchettini JC. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science. 1995; 267(5204):1638–41.

Rawat R, Whitty A, Tonge PJ. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proc Natl Acad Sci. U S A. 2003; 100(24):13881-6.

Hazbón MH, Brimacombe M, Bobadilla del Valle M, Cavatore M, Guerrero MI, Varma-Basil M, Billman-Jacobe H, Lavender C, Fyfe J, García-García L, León CI. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2006; 50(8):2640–9.

Tonge PJ, Kisker C, Slayden RA. Development of modern InhA inhibitors to combat drug resistant strains of Mycobacterium tuberculosis. Curr Top Med Chem. 2007; 7(5):489-98.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012; 64:4-17.

Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004; 1(4):337-41.

Published

12-07-2023
Statistics
Abstract Display: 409
PDF Downloads: 434
Dimension Badge

How to Cite

“Design, Synthesis, Molecular Docking, Antitubercular, Antimicrobial and Antioxidant Studies of Some Novel 3-(((1H-Benzo[d]imidazol-2-yl)methyl)thio)-5H-[1,2,4] Triazino[5,6-b]indole Derivatives”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 15, no. 4, July 2023, pp. 494-06, https://doi.org/10.25004/IJPSDR.2023.150414.

Issue

Section

Research Article

How to Cite

“Design, Synthesis, Molecular Docking, Antitubercular, Antimicrobial and Antioxidant Studies of Some Novel 3-(((1H-Benzo[d]imidazol-2-yl)methyl)thio)-5H-[1,2,4] Triazino[5,6-b]indole Derivatives”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 15, no. 4, July 2023, pp. 494-06, https://doi.org/10.25004/IJPSDR.2023.150414.

Similar Articles

1-10 of 584

You may also start an advanced similarity search for this article.