Sand Dune Streptomyces JB66 Native to the Great Indian Thar Desert Inhibits Multidrug-Resistant Pathogens

Authors

  • Jyotsna Begani Department of Microbiology, Maharaja Ganga Singh University, Bikaner-334001, Rajasthan, India
  • Jyoti Lakhani Department of Computer Science, Maharaja Ganga Singh University, Bikaner-334001, Rajasthan, India
  • Dharmesh Harwani Department of Microbiology, Maharaja Ganga Singh University, Bikaner-334001, Rajasthan, India

Abstract

The efficacy of an actinomycete strain JB66 recovered from a sand dune soil from the Bikaner district of the Thar desert in inhibiting the growth of various bacterial pathogens was studied. The type strains Staphylococcus aureus, Shigella flexneri, Klebsiella pneumoniae and the clinical isolates Escherichia coli, multidrug-resistant S. aureus and P. vulgaris were included in the antimicrobial assays. Polyphasic characterization of JB66 isolate revealed its identity as Streptomyces (MH762010). It showed 88.99-89.24% sequence similarity with the other members of this genus and share the maximum (88.89%) similarity with Streptomyces sp. ATSC13. The strain JB66 was found to produce a high amount of extracellular L-asparaginase, catalase, gelatinase, protease, tyrosinase and urease enzymes. The partial chemical categorization of the methanolic crude extract of the JB66 strain led to the preliminary identification of various metabolic compounds. The thin-layer chromatography fractionation revealed the presence of prodigiosin pigment or chandramycin, cephalosporin or zeatin, daidzein, demethoxy rapamycin, 4,6-dihydroxy-7-methoxyisoflavone, munumbicins and amiclenomycin like compounds. Bio-autography revealed that the metabolites localized at the Rf values of 0.40, 0.46 and 0.53 in TLC profile had the actual bioactive fractions. UV-VIS spectrum absorbance maxima at 288 nm revealed the presence of an aromatic nucleus.

Keywords:

Actinomycetes, Thar desert, Sand dune, MDR, TLC, Rapamycin, Cephalosporin.

DOI

https://doi.org/10.25004/IJPSDR.2019.110603

Author Biography

Jyoti Lakhani, Department of Computer Science, Maharaja Ganga Singh University, Bikaner-334001, Rajasthan, India

Head Department of Computer Science, MGS University, Bikaner-334001

References

Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC. Marine cyanobacteria—a prolific source of natural products. Tetrahedron. 2001; 57:9347–9377.

Karikas G. Anticancer and chemopreventing natural products: some biochemical and therapeutic aspects. J Buon. 2010; 15:627–638.

Newman DJ, Cragg GM. Natural Products as Sources of New Drugs from 1981 to 2014. J Nat Prod. 2016; 79(3):629–661.

Chin YW, Balunas MJ, Chai HB, Kinghorn AD. Drug discovery from natural sources. The AAPS journal. 2006; 8:E239–E253.

Berdy J. Bioactive microbial metabolites. J Antibiot. 2005; 58:1–26.

Schumacher RW, Talmage SC, Miller SA, Sarris KE, Davidson BS, Goldberg A. Isolation and structure determination of an antimicrobial ester from a marine sediment derived bacterium. J Nat Prod. 2003; 66:1291–1293.

Soria-Mercado IE, Prieto-Davo A, Jensen PR, Fenical W. Antibiotic terpenoid chloro-dihydroquinones from a new marine actinomycete. J Nat Prod. 2005; 68:904–910.

Williams PG, Miller ED, Asolkar RN, Jensen PR, Fenical W. Arenicolides A–C 26-membered ring macrolides from the marine actinomycete Salinispora arenicola. J Org Chem. 2007; 72:5025–5034.

Caffrey P, Aparicio JF, Malpartida F, Zotchev SB. Biosynthetic engineering of polyene macrolides towards generation of improved antifungal and antiparasitic agents. Curr Top Med Chem. 2008; 8:639–653.

Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot. 2009; 62: 5-16.

Nachtigall J, Kulik A, Helaly S, Bull AT, Goodfellow M, Asenjo JA, Maier A, Wiese J, Imhoff JF, Sussmuth RD, Fiedler HP. Atacamycins A-C, 22-membered antitumor macrolactones produced by Streptomyces sp. C38. J Antibiot. 2011; 64(12):775–780.

Lu J, Ma Y, Liang J, Xing Y, Xi T, Lu Y. Aureolic acids from a marine-derived Streptomyces sp. WBF16. Microbiol Res. 2012; 167:590–595.

Liu DZ, Liang BW. A new pyrrolosesquiterpene isolated from cultures of Streptomyces sp. J Antibiot (Tokyo). 2014; 67:415–417.

Wan Z, Fang W, Shi L, Wang K, Zhang Y, Zhang Z, Wu Z, Yang Z, Gu Y. Novonestmycins A and B, two new 32-membered bioactive macrolides from Streptomyces phytohabitans HBERC-20821. J Antibiot (Tokyo). 2015; 68:185–190.

Jiao J, Paterson J, Busche T, Rückert C, Kalinowski J, Harwani D, Gross H. Draft genome sequence of Streptomyces sp. strain DH-12, a soilborne isolate from the Thar Desert with broad-spectrum antibacterial activity. Genome Announc. 2018; 6(9):1-3.

Begani J, Lakhani J, Harwani D. Current strategies to induce secondary metabolites from microbial biosynthetic cryptic gene clusters. Ann Microbiol. 2018; 68:419-432.

Watve MG, Tickoo R, Jog MM, Bhole BD. How many antibiotics are produced by the genus Streptomyces? Arch Microbiol. 2001; 176:386–390.

Begani J, Lakhani J, Harwani D. A broad-spectrum antimicrobial activity of thermophilic Nocardiopsis sp. producing multiple extracellular enzymes of industrial and therapeutic use. Asian J Pharm Pharmacol. 2019; 5:525-534.

Clardy J, Fischbach MA, Currie CR. The natural history of antibiotics. Curr Biol. 2009; 19:R437–R441.

Guo X, Liu N, Li X, Ding Y, Shang F, Gao Y, Ruan J and Huang Y. Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Appl Environ Microbiol. 2015; 81:3086–3103.

Sengupta S, Pramanik A, Ghosh A, Bhattacharyya M. Antimicrobial activities of actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC Microbiology. 2015; 15:170-185.

Goodfellow M, Fiedler HP. A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie Van Leeuwenhoek. 2010; 98:119–142.

Mao J, Wang J, Dai HQ, Zhang ZD, Tang QY, Ren B, Yang N, Goodfellow M, Zhang LX, Liu ZH. Yuhushiella deserti gen. nov., sp. nov., a new member of the suborder Pseudonocardineae. Int J Syst Evol Microbiol. 2011; 61:621–630.

Harwani D. Biodiversity of rare thermophilic actinomycetes in the great Indian Thar Desert: An Overview. Indo Am j pharm res. 2013; 3:93499356.

Tiwari K, Upadhyay DJ, Mosker E, Sussmuth R, Gupta RK. Culturable bioactive actinomycetes from the Great Indian Thar Desert. Ann Microbiol. 2015; 65:1901–1914.

Mohammadipanah F, Wink J. Actinobacteria from arid and desert habitats: diversity and biological activity. Front Microbiol. 2015; 6:1541.

Hayakawa M, Sadakata T, Kajiura T, Nonomura H. New methods for the highly selective isolation of Micromonospora and Microbispora from soil. J Biosci Bioeng. 1991; 72:320–326.

Tamura T, Hayakawa M, Hatano K. A new genus of the order Actinomycetales, Spirilliplanes gen. nov., with description of Spirilliplanes yamanashiensis sp. nov. Int J Syst Evol Microbiol.1997; 47:97–102.

Matsukawa E, Nakagawa Y, Iimura Y, Hayakawa M. A new enrichment method for the selective isolation of streptomycetes from the root surfaces of herbaceous plants. Actinomycetologica 2007; 21:66–69.

Shirling ET, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol. 1966. 16:313–340.

Osman HG, Abou-Zeid AA. A technique for the isolation of actinomycetes from soils. J Gen Appl Microbiol. 1968; 14:317-319.

Lawrance CH. A method of isolating actinomycetes from scabby potato tissue and soil with minimal contamination. Can J Bot. 1956; 34:44-47.

Williams ST, Cross T. Isolation, purification, cultivation and preservation of actinomycetes. Method Microbio. 1971; 4:295-334.

Hayakawa M, Nomura S. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Biosci Bioeng. 1987; 65:501–509.

Cho SH, Hwang CW, Chung HK, Yang CS. A new medium for the selective isolation of soil actinomycetes. J Microbiol Biotechnol. 1994; 22: 561–563.

Willoughby LG. Observations on some aquatic actinomycetes of streams and rivers. Freshw Biol.1971; 1:23-27.

Vickers JC, Williams ST, Ross GW. A taxonomic approach to selective isolation of Streptomycetes from soil. In: OrtizOrtiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical and biomedical aspects of actinomycetes. Academic Press, Orland, Florida. 1984; 553–561.

Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Scrempf H. Genetic manipulation of Streptomyces-A laboratory manual. The John Innes Foundation, Norwich, U.K. 1985; pp 356

Kuester E, Williams ST. Selection of media for isolation of Streptomycetes. Nature. 1964; 202:928–929.

Eccleston GP, Brooks PR, Kurtboke DI. The occurrence of bioactive micromonosporae in aquatic habitats of the sunshine coast in Australia. Mar Drugs. 2008; 6:243–261.

Wayne PA. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing, 22nd information supplement M100-S22. Clinical and laboratory standards institute. 2012.

Srinivasan V, Nagaraja M, Parthasarathi A. Highly deviated asymmetric division in very low proportion of mycobacterial mid-log phase cells.Open Microbiol J. 2014; 8:40-50.

Pridham TG, Gottlieb D. The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J Bacteriol. 1948; 56:107-114.

Stackebrandt E, Liesack W. Goebel BM Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16SrDNA analysis. FASEB J. 1993; 7:232-236.

Frank JA, Reich CI, Sharma S, Jon S, Weisbaum BA, Gary J, Olsen Tateno Y, Imanishi T, Miyazaki S, Fukami-Kobayashi K, Saitou N, Sugawara H, Gojobori T. Critical Evaluation of Two Primers Commonly Used for Amplification of Bacterial 16S rRNA Genes DNA Data Bank of Japan (DDBJ) for genome scale research in life science. Nucleic Acids Res. 2002; 30:27-30.

Wright ES, Yilmaz LS, Noguera DR. DECIPHER, a Search- Based Approach to Chimera identification for 16S rRNA sequences. Appl Environ Microbiol. 2012; 78:717-725.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389–3402.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997; 25:4876–4882.

Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4:406-425.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 2018; 201835:1547–1549.

Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111-120.

Ayuso-Sacido A, Genilloud O. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol. 2005; 49:10–24.

Metsa-Ketela M, Salo V, Halo L, Hautala A, Hakala J, Mantsala P, Ylihonko K. An efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiol Lett. 1999;180:1–6.

Marston A. Thin-layer chromatography with biological detection in phytochemistry. J Chromatogr. 2011; 1218:2676–2683.

Lam KS. Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol. 2006; 9:245–251.

Bull AT, Stach JEM, Ward AC, Goodfellow M. Marine actinobacteria: perspectives, challenges, future directions. Antonie Van Leeuwenhoek. 2005; 87:259–276.

Bull AT, Stach JE. Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol. 2007; 15:491–499.

Barakate M, Ouhdouch Y, Oufdou K, Beaulieu C. Characterization of rhizospheric soil Streptomycetes from Moroccan habitats and their antimicrobial activities. World J Microbiol Biotechnol. 2002; 18:49–54.

Badji B, Riba A, Mathieu F, Lebrihi A, Sabaou N. Antifungal activity of a saharan Actinomadura strain against various pathogenic and toxinogenic fungi. J Med Mycol. 2005; 15(4):211-219.

Hozzein WN, Ali MIA, Rabie W. A new preferential medium for enumeration and isolation of desert actinomycetes. World J Microbiol Biotechnol. 2008; 24:1547–1552.

Okoro CK, Brown R, Jones AL, Andrews BA, Asenjo JA, Goodfellow M, Bull AT. Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Deserts, Chile. Antonie Van Leeuwenhoek. 2009; 95:121–133.

Selvameenal L, Radakrishnan M, Balagurunathan R. Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Indian J Pharm Sci. 2009; 71: 499-504.

Meklat A, Sabaou N, Zitouni A, Mathieu F, Lebrihi A. Isolation, taxonomy, and antagonistic properties of halophilic actinomycetes in Saharan soils of Algeria. Appl Environ Microbiol. 2011; 77(18):6710– 6714.

Williams S. “Genus Streptomyces Waksman and Henrici 1943, 339AL,” in Bergey’s Manual of Systematic Bacteriology, eds S. T. Williams, M. E. Sharpe, J. G. Holt (Baltimore, MD: Williams & Wilkins). 1989; 2452–2492.

Seo JP, Lee SD. Nocardia harenae sp. nov., an actinomycete isolated from beach sand. Int J Syst Evol Microbiol. 2006; 56:2203-2207.

Aria T, Mikami Y. Choromogenecity of Streptomyces. Appl Microbiol. 1972; 23:402-406.

Dastager SG, Li WJ, Dayanand A, Tang SK, Tian XP, Zhi XY, Xu LH, Jiang CL. Separation, identification and analysis of pigment (melanin) production in Streptomyces. Afr J Biotechnol. 2006; 5:134-1139.

Getha K, Vikineswary S. Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f. sp cubense race 4: Indirect evidence for the role of antibiosis in the antagonistic process. J Ind Microbiol Biotechnol. 2002. 28:303-310.

Saadoun I, Gharaibeh R. The Streptomyces flora of Badia region of Jordan and its potential as a source of antibiotics active against resistant bacteria. J Arid Environ. 2003; 53:365–371.

Singh SK, Gurusiddaiah S. Production, purification, and characterization of chandramycin, a polypeptide antibiotic from Streptomyces lydicus. Antimicrob Agents Chemother. 1984; 26(3):394–400.

Maheswarappa G, Kavitha D, Vijayarani K, Kumanan. Prodigiosin as anticancer drug Produced from bacteria of termite gut. Indian J Basic App Med. 2013; 3(1):257-266.

Balkar N, Korcan E, Malkoc S, Guven K, Erdogmus F. Screening for Antimicrobial Activities of Actinomycetes sp. isolated from Afyonkarahisar, Turkey. Journal of Applied Biological Sciences.2014; 8 (2): 44-49. ISSN: 1307-1130, E-ISSN: 2146-0108, 2014.

Parthasarathi S, Sathya S, Bupesh G, Samy RD, Mohan MR, Kumar GS, Manikandan M, Kim CJ, Balakrishnan K. Isolation and characterization of antimicrobial compound from marine Streptomyces hygroscopicus BDUS 49. World J Fish Mar Sci. 2012; 4:268–77.

Maskey R, Asolkar R, Speitling M, Hoffmann V, Grün-Wollny I, & F Fleck W, Laatsch H. Flavones and New Isoflavone Derivatives from Microorganisms: Isolation and Structure Elucidation. Zeitschrift fur Naturforschung B. 2003; 58:686-691.

Okami Y, Kitahara T, Hamada M, Naganawa H, Kondo S. Studies on a new amino acid antibiotic, amiclenomycin. J Antibiot. 1974; 27:656–664.

Castillo UF, Strobel GA, Mullenberg K, Condron MM, Teplow DB, Folgiano V, Gallo M, Ferracane R, Mannina L, Viel S, Codde M, Robison R, Porter H, James Jensen J. Munumbicins E-4 and E-5: novel broad-spectrum antibiotics from Streptomyces NRRL 3052. FEMS Microbiol Lett. 2006; 255(2):296-300.

Published

30-11-2019
Statistics
Abstract Display: 504
PDF Downloads: 747
Dimension Badge

How to Cite

“Sand Dune Streptomyces JB66 Native to the Great Indian Thar Desert Inhibits Multidrug-Resistant Pathogens”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 11, no. 6, Nov. 2019, pp. 289-98, https://doi.org/10.25004/IJPSDR.2019.110603.

Issue

Section

Research Article

How to Cite

“Sand Dune Streptomyces JB66 Native to the Great Indian Thar Desert Inhibits Multidrug-Resistant Pathogens”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 11, no. 6, Nov. 2019, pp. 289-98, https://doi.org/10.25004/IJPSDR.2019.110603.